NMR docking of a substrate into the X-ray structure of staphylococcal nuclease
The conformation of the staphylococcal nuclease-bound metal-dTdA complex, previously determined by NMR methods [Weber, D.J., Mullen, G.P., Mildvan, A.S. (1991) Biochemistry 30:7425-7437] was docked into the X-ray structure of the enzyme-Ca(2+)-3',5'-pdTp complex [Loll, P.J., Lattman, E.E....
Saved in:
Published in: | Proteins, structure, function, and bioinformatics Vol. 13; no. 4; p. 275 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-08-1992
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The conformation of the staphylococcal nuclease-bound metal-dTdA complex, previously determined by NMR methods [Weber, D.J., Mullen, G.P., Mildvan, A.S. (1991) Biochemistry 30:7425-7437] was docked into the X-ray structure of the enzyme-Ca(2+)-3',5'-pdTp complex [Loll, P.J., Lattman, E.E. (1989) Proteins: Struct., Funct., Genet. 5:183-201] by superimposing the metal ions, taking into account intermolecular nuclear Overhauser effects from assigned aromatic proton resonances of Tyr-85, Tyr-113, and Tyr-115 to proton resonances of the leaving dA moiety of dTdA, and energy minimization to relieve small overlaps. The proton resonances of the Phe, Tyr, and Trp residues of the enzyme in the ternary enzyme-La(3+)-dTdA complex were sequence specifically assigned by 2D phase-sensitive NOESY, with and without deuteration of the aromatic protons of the Tyr residues, and by 2D heteronuclear multiple quantum correlation (HMQC) spectroscopy and 3D NOESY-HMQC spectroscopy with 15N labeling. While resonances of most Phe, Tyr and Trp residues were unshifted by the substrate dTdA from those found in the enzyme-La(3+)-3',5'-pdTp complex and the enzyme-Ca(2+)-3',5'-pdTp complex, proton resonances of Tyr-85, Tyr-113, Tyr-115, and Phe-34 were shifted by 0.08 to 0.33 ppm and the 15N resonance of Tyr-113 was shifted by 2.1 ppm by the presence of substrate. The optimized position of enzyme-bound dTdA shows the 5'-dA leaving group to partially overlap the inhibitor, 3',5'-pdTp (in the X-ray structure). The 3'-TMP moiety of dTdA points toward the solvent in a channel defined by Ile-18, Asp-19, Thr-22, Lys-45, and His-46. The phosphate of dTdA is coordinated by the metal, and an adjacent inner sphere water ligand is positioned to donate a hydrogen bond to the general base Glu-43 and to attack the phosphorus with inversion. Arg-35 and Arg-87 donate monodentate hydrogen bonds to different phosphate oxygens of dTdA, with Arg-87 positioned to protonate the leaving 5'-oxygen of dA, thus clarifying the mechanism of hydrolysis. Model building of an additional 5'-dGMP onto the 3'-oxygen of dA placed this third nucleotide onto a surface cleft near residues Glu-80, Asp-83, Lys-84, and Tyr-115 with its 3'-OH group accessible to the solvent, thus defining the size of the substrate binding site as accommodating a trinucleotide. |
---|---|
AbstractList | The conformation of the staphylococcal nuclease-bound metal-dTdA complex, previously determined by NMR methods [Weber, D.J., Mullen, G.P., Mildvan, A.S. (1991) Biochemistry 30:7425-7437] was docked into the X-ray structure of the enzyme-Ca(2+)-3',5'-pdTp complex [Loll, P.J., Lattman, E.E. (1989) Proteins: Struct., Funct., Genet. 