Investigating the Ability to Identify New Constructions in Urban Areas Using Images from Unmanned Aerial Vehicles, Google Earth, and Sentinel-2

One of the main problems in developing countries is unplanned urban growth and land use change. Timely identification of new constructions can be a good solution to mitigate some environmental and social problems. This study examined the possibility of identifying new constructions in urban areas us...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 14; no. 13; p. 3227
Main Authors: Aliabad, Fahime Arabi, Malamiri, Hamid Reza Ghafarian, Shojaei, Saeed, Sarsangi, Alireza, Ferreira, Carla Sofia Santos, Kalantari, Zahra
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-07-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract One of the main problems in developing countries is unplanned urban growth and land use change. Timely identification of new constructions can be a good solution to mitigate some environmental and social problems. This study examined the possibility of identifying new constructions in urban areas using images from unmanned aerial vehicles (UAV), Google Earth and Sentinel-2. The accuracy of the land cover map obtained using these images was investigated using pixel-based processing methods (maximum likelihood, minimum distance, Mahalanobis, spectral angle mapping (SAM)) and object-based methods (Bayes, support vector machine (SVM), K-nearest-neighbor (KNN), decision tree, random forest). The use of DSM to increase the accuracy of classification of UAV images and the use of NDVI to identify vegetation in Sentinel-2 images were also investigated. The object-based KNN method was found to have the greatest accuracy in classifying UAV images (kappa coefficient = 0.93), and the use of DSM increased the classification accuracy by 4%. Evaluations of the accuracy of Google Earth images showed that KNN was also the best method for preparing a land cover map using these images (kappa coefficient = 0.83). The KNN and SVM methods showed the highest accuracy in preparing land cover maps using Sentinel-2 images (kappa coefficient = 0.87 and 0.85, respectively). The accuracy of classification was not increased when using NDVI due to the small percentage of vegetation cover in the study area. On examining the advantages and disadvantages of the different methods, a novel method for identifying new rural constructions was devised. This method uses only one UAV imaging per year to determine the exact position of urban areas with no constructions and then examines spectral changes in related Sentinel-2 pixels that might indicate new constructions in these areas. On-site observations confirmed the accuracy of this method.
AbstractList One of the main problems in developing countries is unplanned urban growth and land use change. Timely identification of new constructions can be a good solution to mitigate some environmental and social problems. This study examined the possibility of identifying new constructions in urban areas using images from unmanned aerial vehicles (UAV), Google Earth and Sentinel-2. The accuracy of the land cover map obtained using these images was investigated using pixel-based processing methods (maximum likelihood, minimum distance, Mahalanobis, spectral angle mapping (SAM)) and object-based methods (Bayes, support vector machine (SVM), K-nearest-neighbor (KNN), decision tree, random forest). The use of DSM to increase the accuracy of classification of UAV images and the use of NDVI to identify vegetation in Sentinel-2 images were also investigated. The object-based KNN method was found to have the greatest accuracy in classifying UAV images (kappa coefficient = 0.93), and the use of DSM increased the classification accuracy by 4%. Evaluations of the accuracy of Google Earth images showed that KNN was also the best method for preparing a land cover map using these images (kappa coefficient = 0.83). The KNN and SVM methods showed the highest accuracy in preparing land cover maps using Sentinel-2 images (kappa coefficient = 0.87 and 0.85, respectively). The accuracy of classification was not increased when using NDVI due to the small percentage of vegetation cover in the study area. On examining the advantages and disadvantages of the different methods, a novel method for identifying new rural constructions was devised. This method uses only one UAV imaging per year to determine the exact position of urban areas with no constructions and then examines spectral changes in related Sentinel-2 pixels that might indicate new constructions in these areas. On-site observations confirmed the accuracy of this method.
Author Malamiri, Hamid Reza Ghafarian
Shojaei, Saeed
Ferreira, Carla Sofia Santos
Aliabad, Fahime Arabi
Sarsangi, Alireza
Kalantari, Zahra
Author_xml – sequence: 1
  givenname: Fahime Arabi
  surname: Aliabad
  fullname: Aliabad, Fahime Arabi
– sequence: 2
  givenname: Hamid Reza Ghafarian
  orcidid: 0000-0001-6083-1517
  surname: Malamiri
  fullname: Malamiri, Hamid Reza Ghafarian
– sequence: 3
  givenname: Saeed
  orcidid: 0000-0002-5260-1161
  surname: Shojaei
  fullname: Shojaei, Saeed
– sequence: 4
  givenname: Alireza
  surname: Sarsangi
  fullname: Sarsangi, Alireza
– sequence: 5
  givenname: Carla Sofia Santos
  orcidid: 0000-0003-3709-4103
  surname: Ferreira
  fullname: Ferreira, Carla Sofia Santos
– sequence: 6
  givenname: Zahra
  orcidid: 0000-0002-7978-0040
  surname: Kalantari
  fullname: Kalantari, Zahra
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-315843$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-208277$$DView record from Swedish Publication Index
BookMark eNqFkstu1DAUhiNUJErphiewxA5NwLdcvBwNpUSqYAHTreXYxxkPGXuwHap5Cl6ZpIO4rPDGv6zP3zmyz_PiwgcPRfGS4DeMCfw2JsIJY5Q2T4pLihtaciroxV_5WXGd0h7PizEiML8sfnT-O6TsBpWdH1DeAVr3bnT5hHJAnQGfnT2hj_CANsGnHCed3RyQ82gbe-XROoJKaJuW691BDZCQjeGAtv6gvAeD1hCdGtE97JweIa3QbQjDCOhGxbxbIeUN-ryU8TCW9EXx1KoxwfWv_arYvr_5svlQ3n267Tbru1JzVudSU0wwF6ayteoVqyvaG1NprK3mvZ2DJWAaqBttNGV9XbHKUmOFJlhwBZxdFd3Za4Lay2N0BxVPMignHw9CHOTc3tKw5L0ATqgRViiuhW77WjSYVwqrWlDdzK7V2ZUe4Dj1_9jeufv1oy1NkuKWNgte_h__mneSkarlbOZfnfljDN-m-bPkPkzRz68jad3WpGVCkJl6faZ0DClFsL-9BMtlPOSf8WA_Adgor4U
CitedBy_id crossref_primary_10_3390_agronomy12112658
crossref_primary_10_1109_LGRS_2023_3247620
crossref_primary_10_1007_s41324_023_00539_9
crossref_primary_10_3390_rs15164053
crossref_primary_10_1016_j_jag_2024_103871
Cites_doi 10.1109/IGARSS.2018.8518172
10.3390/rs8030166
10.3390/s19051140
10.11613/BM.2012.031
10.3390/rs8080689
10.1016/j.ecolind.2013.11.022
10.3390/land10060557
10.5194/egusphere-egu21-6378
10.1007/978-3-662-03978-6
10.3390/rs11192249
10.1109/PRRS.2018.8486155
10.1016/0031-3203(80)90029-1
10.1016/j.habitatint.2011.02.004
10.4236/ars.2017.63013
10.1080/22797254.2017.1308235
10.3390/rs9010074
10.1016/j.firesaf.2019.102828
10.3390/land10111264
10.1016/j.apgeog.2010.11.007
10.3390/rs12142291
10.14358/PERS.74.8.1007
10.1109/TGRS.2006.876704
10.1080/10106049.2013.768300
10.1016/j.isprsjprs.2009.06.004
10.3390/rs11060655
10.3390/land10121365
10.1016/j.rse.2020.112128
10.1016/j.rse.2011.11.020
10.5194/isprsarchives-XL-7-W3-557-2015
10.3390/land11010082
10.3390/s18113921
10.1016/S0034-4257(00)00142-5
10.3390/rs11242912
10.1016/j.ecolind.2014.05.003
10.1007/978-3-030-37393-1_21
10.1016/j.rse.2010.12.017
10.1016/j.isprsjprs.2015.10.004
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PTHSS
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
ABAVF
DG7
DOA
DOI 10.3390/rs14133227
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
SWEPUB Stockholms universitet full text
SWEPUB Stockholms universitet
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList CrossRef
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_4b9e412d9f9a4c9c8b697045a0a692c7
oai_DiVA_org_su_208277
oai_DiVA_org_kth_315843
10_3390_rs14133227
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PQEST
PQQKQ
PQUKI
ADTPV
AFDQA
AOWAS
C1A
D8T
D8V
IPNFZ
ZZAVC
ABAVF
DG7
ID FETCH-LOGICAL-c436t-c201049d5f6aba3652bdd5c0cfc4bf5c0f1ed7e67cdc23b6535f2df9c1094ae43
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Tue Oct 22 15:01:41 EDT 2024
Tue Oct 01 22:45:52 EDT 2024
Tue Oct 01 22:20:29 EDT 2024
Sat Nov 09 11:23:20 EST 2024
Fri Nov 22 03:20:21 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-c201049d5f6aba3652bdd5c0cfc4bf5c0f1ed7e67cdc23b6535f2df9c1094ae43
ORCID 0000-0002-5260-1161
0000-0001-6083-1517
0000-0002-7978-0040
0000-0003-3709-4103
OpenAccessLink https://doaj.org/article/4b9e412d9f9a4c9c8b697045a0a692c7
PQID 2686183991
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_4b9e412d9f9a4c9c8b697045a0a692c7
swepub_primary_oai_DiVA_org_su_208277
swepub_primary_oai_DiVA_org_kth_315843
proquest_journals_2686183991
crossref_primary_10_3390_rs14133227
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Toth (ref_36) 2016; 115
Gao (ref_9) 2008; 2
Clemens (ref_5) 2012; 141–142
ref_14
ref_13
Haas (ref_31) 2017; 8
ref_12
ref_56
ref_11
ref_10
ref_53
Myint (ref_50) 2011; 115
Li (ref_18) 2016; 49
Pradhan (ref_48) 2010; 7
ref_16
ref_15
Rudrapal (ref_49) 2015; 4
Shahraki (ref_35) 2011; 35
Kumar (ref_44) 2014; 45
Zhang (ref_8) 2006; 44
ref_25
ref_24
ref_23
Yeh (ref_2) 2001; 67
ref_22
Chen (ref_38) 2009; 6
ref_21
McHugh (ref_57) 2012; 22
Gombe (ref_20) 2017; 6
ref_29
ref_28
ref_27
Szuster (ref_3) 2011; 31
ref_26
Blaschke (ref_7) 2010; 65
DeFries (ref_52) 2000; 74
Basukala (ref_55) 2017; 50
Frantz (ref_19) 2021; 252
Gibson (ref_30) 2019; 108
Wijaya (ref_51) 2015; 40
Yu (ref_17) 2008; 74
Whiteside (ref_37) 2011; 13
ref_33
ref_32
ref_39
Tehrany (ref_45) 2014; 29
Tahar (ref_34) 2013; 7
ref_47
Rounds (ref_54) 1980; 12
ref_46
ref_43
ref_42
Jaeger (ref_1) 2014; 38
ref_41
ref_40
Duro (ref_4) 2012; 118
ref_6
References_xml – ident: ref_21
  doi: 10.1109/IGARSS.2018.8518172
– ident: ref_27
  doi: 10.3390/rs8030166
– ident: ref_28
  doi: 10.3390/s19051140
– volume: 22
  start-page: 276
  year: 2012
  ident: ref_57
  article-title: Interrater reliability: The kappa statistic
  publication-title: Biochem. Med.
  doi: 10.11613/BM.2012.031
  contributor:
    fullname: McHugh
– ident: ref_33
  doi: 10.3390/rs8080689
– volume: 38
  start-page: 294
  year: 2014
  ident: ref_1
  article-title: Improving the Measurement of Urban Sprawl: Weighted Urban Proliferation (WUP) and Its Application to Switzerland
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2013.11.022
  contributor:
    fullname: Jaeger
– ident: ref_15
  doi: 10.3390/land10060557
– ident: ref_16
  doi: 10.5194/egusphere-egu21-6378
– ident: ref_39
– volume: 141–142
  start-page: 21
  year: 2012
  ident: ref_5
  article-title: Automated classification of topography from SRTM data using object-based image analysis
  publication-title: Geomorphology
  contributor:
    fullname: Clemens
– ident: ref_42
  doi: 10.1007/978-3-662-03978-6
– ident: ref_11
  doi: 10.3390/rs11192249
– volume: 8
  start-page: 41
  year: 2017
  ident: ref_31
  article-title: Sentinel-1A SAR and sentinel-2A MSI data fusion for urban ecosystem service mapping
  publication-title: Remote Sens. Appl. Soc. Environ.
  contributor:
    fullname: Haas
– volume: 2
  start-page: 27
  year: 2008
  ident: ref_9
  article-title: A comparison of the performance of pixel-based and object-based classifications over images with various spatial resolutions
  publication-title: Online J. Earth Sci.
  contributor:
    fullname: Gao
– ident: ref_29
  doi: 10.1109/PRRS.2018.8486155
– volume: 12
  start-page: 313
  year: 1980
  ident: ref_54
  article-title: A combined nonparametric approach to feature selection and binary decision tree design
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(80)90029-1
  contributor:
    fullname: Rounds
– ident: ref_56
– volume: 35
  start-page: 521
  year: 2011
  ident: ref_35
  article-title: Urban sprawl pattern and land-use change detection in Yazd, Iran
  publication-title: Habitat Int.
  doi: 10.1016/j.habitatint.2011.02.004
  contributor:
    fullname: Shahraki
– volume: 6
  start-page: 175
  year: 2017
  ident: ref_20
  article-title: Quantification of annual urban growth of Dar es Salaam Tanzania from Landsat time Series data
  publication-title: Adv. Remote Sens.
  doi: 10.4236/ars.2017.63013
  contributor:
    fullname: Gombe
– ident: ref_10
– volume: 6
  start-page: 477
  year: 2009
  ident: ref_38
  article-title: Comparisson of Pixel-Based and Obgectoriented Knowledge Based Classification Methods Using SPOT5 Imagery
  publication-title: WSEAS Trans. Inf. Sci. Appl.
  contributor:
    fullname: Chen
– volume: 50
  start-page: 187
  year: 2017
  ident: ref_55
  article-title: Towards improved land use mapping of irrigated croplands: Performance assessment of different image classification algorithms and approaches
  publication-title: Eur. J. Remote Sens.
  doi: 10.1080/22797254.2017.1308235
  contributor:
    fullname: Basukala
– ident: ref_22
  doi: 10.3390/rs9010074
– volume: 7
  start-page: 48
  year: 2013
  ident: ref_34
  article-title: An evaluation on fixed wing and multi-rotor UAV images using photogrammetric image processing
  publication-title: Int. J. Comput. Electr. Autom. Control. Inf. Eng.
  contributor:
    fullname: Tahar
– ident: ref_41
– volume: 108
  start-page: 102828
  year: 2019
  ident: ref_30
  article-title: Detecting historic informal settlement fires with sentinel 1 and 2 satellite data-Two case studies in Cape Town
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2019.102828
  contributor:
    fullname: Gibson
– ident: ref_14
  doi: 10.3390/land10111264
– volume: 31
  start-page: 525
  year: 2011
  ident: ref_3
  article-title: A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2010.11.007
  contributor:
    fullname: Szuster
– ident: ref_23
  doi: 10.3390/rs12142291
– volume: 74
  start-page: 1007
  year: 2008
  ident: ref_17
  article-title: Factors affecting spatial variation of classification uncertainty in an image object-based vegetation mapping
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.74.8.1007
  contributor:
    fullname: Yu
– volume: 44
  start-page: 2950
  year: 2006
  ident: ref_8
  article-title: A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.876704
  contributor:
    fullname: Zhang
– volume: 49
  start-page: 87
  year: 2016
  ident: ref_18
  article-title: A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Li
– volume: 29
  start-page: 351
  year: 2014
  ident: ref_45
  article-title: A comparative assessment between object and pixel-based classification approaches for land use-land cover mapping using SPOT 5 imagery
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2013.768300
  contributor:
    fullname: Tehrany
– ident: ref_53
– volume: 65
  start-page: 2
  year: 2010
  ident: ref_7
  article-title: Object based image analysis for remote sensing
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2009.06.004
  contributor:
    fullname: Blaschke
– ident: ref_32
  doi: 10.3390/rs11060655
– ident: ref_47
– ident: ref_13
  doi: 10.3390/land10121365
– volume: 252
  start-page: 112128
  year: 2021
  ident: ref_19
  article-title: National-scale mapping of building height using Sentinel-1 and Sentinel-2 time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112128
  contributor:
    fullname: Frantz
– volume: 13
  start-page: 884
  year: 2011
  ident: ref_37
  article-title: Comparing object-based and pixel-based classifications for mapping savannas
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Whiteside
– ident: ref_40
– volume: 118
  start-page: 259
  year: 2012
  ident: ref_4
  article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imager
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.020
  contributor:
    fullname: Duro
– volume: 40
  start-page: 557
  year: 2015
  ident: ref_51
  article-title: Assessment of Large Scale land Cover Change Classifications and Drivers of Deforestation in Indonesia
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprsarchives-XL-7-W3-557-2015
  contributor:
    fullname: Wijaya
– ident: ref_12
  doi: 10.3390/land11010082
– ident: ref_24
  doi: 10.3390/s18113921
– volume: 74
  start-page: 503
  year: 2000
  ident: ref_52
  article-title: Multiple Criteria for Evaluating Machine Learning Algorithms for Land Cover Classification from Satellite Data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00142-5
  contributor:
    fullname: DeFries
– ident: ref_6
– volume: 7
  start-page: 1
  year: 2010
  ident: ref_48
  article-title: Land cover classification of remotely sensed satellite data using bayesian and hybrid classifier
  publication-title: Int. J. Comput. Appl.
