Species Differences in the Organization of the Ventral Cochlear Nucleus

ABSTRACT The mammalian cochlear nuclei (CN) consist of two major subdivisions, the dorsal (DCN) and ventral (VCN) nuclei. We previously reported differences in the structural and neurochemical organization of the human DCN from that in several other species. Here we extend this analysis to the VCN,...

Full description

Saved in:
Bibliographic Details
Published in:Anatomical record (Hoboken, N.J. : 2007) Vol. 301; no. 5; pp. 862 - 886
Main Authors: Baizer, Joan S., Wong, Keit Men, Salvi, Richard J., Manohar, Senthilvelan, Sherwood, Chet C., Hof, Patrick R., Baker, James F., Witelson, Sandra F.
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01-05-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT The mammalian cochlear nuclei (CN) consist of two major subdivisions, the dorsal (DCN) and ventral (VCN) nuclei. We previously reported differences in the structural and neurochemical organization of the human DCN from that in several other species. Here we extend this analysis to the VCN, considering both the organization of subdivisions and the types and distributions of neurons. Classically, the VCN in mammals is composed of two subdivisions, the anteroventral (VCA) and posteroventral cochlear nuclei (VCP). Anatomical and electrophysiological data in several species have defined distinct neuronal types with different distributions in the VCA and VCP. We asked if VCN subdivisions and anatomically defined neuronal types might be distinguished by patterns of protein expression in humans. We also asked if the neurochemical characteristics of the VCN are the same in humans as in other mammalian species, analyzing data from chimpanzees, macaque monkeys, cats, rats and chinchillas. We examined Nissl‐ and immunostained sections, using antibodies that had labeled neurons in other brainstem nuclei in humans. Nissl‐stained sections supported the presence of both VCP and VCA in humans and chimpanzees. However, patterns of protein expression did not differentiate classes of neurons in humans; neurons of different soma shapes and dendritic configurations all expressed the same proteins. The patterns of immunostaining in macaque monkey, cat, rat, and chinchilla were different from those in humans and chimpanzees and from each other. The results may correlate with species differences in auditory function and plasticity. Anat Rec, 301:862–886, 2018. © 2017 Wiley Periodicals, Inc.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1932-8486
1932-8494
DOI:10.1002/ar.23751