5:183-201] by superimposing the metal ions, taking into account intermolecular nuclear Overhauser effects from assigned aromatic proton resonances of Tyr-85, Tyr-113, and Tyr-115 to proton resonances of the leaving dA moiety of dTdA, and energy minimization to relieve small overlaps. The proton resonances of the Phe, Tyr, and Trp residues of the enzyme in the ternary enzyme-La(3+)-dTdA complex were sequence specifically assigned by 2D phase-sensitive NOESY, with and without deuteration of the aromatic protons of the Tyr residues, and by 2D heteronuclear multiple quantum correlation (HMQC) spectroscopy and 3D NOESY-HMQC spectroscopy with 15N labeling. While resonances of most Phe, Tyr and Trp residues were unshifted by the substrate dTdA from those found in the enzyme-La(3+)-3',5'-pdTp complex and the enzyme-Ca(2+)-3',5'-pdTp complex, proton resonances of Tyr-85, Tyr-113, Tyr-115, and Phe-34 were shifted by 0.08 to 0.33 ppm and the 15N resonance of Tyr-113 was shifted by 2.1 ppm by the presence of substrate. The optimized position of enzyme-bound dTdA shows the 5'-dA leaving group to partially overlap the inhibitor, 3',5'-pdTp (in the X-ray structure). The 3'-TMP moiety of dTdA points toward the solvent in a channel defined by Ile-18, Asp-19, Thr-22, Lys-45, and His-46. The phosphate of dTdA is coordinated by the metal, and an adjacent inner sphere water ligand is positioned to donate a hydrogen bond to the general base Glu-43 and to attack the phosphorus with inversion. Arg-35 and Arg-87 donate monodentate hydrogen bonds to different phosphate oxygens of dTdA, with Arg-87 positioned to protonate the leaving 5'-oxygen of dA, thus clarifying the mechanism of hydrolysis. Model building of an additional 5'-dGMP onto the 3'-oxygen of dA placed this third nucleotide onto a surface cleft near residues Glu-80, Asp-83, Lys-84, and Tyr-115 with its 3'-OH group accessible to the solvent, thus defining the size of the substrate binding site as accommodating a trinucleotide. |
Author | Weber, D J Abeygunawardana, C Lattman, E E Mildvan, A S Mullen, G P Gittis, A G |
Author_xml | – sequence: 1 givenname: D J surname: Weber fullname: Weber, D J organization: Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 – sequence: 2 givenname: A G surname: Gittis fullname: Gittis, A G – sequence: 3 givenname: G P surname: Mullen fullname: Mullen, G P – sequence: 4 givenname: C surname: Abeygunawardana fullname: Abeygunawardana, C – sequence: 5 givenname: E E surname: Lattman fullname: Lattman, E E – sequence: 6 givenname: A S surname: Mildvan fullname: Mildvan, A S |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/1518799$$D View this record in MEDLINE/PubMed |
BookMark | eNotj81KAzEURrOo1La6dSfkBabe_E5mKUWtUCuIgrtyk8nY0elkSDKLvr0VuzrwcfjgzMmkD70n5IbBkgHwuyGGvBQSmAAJfEJmYExZCGXUJZmn9A0AuhJ6SqZMMVNW1Yxsty9vtA7up-2_aGgo0jTalCNmT9s-B5r3nn4WEY_0tI4uj9H_eSnjsD92wQXnsKP96DqPyV-Riwa75K_PXJCPx4f31brYvD49r-43hZPC8MJb5rHipZbW1Vxy0WitrayY1cIBqMagKIVx0ghU3rpS1uWpS3Gta4nc8gW5_f8dRnvw9W6I7QHjcXfu4r-KgU9A |
CitedBy_id | crossref_primary_10_1016_0959_440X_93_90061_O crossref_primary_10_1007_s12104_012_9372_3 crossref_primary_10_1111_j_1742_4658_2010_07790_x crossref_primary_10_1016_0079_6565_94_90000_0 crossref_primary_10_1073_pnas_0437845100 crossref_primary_10_1074_jbc_M113_508028 crossref_primary_10_1002_prot_340170106 crossref_primary_10_1016_j_jmb_2012_07_015 crossref_primary_10_1073_pnas_1914349117 crossref_primary_10_1016_0378_1119_94_90320_4 crossref_primary_10_1016_S0968_0896_97_00051_5 crossref_primary_10_1074_jbc_C100681200 crossref_primary_10_1016_0958_1669_93_90003_F crossref_primary_10_1002_prot_340180109 crossref_primary_10_1111_febs_14752 crossref_primary_10_3390_ijms20051185 crossref_primary_10_1016_S1387_3806_02_00995_8 crossref_primary_10_1126_science_8103944 crossref_primary_10_1016_j_jmb_2020_08_010 crossref_primary_10_1002__SICI_1097_0134_199712_29_4_401__AID_PROT1_3_0_CO_2_B crossref_primary_10_1002_hlca_201300308 crossref_primary_10_1002_prot_1074 crossref_primary_10_1261_rna_2382011 crossref_primary_10_1074_jbc_M109_012542 crossref_primary_10_1002_pro_5560060612 crossref_primary_10_1046_j_1365_2958_2002_02920_x crossref_primary_10_1002_bip_22762 crossref_primary_10_1073_pnas_0711919105 crossref_primary_10_3109_15419061_2010_487956 crossref_primary_10_1021_jm0497038 crossref_primary_10_1016_j_pep_2008_01_023 crossref_primary_10_1074_jbc_274_36_25599 crossref_primary_10_1006_jmbi_2001_4821 crossref_primary_10_1016_j_str_2017_01_006 crossref_primary_10_1016_S0167_4781_98_00144_4 crossref_primary_10_1074_jbc_M506838200 crossref_primary_10_1002_pro_5560060224 crossref_primary_10_1016_0959_440X_92_90182_7 crossref_primary_10_1016_j_abb_2004_08_017 crossref_primary_10_3390_biom9070284 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1002/prot.340130402 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
ExternalDocumentID | 1518799 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: DK-28616 – fundername: NIGMS NIH HHS grantid: F32 GM13324 – fundername: NIGMS NIH HHS grantid: GM36358 |
GroupedDBID | -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BNHUX BROTX BRXPI BY8 CGR CS3 CUY CVF D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBD EBS ECM EIF EJD EMOBN F00 F01 F04 F5P FA8 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB NPM O66 O9- P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT |
ID | FETCH-LOGICAL-c4382-eb1ea92764bcd2423f666b491b63c005f8a3738c483a5ebc74d73405266d4a2b2 |
ISSN | 0887-3585 |
IngestDate | Sat Sep 28 07:23:18 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4382-eb1ea92764bcd2423f666b491b63c005f8a3738c483a5ebc74d73405266d4a2b2 |
PMID | 1518799 |
ParticipantIDs | pubmed_primary_1518799 |
PublicationCentury | 1900 |
PublicationDate | August 1992 |
PublicationDateYYYYMMDD | 1992-08-01 |
PublicationDate_xml | – month: 08 year: 1992 text: August 1992 |
PublicationDecade | 1990 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Proteins, structure, function, and bioinformatics |
PublicationTitleAlternate | Proteins |
PublicationYear | 1992 |
SSID | ssj0006936 |
Score | 1.6736623 |
Snippet | The conformation of the staphylococcal nuclease-bound metal-dTdA complex, previously determined by NMR methods [Weber, D.J., Mullen, G.P., Mildvan, A.S. (1991)... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 275 |
SubjectTerms | Binding Sites Dinucleoside Phosphates - chemistry Lanthanum - chemistry Macromolecular Substances Magnetic Resonance Spectroscopy Micrococcal Nuclease - chemistry Protein Conformation Substrate Specificity X-Ray Diffraction |
Title | NMR docking of a substrate into the X-ray structure of staphylococcal nuclease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/1518799 |
Volume | 13 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTwIxEG5AY-RiVCS-04PxQlZhKfs4IqJeIEYxeiN97BoP7BqFA__embb7QKPRg5fN0i4FOh_Tmc70G0JOADTSQ6JbWB_AQWlHwhHKk44IeOS5flvFAh3Fm3t_9BRcDtigUskKMhVt_yppaANZ48nZP0g7HxQa4B5kDleQOlx_JffR8K6pQMnZbGbefAfVoClokRrCGJpPzhtfNA11LAYQ4DkwEmHCYWVLJUotQZrjLHBjbddbpHSw29P5e_EFro06R8RmgoqX1PKxzkq59I8gSA2PyyIUdY0BElMPuSjyNURGcD3YdXH6rCeixfM84Zjky805tn6xY2GyW4Nsx6Kk2LqmVE-uhTsltLGySjWVVb6oekMdi2wWZx10EkEbueUHQSyvUy1kMGoC35Rh-rHzE_G27amSKlhRaGj3h_ka74W6-GT-SzI60JZ7vvyNamTNjvPJb9H2y3iTbFjHg_YMYrZIJUq2Sb2X8Fk6XdBTqlOBdYxlm6xdZHfr_awgYJ2MAFrUQoumMeU0hxZFaFGAFtXQojk88LllaNEMWjvk4Wow7t84thyHIzFa7MCqHvHQ9T0mpEIzPAbXV7CwLbyOBGUeBxxpsiQLOrwbCekz5cM8dMEEVIy7wm2QlSRNol1Cu1yFircEuOeKyZYI47AVczdkXgwf0BZ7pGHmavJqOFcmdhL3v-s4ILUCaodkNYa_c3REqu9qfqxF9wEYGGls |
link.rule.ids | 782 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NMR+docking+of+a+substrate+into+the+X-ray+structure+of+staphylococcal+nuclease&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Weber%2C+D+J&rft.au=Gittis%2C+A+G&rft.au=Mullen%2C+G+P&rft.au=Abeygunawardana%2C+C&rft.date=1992-08-01&rft.issn=0887-3585&rft.volume=13&rft.issue=4&rft.spage=275&rft_id=info:doi/10.1002%2Fprot.340130402&rft_id=info%3Apmid%2F1518799&rft_id=info%3Apmid%2F1518799&rft.externalDocID=1518799 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon |