Machine Learning-Based Sine-Cosine Algorithm for Wastewater Quality Assessment Using Activated Carbon
Activated carbon is one of the most highly proven adsorbents for organic chemicals from wastewater. It acts as a filter and adsorbs various chemicals from the wastewater. It has large pore size and strong adsorptive capacity. The quality of wastewater is generally determined by chemical oxygen deman...
Saved in:
Published in: | Adsorption science & technology Vol. 2022 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Hindawi
2022
Sage Publications Ltd SAGE Publications |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Activated carbon is one of the most highly proven adsorbents for organic chemicals from wastewater. It acts as a filter and adsorbs various chemicals from the wastewater. It has large pore size and strong adsorptive capacity. The quality of wastewater is generally determined by chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total suspended solids (TSSs), total phosphorus (TP), and total nitrogen (TN). Wastewater contaminant measurement is significant for saving aquatic life and reusing treated water. Adsorption of contaminants that contribute for wastewater quality indicators uses machine learning algorithm for prediction. Many research works have been done, and the issues are inefficiency and time consuming in the adsorption of contaminants by activated carbon in wastewater management. To overcome these issues, this paper introduces hybrid technique of Voting-Based Extreme Learning Machine with sine cosine algorithm (VELM-SCA). The accuracy of VELM-SCA algorithm in classification of water quality status produced improved accuracy is 0.97. |
---|---|
AbstractList | Activated carbon is one of the most highly proven adsorbents for organic chemicals from wastewater. It acts as a filter and adsorbs various chemicals from the wastewater. It has large pore size and strong adsorptive capacity. The quality of wastewater is generally determined by chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total suspended solids (TSSs), total phosphorus (TP), and total nitrogen (TN). Wastewater contaminant measurement is significant for saving aquatic life and reusing treated water. Adsorption of contaminants that contribute for wastewater quality indicators uses machine learning algorithm for prediction. Many research works have been done, and the issues are inefficiency and time consuming in the adsorption of contaminants by activated carbon in wastewater management. To overcome these issues, this paper introduces hybrid technique of Voting-Based Extreme Learning Machine with sine cosine algorithm (VELM-SCA). The accuracy of VELM-SCA algorithm in classification of water quality status produced improved accuracy is 0.97. Activated carbon is one of the most highly proven adsorbents for organic chemicals from wastewater. It acts as a filter and adsorbs various chemicals from the wastewater. It has large pore size and strong adsorptive capacity. The quality of wastewater is generally determined by chemical oxygen demand (COD), biochemical oxygen demand (BOD 5) , total suspended solids (TSSs), total phosphorus (TP), and total nitrogen (TN). Wastewater contaminant measurement is significant for saving aquatic life and reusing treated water. Adsorption of contaminants that contribute for wastewater quality indicators uses machine learning algorithm for prediction. Many research works have been done, and the issues are inefficiency and time consuming in the adsorption of contaminants by activated carbon in wastewater management. To overcome these issues, this paper introduces hybrid technique of Voting-Based Extreme Learning Machine with sine cosine algorithm (VELM-SCA). The accuracy of VELM-SCA algorithm in classification of water quality status produced improved accuracy is 0.97. |
Author | Yaseen, Ishfaq Al-Hagery, Mohammed Abdullah Motwakel, Abdelwahed Asiri, Mashael M. Rizwanullah, Mohammed Alsolai, Hadeel Hilal, Anwer Mustafa Alabdan, Rana |
Author_xml | – sequence: 1 givenname: Hadeel surname: Alsolai fullname: Alsolai, Hadeel organization: Department of Information SystemsCollege of Computer and Information SciencesPrincess Nourah Bint Abdulrahman UniversityP.O. Box 84428Riyadh 11671Saudi Arabiapnu.edu.sa – sequence: 2 givenname: Mashael M. surname: Asiri fullname: Asiri, Mashael M. organization: Department of Computer ScienceCollege of Science & Art at MahayilKing Khalid UniversitySaudi Arabiakku.edu.sa – sequence: 3 givenname: Rana surname: Alabdan fullname: Alabdan, Rana organization: Department of Information TechnologyCollege of Computer and Information ScienceMajmaah UniversityAl-Majmaah 11952Saudi Arabiamu.edu.sa – sequence: 4 givenname: Mohammed Abdullah surname: Al-Hagery fullname: Al-Hagery, Mohammed Abdullah organization: Department of Computer ScienceCollege of ComputerQassim UniversitySaudi Arabiaqu.edu.sa – sequence: 5 givenname: Anwer Mustafa orcidid: 0000-0002-4658-8941 surname: Hilal fullname: Hilal, Anwer Mustafa organization: Department of Computer and Self DevelopmentPreparatory Year DeanshipPrince Sattam bin Abdulaziz UniversityAlKharjSaudi Arabiasau.edu.sa – sequence: 6 givenname: Mohammed surname: Rizwanullah fullname: Rizwanullah, Mohammed organization: Department of Computer and Self DevelopmentPreparatory Year DeanshipPrince Sattam bin Abdulaziz UniversityAlKharjSaudi Arabiasau.edu.sa – sequence: 7 givenname: Abdelwahed surname: Motwakel fullname: Motwakel, Abdelwahed organization: Department of Computer and Self DevelopmentPreparatory Year DeanshipPrince Sattam bin Abdulaziz UniversityAlKharjSaudi Arabiasau.edu.sa – sequence: 8 givenname: Ishfaq surname: Yaseen fullname: Yaseen, Ishfaq organization: Department of Computer and Self DevelopmentPreparatory Year DeanshipPrince Sattam bin Abdulaziz UniversityAlKharjSaudi Arabiasau.edu.sa |
BookMark | eNp9kU2LFDEQhoOs4OzqzR8Q8CTabr466T6Ogx8LIyK6eAyVTqW3h5nOmmRc9t-bsRc96amg6qmnQt5zcjbHGQl5ztkbztv2UjAhLqXirDPiEVkJprpGMdmdkRUTWjaaG_WEnOe8Y4wL05oVwU8w3Ewz0i1Cmqd5bN5CRk-_1l6zifk0Wu_HmKZyc6AhJvodcsE7KJjolyPsp3JP1zljzgecC72uGyNdD2X6WRFPN5BcnJ-SxwH2GZ891Aty_f7dt83HZvv5w9VmvW0GJU1pQu-4A-5YG0wvWoPGY-gH5rug0EvkGpwUMCijVWva0AftBGcelXIMOpAX5Grx-gg7e5umA6R7G2GyvxsxjRZSmYY92s7xNrh6hNdt7XXn-uC1lhJCcK4z1fVicd2m-OOIudhdPKa5Pt-KXon6x6xXlXq9UEOKOScMf65yZk-h2FMo9iGUir9c8Awj_hX-g321sDUfD3fT_82_AOLAmio |
CitedBy_id | crossref_primary_10_1016_j_molliq_2023_123008 crossref_primary_10_1016_j_jhydrol_2023_130034 crossref_primary_10_1016_j_seppur_2023_123807 |
Cites_doi | 10.1016/j.scitotenv.2019.05.142 10.1016/j.jclepro.2020.122915 10.1016/j.apsusc.2020.147749 10.1371/journal.pone.0255269 10.1016/j.matpr.2020.09.311 10.1016/j.jenvman.2019.02.068 10.1051/e3sconf/20172200174 10.1007/s11554-021-01106-x 10.1109/MCAS.2006.1688199 10.1016/j.cej.2020.126782 10.1016/j.jhazmat.2019.121769 10.1016/j.jhazmat.2020.122598 10.1007/s00521-022-06925-y 10.1016/j.progpolymsci.2004.11.002 10.1007/s12652-020-02122-8 10.1016/j.carbon.2003.09.022 10.23919/JSEE.2021.000018 10.1016/j.knosys.2015.12.022 10.1007/s11036-021-01860-z 10.1016/j.jconhyd.2018.10.003 10.1007/s11036-021-01861-y 10.3390/nano11102734 10.2166/wst.2018.467 10.1109/ACCESS.2021.3107371 10.1016/j.polymertesting.2019.105909 10.1016/j.scitotenv.2019.134847 10.1007/s12652-020-02138-0 10.1016/j.cej.2020.128116 10.7717/peerj-cs.569 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Hadeel Alsolai et al. Copyright Sage Publications Ltd. Jan 2022 |
Copyright_xml | – notice: Copyright © 2022 Hadeel Alsolai et al. – notice: Copyright Sage Publications Ltd. Jan 2022 |
DBID | RHU RHW RHX AFRWT AAYXX CITATION 7SR 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO JG9 PIMPY PQEST PQQKQ PQUKI DOA |
DOI | 10.1155/2022/3410872 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing SAGE Open Access CrossRef Engineered Materials Abstracts Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Materials Research Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Materials Research Database Engineered Materials Abstracts Technology Research Database ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2048-4038 |
Editor | Pasha, S.K. Khadheer |
Editor_xml | – sequence: 1 givenname: S.K. Khadheer surname: Pasha fullname: Pasha, S.K. Khadheer |
ExternalDocumentID | oai_doaj_org_article_8b15fb2571e446d68b9fd6633affbb87 10_1155_2022_3410872 10.1155_2022_3410872 |
GrantInformation_xml | – fundername: Princess Nourah Bint Abdulrahman University grantid: PNURSP2022R303 – fundername: Majmaah University grantid: R-2022-119; R-2022-50 – fundername: King Khalid University grantid: RGP 2/45/43; RGP 1/60/43 – fundername: Princess Nourah Bint Abdulrahman University grantid: PNURSP2022R303 funderid: https://doi.org/10.13039/501100004242 – fundername: Majmaah University grantid: R-2022-119; R-2022-50 funderid: https://doi.org/10.13039/501100007613 – fundername: King Khalid University grantid: RGP 2/45/43; RGP 1/60/43 funderid: https://doi.org/10.13039/501100007446 |
GroupedDBID | 23M 4.4 5GY AABPG AAFWJ AAJEY AAJPV AATZT ABAWP ABDBF ABQXT ACDXX ACGFS ADBBV AENEX AEWDL AFKRA AFKRG AFPKN AFRWT AJUZI ALMA_UNASSIGNED_HOLDINGS ARTOV AUTPY AYAKG BCNDV BENPR CCPQU CS3 DV7 EBS ESX GROUPED_DOAJ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION I-F K.F M4V MET MV1 O9- OK1 P2P PIMPY Q1R RHU RHW RHX ROL SFC TUS AAOTM AAYXX AFCOW AI. BDDNI CITATION CKLRP EJD H13 IL9 J8X VH1 7SR 8FD ABUWG AZQEC DWQXO JG9 PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c437t-f9b1ba1b05f79257e7def9c0d8f4ed3e16ab32ac4764575f9f6b210de44b0a8a3 |
IEDL.DBID | DOA |
ISSN | 0263-6174 |
IngestDate | Tue Oct 22 15:05:11 EDT 2024 Fri Nov 08 20:56:16 EST 2024 Thu Nov 21 22:28:12 EST 2024 Sun May 26 05:40:27 EDT 2024 Sun Jun 02 19:23:10 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This is an open access article distributed under the Creative Commons Attribution License, (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c437t-f9b1ba1b05f79257e7def9c0d8f4ed3e16ab32ac4764575f9f6b210de44b0a8a3 |
ORCID | 0000-0002-4658-8941 |
OpenAccessLink | https://doaj.org/article/8b15fb2571e446d68b9fd6633affbb87 |
PQID | 2942087094 |
PQPubID | 4450588 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8b15fb2571e446d68b9fd6633affbb87 proquest_journals_2942087094 crossref_primary_10_1155_2022_3410872 sage_journals_10_1155_2022_3410872 hindawi_primary_10_1155_2022_3410872 |
PublicationCentury | 2000 |
PublicationDate | 2022-00-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Adsorption science & technology |
PublicationYear | 2022 |
Publisher | Hindawi Sage Publications Ltd SAGE Publications |
Publisher_xml | – name: Hindawi – name: Sage Publications Ltd – name: SAGE Publications |
References | Zhu, Wan, Tsang, He, Hou, Su, Shang 2021; 406, article 126782 Mengcan, Xiaofang, Yongfang 2021; 32 Yang, Zhang, Jian, Wang, Xing, Sun, Hao 2020; 396, article 122598 Bacanin, Timea, Venkatachalam, Al-Turjman 2021; 18 Ramamoorthy, Ravikumar, Saravana Balaji, Balakrishnan, Venkatachalam 2021; 12 Spaltro, Pila, Simonetti, Álvarez-Torrellas, Rodríguez, Ruiz, Company 2018; 218 Bacanin, Zivkovic, Bezdan, Venkatachalam, Abouhawwash 2022 Wang, Li, Yahyaoui, Hanafy, Seliem, Bonilla-Petriciolet, Dotto, Sellaoui, Li 2021; 417, article 128116 Hasan, Rashid, Hossain, Al Mesfer, Arshad, Danish, Lee, El Jery, Kumar 2019; 77, article 105909 Mirjalili 2016; 96 Ponmagal, Karthick, Dhiyanesh, Balakrishnan, Venkatachalam 2021; 12 Venkatachalam, Prabu, Almutairi, Abouhawwash 2021; 7, article e569 Xiang, Xu, Wei, Zhou, Yang, Yang, Yang, Zhang, Luo, Zhou 2019; 237 Venkatachalam, Siuly, Bacanin, Hubalovsky, Trojovsky 2021; 9 Mohammed, Venkatachalam, Hubálovský, Trojovský, Prabu 2022; 178 Bahrami, Amiri, Beigzadeh 2018; 78 Aravind, Amalanathan 2021; 43 Venkatachalam, Prabu, Alluhaidan, Hubálovský, Trojovský 2022 Foroughi, Azqhandi, Kakhki 2020; 388, article 121769 Polikar 2006; 6 Li, Wang, Zhang, Liu, Liu, Chen 2020; 711, article 134847 Szeląg, Barbusiński, Studziński, Bartkiewicz 2017; 22, article 00174 Zhu, Tsang, Wang, Su, Hou, Li, Shang 2020; 273, article 122915 Alshabib, Oluwadamilare, Tanimu, Abdulazeez, Alhooshani, Ganiyu 2021; 536, article 147749 Crini 2005; 30 Rehman, Khan, Ghazali, Aamir, Nawi 2021; 16 Moreno-Castilla 2004; 42 Kaetzl, Lübken, Uzun, Gehring, Nettmann, Stenchly, Wichern 2019; 682 Moosavi, Manta, El-Badry, Hussein, El-Bahy, Fawzi 2021; 11 bibr4-2022_3410872 bibr2-2022_3410872 bibr7-2022_3410872 bibr3-2022_3410872 bibr8-2022_3410872 bibr9-2022_3410872 bibr1-2022_3410872 bibr19-2022_3410872 bibr18-2022_3410872 bibr16-2022_3410872 bibr17-2022_3410872 bibr13-2022_3410872 bibr15-2022_3410872 bibr14-2022_3410872 bibr12-2022_3410872 bibr11-2022_3410872 bibr29-2022_3410872 bibr28-2022_3410872 bibr10-2022_3410872 bibr24-2022_3410872 bibr25-2022_3410872 bibr22-2022_3410872 bibr27-2022_3410872 bibr21-2022_3410872 bibr20-2022_3410872 bibr26-2022_3410872 bibr6-2022_3410872 bibr5-2022_3410872 bibr23-2022_3410872 |
References_xml | – volume: 237 start-page: 128 year: 2019 end-page: 138 article-title: Carbon-based materials as adsorbent for antibiotics removal: mechanisms and influencing factors publication-title: contributor: fullname: Zhou – volume: 682 start-page: 601 year: 2019 end-page: 610 article-title: On-farm wastewater treatment using biochar from local agroresidues reduces pathogens from irrigation water for safer food production in developing countries publication-title: contributor: fullname: Wichern – volume: 78 start-page: 1812 issue: 8 year: 2018 end-page: 1821 article-title: Adsorption of 2,4-dichlorophenoxyacetic acid using rice husk biochar, granular activated carbon, and multi-walled carbon nanotubes in a fixed bed column system publication-title: contributor: fullname: Beigzadeh – volume: 396, article 122598 year: 2020 article-title: Effect of biochar-derived dissolved organic matter on adsorption of sulfamethoxazole and chloramphenicol publication-title: contributor: fullname: Hao – volume: 32 start-page: 209 issue: 1 year: 2021 end-page: 219 article-title: Constrained voting extreme learning machine and its application publication-title: contributor: fullname: Yongfang – volume: 6 start-page: 21 issue: 3 year: 2006 end-page: 45 article-title: Ensemble based systems in decision making publication-title: contributor: fullname: Polikar – volume: 18 start-page: 1085 issue: 4 year: 2021 end-page: 1098 article-title: Optimized convolutional neural network by firefly algorithm for magnetic resonance image classification of glioma brain tumor grade publication-title: contributor: fullname: Al-Turjman – volume: 12 start-page: 5909 issue: 6 year: 2021 end-page: 5916 article-title: MCAMO: multi constraint aware multi-objective resource scheduling optimization technique for cloud infrastructure services publication-title: contributor: fullname: Venkatachalam – volume: 12 start-page: 5807 issue: 6 year: 2021 end-page: 5815 article-title: Optimized virtual network function provisioning technique for mobile edge cloud computing publication-title: contributor: fullname: Venkatachalam – volume: 536, article 147749 year: 2021 article-title: Experimental and DFT investigation of ceria-nanocomposite decorated AC derived from groundnut shell for efficient removal of methylene-blue from wastewater effluent publication-title: contributor: fullname: Ganiyu – volume: 43 start-page: 1491 year: 2021 end-page: 1495 article-title: Structural, morphological, and optical properties of country egg shell derived activated carbon for dye removal publication-title: contributor: fullname: Amalanathan – volume: 218 start-page: 84 year: 2018 end-page: 93 article-title: Adsorption and removal of phenoxy acetic herbicides from water by using commercial activated carbons: experimental and computational studies publication-title: contributor: fullname: Company – volume: 16 issue: 8, article e0255269 year: 2021 article-title: A new multi sine-cosine algorithm for unconstrained optimization problems publication-title: contributor: fullname: Nawi – volume: 178 start-page: 1 year: 2022 end-page: 10 article-title: Smart Edge Computing for 5 g/6 g Satellite IOT for Reducing Inter Transmission Delay publication-title: contributor: fullname: Prabu – volume: 388, article 121769 year: 2020 article-title: Bio-inspired, high, and fast adsorption of tetracycline from aqueous media using Fe3O4-g-CN@PEI- -CD nanocomposite: modeling by response surface methodology (RSM), boosted regression tree (BRT), and general regression neural network (GRNN) publication-title: contributor: fullname: Kakhki – volume: 273, article 122915 year: 2020 article-title: Machine learning exploration of the critical factors for CO adsorption capacity on porous carbon materials at different pressures publication-title: contributor: fullname: Shang – volume: 11 start-page: 2734 year: 2021 article-title: A Study on Machine Learning Methods’ Application for Dye Adsorption Prediction onto Agricultural Waste Activated Carbon publication-title: contributor: fullname: Fawzi – volume: 406, article 126782 year: 2021 article-title: Machine learning for the selection of carbon-based materials for tetracycline and sulfamethoxazole adsorption publication-title: contributor: fullname: Shang – volume: 96 start-page: 120 year: 2016 end-page: 133 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: contributor: fullname: Mirjalili – volume: 77, article 105909 year: 2019 article-title: Fabrication of polyaniline/activated carbon composite and its testing for methyl orange removal: Optimization, equilibrium, isotherm and kinetic study publication-title: contributor: fullname: Kumar – volume: 417, article 128116 year: 2021 article-title: Effective adsorption of dyes on an activated carbon prepared from carboxymethyl cellulose: experiments, characterization and advanced modelling publication-title: contributor: fullname: Li – start-page: 1 year: 2022 end-page: 10 article-title: Deep belief neural network for 5G diabetes monitoring in big data on edge IoT publication-title: contributor: fullname: Trojovský – volume: 711, article 134847 year: 2020 article-title: Preparation and application of magnetic biochar in water treatment: a critical review publication-title: contributor: fullname: Chen – volume: 22, article 00174 year: 2017 article-title: Prediction of wastewater quality indicators at the inflow to the wastewater treatment plant using data mining methods publication-title: contributor: fullname: Bartkiewicz – start-page: 1 year: 2022 end-page: 26 article-title: Modified firefly algorithm for workflow scheduling in cloud-edge environment publication-title: contributor: fullname: Abouhawwash – volume: 7, article e569 year: 2021 article-title: Secure biometric authentication with de-duplication on distributed cloud storage publication-title: contributor: fullname: Abouhawwash – volume: 9 start-page: 119078 year: 2021 end-page: 119089 article-title: An efficient Gabor Walsh-Hadamard transform based approach for retrieving brain tumor images from MRI publication-title: contributor: fullname: Trojovsky – volume: 30 start-page: 38 issue: 1 year: 2005 end-page: 70 article-title: Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment publication-title: contributor: fullname: Crini – volume: 42 start-page: 83 issue: 1 year: 2004 end-page: 94 article-title: Adsorption of organic molecules from aqueous solutions on carbon materials publication-title: contributor: fullname: Moreno-Castilla – ident: bibr19-2022_3410872 doi: 10.1016/j.scitotenv.2019.05.142 – ident: bibr4-2022_3410872 doi: 10.1016/j.jclepro.2020.122915 – ident: bibr13-2022_3410872 doi: 10.1016/j.apsusc.2020.147749 – ident: bibr3-2022_3410872 doi: 10.1371/journal.pone.0255269 – ident: bibr12-2022_3410872 doi: 10.1016/j.matpr.2020.09.311 – ident: bibr17-2022_3410872 doi: 10.1016/j.jenvman.2019.02.068 – ident: bibr21-2022_3410872 doi: 10.1051/e3sconf/20172200174 – ident: bibr25-2022_3410872 doi: 10.1007/s11554-021-01106-x – ident: bibr11-2022_3410872 doi: 10.1109/MCAS.2006.1688199 – ident: bibr1-2022_3410872 doi: 10.1016/j.cej.2020.126782 – ident: bibr5-2022_3410872 doi: 10.1016/j.jhazmat.2019.121769 – ident: bibr15-2022_3410872 doi: 10.1016/j.jhazmat.2020.122598 – ident: bibr23-2022_3410872 doi: 10.1007/s00521-022-06925-y – ident: bibr8-2022_3410872 doi: 10.1016/j.progpolymsci.2004.11.002 – ident: bibr29-2022_3410872 doi: 10.1007/s12652-020-02122-8 – ident: bibr9-2022_3410872 doi: 10.1016/j.carbon.2003.09.022 – ident: bibr2-2022_3410872 doi: 10.23919/JSEE.2021.000018 – ident: bibr10-2022_3410872 doi: 10.1016/j.knosys.2015.12.022 – ident: bibr22-2022_3410872 doi: 10.1007/s11036-021-01860-z – ident: bibr7-2022_3410872 doi: 10.1016/j.jconhyd.2018.10.003 – ident: bibr24-2022_3410872 doi: 10.1007/s11036-021-01861-y – ident: bibr20-2022_3410872 doi: 10.3390/nano11102734 – ident: bibr6-2022_3410872 doi: 10.2166/wst.2018.467 – ident: bibr27-2022_3410872 doi: 10.1109/ACCESS.2021.3107371 – ident: bibr18-2022_3410872 doi: 10.1016/j.polymertesting.2019.105909 – ident: bibr16-2022_3410872 doi: 10.1016/j.scitotenv.2019.134847 – ident: bibr28-2022_3410872 doi: 10.1007/s12652-020-02138-0 – ident: bibr14-2022_3410872 doi: 10.1016/j.cej.2020.128116 – ident: bibr26-2022_3410872 doi: 10.7717/peerj-cs.569 |
SSID | ssj0012757 |
Score | 2.311915 |
Snippet | Activated carbon is one of the most highly proven adsorbents for organic chemicals from wastewater. It acts as a filter and adsorbs various chemicals from the... |
SourceID | doaj proquest crossref sage hindawi |
SourceType | Open Website Aggregation Database Publisher |
SubjectTerms | Activated carbon Adsorption Adsorptivity Algorithms Artificial neural networks Biochemical oxygen demand Chemical oxygen demand Contaminants Machine learning Organic chemicals Organic chemistry Pore size Quality assessment Solid suspensions Trigonometric functions Wastewater management Water quality |
Title | Machine Learning-Based Sine-Cosine Algorithm for Wastewater Quality Assessment Using Activated Carbon |
URI | https://dx.doi.org/10.1155/2022/3410872 https://journals.sagepub.com/doi/full/10.1155/2022/3410872 https://www.proquest.com/docview/2942087094 https://doaj.org/article/8b15fb2571e446d68b9fd6633affbb87 |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLWgEwyIpygUZKEyWs3LdjK2pVUXWAqCLfKzRYIG9SHE33PtJKWVkFhYncixznF873VOjhFqw5TVmitOLGOWJCK2RKg4I9RGHNJTobm3axqN-cNLejdwNjnro76cJqy0By6B66QypFbCxAoNVC6apTKzGsJkLKyVMi3_Iw9YXUxV3w8iTnktc6fUVfhRB9brIOXRVgDyPv2Q-k5dAfz5upVmbii7fLAZHqKDKkvE3XJ0R2jHzI7R_oZ34Aky914GaXDlkDohPQhIGo-hjfQLJ2fH3bdJAcX_9B1DaoqfxcLtlAGQuHTO-MLdtS8n9toB3FX-uDPopy_mspidoqfh4LE_ItWZCUQlMV8Sm8lQilAG1PIMUDNcG5upQKc2MTo2IRMyjoRKOEsgU7OZZRLw0wCuDEQq4jPUmBUzc44wVaGBbE9JxoIElnQBRGpnV5YC8SZUTXRbA5l_lNYYuS8pKM0d4HkFeBP1HMrre5yhtW8AmvOK5vwvmpuoXXH0x7NaNYF59TIu8ihzGgIOhWwT3ThSfy791sfFf4z3Eu25PsvNmhZqLOcrc4V2F3p17WfqN58b6pw |
link.rule.ids | 315,782,786,866,879,2106,4028,27932,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Sine-Cosine+Algorithm+for+Wastewater+Quality+Assessment+Using+Activated+Carbon&rft.jtitle=Adsorption+science+%26+technology&rft.au=Alsolai%2C+Hadeel&rft.au=Asiri%2C+Mashael+M&rft.au=Rana+Alabdan&rft.au=Mohammed+Abdullah+Al-Hagery&rft.date=2022&rft.pub=Sage+Publications+Ltd&rft.issn=0263-6174&rft.eissn=2048-4038&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F3410872 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-6174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-6174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-6174&client=summon |