  contributor:
    fullname: Pradhan
– ident: ref_46
– ident: ref_25
  doi: 10.3390/rs11242912
– volume: 4
  start-page: 584
  year: 2015
  ident: ref_49
  article-title: Land cover classification using support vector machine
  publication-title: Int. J. Eng. Res. Technol.
  contributor:
    fullname: Rudrapal
– volume: 45
  start-page: 444
  year: 2014
  ident: ref_44
  article-title: Forest cover dynamics analysis and prediction modeling using logistic regression model
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2014.05.003
  contributor:
    fullname: Kumar
– ident: ref_43
– volume: 67
  start-page: 83
  year: 2001
  ident: ref_2
  article-title: Measurement and monitoring of urban sprawl in a rapidly growing region using entropy
  publication-title: Photogramm. Eng. Remote Sens.
  contributor:
    fullname: Yeh
– ident: ref_26
  doi: 10.1007/978-3-030-37393-1_21
– volume: 115
  start-page: 1145
  year: 2011
  ident: ref_50
  article-title: Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.12.017
  contributor:
    fullname: Myint
– volume: 115
  start-page: 22
  year: 2016
  ident: ref_36
  article-title: Remote sensing platforms and sensors: A survey
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.10.004
  contributor:
    fullname: Toth
SSID ssj0000331904
Score 2.3911138
Snippet One of the main problems in developing countries is unplanned urban growth and land use change. Timely identification of new constructions can be a good...
SourceID doaj
swepub
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 3227
SubjectTerms Accuracy
Bayesian analysis
Classification
Coefficients
Decision trees
Developing countries
Earth
Image classification
Information sources
Land cover
land cover change
Land use
LDCs
Nearest-neighbor
object-based classification
Pixels
Remote sensing
satellite images
Satellites
Social conditions
Social problems
Software
Suburban areas
Support vector machines
UAV
Unmanned aerial vehicles
Urban areas
Urban development
Urban sprawl
Vegetation
Vegetation cover
Title Investigating the Ability to Identify New Constructions in Urban Areas Using Images from Unmanned Aerial Vehicles, Google Earth, and Sentinel-2
URI https://www.proquest.com/docview/2686183991
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-315843
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-208277
https://doaj.org/article/4b9e412d9f9a4c9c8b697045a0a692c7
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgF7ggKCACBY3Ex6lRE9tx4uNCty0XLmUrbpY_u1VbL2q2h_0V_GXGTrbsXsqltyiybMvzMn6jzLwh5BOjujI2iDI4aUvuK11q513ZITvgnXWtrlLt8Mlp--NXdzhNMjl3rb5STtggDzwc3AE30vOaOhmk5lbazgjZIg_BOYSkdqgjr8RGMJV9MENoVXzQI2UY1x_c9DX6a4Rvu3UDZaH-bXa5qRiab5mj5-TZSA9hMmzrBXnk4y55MnYqn69ekj8bwhjxHJC-wSTnt65guYCh7DasAH0XpF6ca3XYHi4izG6Mjji31z3kVAH4fo3upIdUYwKzeK2T04VJBiWc-XlOmduH48Xi_MrDFA9rvg86OjhNy0R_VdJXZHY0_fntpBybKpSWM7Esbfr9zaVrgtBGM9FQ41xjKxssNwEfQu1d60VrnaXMiIY1gbogbY2BoPacvSY7cRH9GwLMI5vyOEVTM95wYzr0F64yFMO4ijpTkI_rg1a_B-0MhTFHMof6Z46CfE02uBuR9K7zC0SBGlGg_oeCguytLajGj7BXVHQiEUBZF-TLYNWtVQ4vziZ5lcvlXLEaqRgryOf7Bva3iiJnatu3D7Hpd-QpTcUUOfl3j-wgJPx78rh3tx8ymv8CHWn76A
link.rule.ids 230,315,782,786,866,887,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+the+Ability+to+Identify+New+Constructions+in+Urban+Areas+Using+Images+from+Unmanned+Aerial+Vehicles%2C+Google+Earth%2C+and+Sentinel-2&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Fahime+Arabi+Aliabad&rft.au=Hamid+Reza+Ghafarian+Malamiri&rft.au=Shojaei%2C+Saeed&rft.au=Sarsangi%2C+Alireza&rft.date=2022-07-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=13&rft.spage=3227&rft_id=info:doi/10.3390%2Frs14133227&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon