Investigating the Ability to Identify New Constructions in Urban Areas Using Images from Unmanned Aerial Vehicles, Google Earth, and Sentinel-2
One of the main problems in developing countries is unplanned urban growth and land use change. Timely identification of new constructions can be a good solution to mitigate some environmental and social problems. This study examined the possibility of identifying new constructions in urban areas us...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Vol. 14; no. 13; p. 3227 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-07-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | One of the main problems in developing countries is unplanned urban growth and land use change. Timely identification of new constructions can be a good solution to mitigate some environmental and social problems. This study examined the possibility of identifying new constructions in urban areas using images from unmanned aerial vehicles (UAV), Google Earth and Sentinel-2. The accuracy of the land cover map obtained using these images was investigated using pixel-based processing methods (maximum likelihood, minimum distance, Mahalanobis, spectral angle mapping (SAM)) and object-based methods (Bayes, support vector machine (SVM), K-nearest-neighbor (KNN), decision tree, random forest). The use of DSM to increase the accuracy of classification of UAV images and the use of NDVI to identify vegetation in Sentinel-2 images were also investigated. The object-based KNN method was found to have the greatest accuracy in classifying UAV images (kappa coefficient = 0.93), and the use of DSM increased the classification accuracy by 4%. Evaluations of the accuracy of Google Earth images showed that KNN was also the best method for preparing a land cover map using these images (kappa coefficient = 0.83). The KNN and SVM methods showed the highest accuracy in preparing land cover maps using Sentinel-2 images (kappa coefficient = 0.87 and 0.85, respectively). The accuracy of classification was not increased when using NDVI due to the small percentage of vegetation cover in the study area. On examining the advantages and disadvantages of the different methods, a novel method for identifying new rural constructions was devised. This method uses only one UAV imaging per year to determine the exact position of urban areas with no constructions and then examines spectral changes in related Sentinel-2 pixels that might indicate new constructions in these areas. On-site observations confirmed the accuracy of this method. |
---|---|
AbstractList | One of the main problems in developing countries is unplanned urban growth and land use change. Timely identification of new constructions can be a good solution to mitigate some environmental and social problems. This study examined the possibility of identifying new constructions in urban areas using images from unmanned aerial vehicles (UAV), Google Earth and Sentinel-2. The accuracy of the land cover map obtained using these images was investigated using pixel-based processing methods (maximum likelihood, minimum distance, Mahalanobis, spectral angle mapping (SAM)) and object-based methods (Bayes, support vector machine (SVM), K-nearest-neighbor (KNN), decision tree, random forest). The use of DSM to increase the accuracy of classification of UAV images and the use of NDVI to identify vegetation in Sentinel-2 images were also investigated. The object-based KNN method was found to have the greatest accuracy in classifying UAV images (kappa coefficient = 0.93), and the use of DSM increased the classification accuracy by 4%. Evaluations of the accuracy of Google Earth images showed that KNN was also the best method for preparing a land cover map using these images (kappa coefficient = 0.83). The KNN and SVM methods showed the highest accuracy in preparing land cover maps using Sentinel-2 images (kappa coefficient = 0.87 and 0.85, respectively). The accuracy of classification was not increased when using NDVI due to the small percentage of vegetation cover in the study area. On examining the advantages and disadvantages of the different methods, a novel method for identifying new rural constructions was devised. This method uses only one UAV imaging per year to determine the exact position of urban areas with no constructions and then examines spectral changes in related Sentinel-2 pixels that might indicate new constructions in these areas. On-site observations confirmed the accuracy of this method. |
Author | Malamiri, Hamid Reza Ghafarian Shojaei, Saeed Ferreira, Carla Sofia Santos Aliabad, Fahime Arabi Sarsangi, Alireza Kalantari, Zahra |
Author_xml | – sequence: 1 givenname: Fahime Arabi surname: Aliabad fullname: Aliabad, Fahime Arabi – sequence: 2 givenname: Hamid Reza Ghafarian orcidid: 0000-0001-6083-1517 surname: Malamiri fullname: Malamiri, Hamid Reza Ghafarian – sequence: 3 givenname: Saeed orcidid: 0000-0002-5260-1161 surname: Shojaei fullname: Shojaei, Saeed – sequence: 4 givenname: Alireza surname: Sarsangi fullname: Sarsangi, Alireza – sequence: 5 givenname: Carla Sofia Santos orcidid: 0000-0003-3709-4103 surname: Ferreira fullname: Ferreira, Carla Sofia Santos – sequence: 6 givenname: Zahra orcidid: 0000-0002-7978-0040 surname: Kalantari fullname: Kalantari, Zahra |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-315843$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-208277$$DView record from Swedish Publication Index |
BookMark | eNqFkstu1DAUhiNUJErphiewxA5NwLdcvBwNpUSqYAHTreXYxxkPGXuwHap5Cl6ZpIO4rPDGv6zP3zmyz_PiwgcPRfGS4DeMCfw2JsIJY5Q2T4pLihtaciroxV_5WXGd0h7PizEiML8sfnT-O6TsBpWdH1DeAVr3bnT5hHJAnQGfnT2hj_CANsGnHCed3RyQ82gbe-XROoJKaJuW691BDZCQjeGAtv6gvAeD1hCdGtE97JweIa3QbQjDCOhGxbxbIeUN-ryU8TCW9EXx1KoxwfWv_arYvr_5svlQ3n267Tbru1JzVudSU0wwF6ayteoVqyvaG1NprK3mvZ2DJWAaqBttNGV9XbHKUmOFJlhwBZxdFd3Za4Lay2N0BxVPMignHw9CHOTc3tKw5L0ATqgRViiuhW77WjSYVwqrWlDdzK7V2ZUe4Dj1_9jeufv1oy1NkuKWNgte_h__mneSkarlbOZfnfljDN-m-bPkPkzRz68jad3WpGVCkJl6faZ0DClFsL-9BMtlPOSf8WA_Adgor4U |
CitedBy_id | crossref_primary_10_3390_agronomy12112658 crossref_primary_10_1109_LGRS_2023_3247620 crossref_primary_10_1007_s41324_023_00539_9 crossref_primary_10_3390_rs15164053 crossref_primary_10_1016_j_jag_2024_103871 |
Cites_doi | 10.1109/IGARSS.2018.8518172 10.3390/rs8030166 10.3390/s19051140 10.11613/BM.2012.031 10.3390/rs8080689 10.1016/j.ecolind.2013.11.022 10.3390/land10060557 10.5194/egusphere-egu21-6378 10.1007/978-3-662-03978-6 10.3390/rs11192249 10.1109/PRRS.2018.8486155 10.1016/0031-3203(80)90029-1 10.1016/j.habitatint.2011.02.004 10.4236/ars.2017.63013 10.1080/22797254.2017.1308235 10.3390/rs9010074 10.1016/j.firesaf.2019.102828 10.3390/land10111264 10.1016/j.apgeog.2010.11.007 10.3390/rs12142291 10.14358/PERS.74.8.1007 10.1109/TGRS.2006.876704 10.1080/10106049.2013.768300 10.1016/j.isprsjprs.2009.06.004 10.3390/rs11060655 10.3390/land10121365 10.1016/j.rse.2020.112128 10.1016/j.rse.2011.11.020 10.5194/isprsarchives-XL-7-W3-557-2015 10.3390/land11010082 10.3390/s18113921 10.1016/S0034-4257(00)00142-5 10.3390/rs11242912 10.1016/j.ecolind.2014.05.003 10.1007/978-3-030-37393-1_21 10.1016/j.rse.2010.12.017 10.1016/j.isprsjprs.2015.10.004 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PIMPY PQEST PQQKQ PQUKI PTHSS ADTPV AFDQA AOWAS D8T D8V ZZAVC ABAVF DG7 DOA |
DOI | 10.3390/rs14133227 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection SwePub SWEPUB Kungliga Tekniska Högskolan full text SwePub Articles SWEPUB Freely available online SWEPUB Kungliga Tekniska Högskolan SwePub Articles full text SWEPUB Stockholms universitet full text SWEPUB Stockholms universitet Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_4b9e412d9f9a4c9c8b697045a0a692c7 oai_DiVA_org_su_208277 oai_DiVA_org_kth_315843 10_3390_rs14133227 |
GeographicLocations | Iran |
GeographicLocations_xml | – name: Iran |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PIMPY PROAC PTHSS RIG TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PQEST PQQKQ PQUKI ADTPV AFDQA AOWAS C1A D8T D8V IPNFZ ZZAVC ABAVF DG7 |
ID | FETCH-LOGICAL-c436t-c201049d5f6aba3652bdd5c0cfc4bf5c0f1ed7e67cdc23b6535f2df9c1094ae43 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Tue Oct 22 15:01:41 EDT 2024 Tue Oct 01 22:45:52 EDT 2024 Tue Oct 01 22:20:29 EDT 2024 Sat Nov 09 11:23:20 EST 2024 Fri Nov 22 03:20:21 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-c201049d5f6aba3652bdd5c0cfc4bf5c0f1ed7e67cdc23b6535f2df9c1094ae43 |
ORCID | 0000-0002-5260-1161 0000-0001-6083-1517 0000-0002-7978-0040 0000-0003-3709-4103 |
OpenAccessLink | https://doaj.org/article/4b9e412d9f9a4c9c8b697045a0a692c7 |
PQID | 2686183991 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4b9e412d9f9a4c9c8b697045a0a692c7 swepub_primary_oai_DiVA_org_su_208277 swepub_primary_oai_DiVA_org_kth_315843 proquest_journals_2686183991 crossref_primary_10_3390_rs14133227 |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Toth (ref_36) 2016; 115 Gao (ref_9) 2008; 2 Clemens (ref_5) 2012; 141–142 ref_14 ref_13 Haas (ref_31) 2017; 8 ref_12 ref_56 ref_11 ref_10 ref_53 Myint (ref_50) 2011; 115 Li (ref_18) 2016; 49 Pradhan (ref_48) 2010; 7 ref_16 ref_15 Rudrapal (ref_49) 2015; 4 Shahraki (ref_35) 2011; 35 Kumar (ref_44) 2014; 45 Zhang (ref_8) 2006; 44 ref_25 ref_24 ref_23 Yeh (ref_2) 2001; 67 ref_22 Chen (ref_38) 2009; 6 ref_21 McHugh (ref_57) 2012; 22 Gombe (ref_20) 2017; 6 ref_29 ref_28 ref_27 Szuster (ref_3) 2011; 31 ref_26 Blaschke (ref_7) 2010; 65 DeFries (ref_52) 2000; 74 Basukala (ref_55) 2017; 50 Frantz (ref_19) 2021; 252 Gibson (ref_30) 2019; 108 Wijaya (ref_51) 2015; 40 Yu (ref_17) 2008; 74 Whiteside (ref_37) 2011; 13 ref_33 ref_32 ref_39 Tehrany (ref_45) 2014; 29 Tahar (ref_34) 2013; 7 ref_47 Rounds (ref_54) 1980; 12 ref_46 ref_43 ref_42 Jaeger (ref_1) 2014; 38 ref_41 ref_40 Duro (ref_4) 2012; 118 ref_6 |
References_xml | – ident: ref_21 doi: 10.1109/IGARSS.2018.8518172 – ident: ref_27 doi: 10.3390/rs8030166 – ident: ref_28 doi: 10.3390/s19051140 – volume: 22 start-page: 276 year: 2012 ident: ref_57 article-title: Interrater reliability: The kappa statistic publication-title: Biochem. Med. doi: 10.11613/BM.2012.031 contributor: fullname: McHugh – ident: ref_33 doi: 10.3390/rs8080689 – volume: 38 start-page: 294 year: 2014 ident: ref_1 article-title: Improving the Measurement of Urban Sprawl: Weighted Urban Proliferation (WUP) and Its Application to Switzerland publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2013.11.022 contributor: fullname: Jaeger – ident: ref_15 doi: 10.3390/land10060557 – ident: ref_16 doi: 10.5194/egusphere-egu21-6378 – ident: ref_39 – volume: 141–142 start-page: 21 year: 2012 ident: ref_5 article-title: Automated classification of topography from SRTM data using object-based image analysis publication-title: Geomorphology contributor: fullname: Clemens – ident: ref_42 doi: 10.1007/978-3-662-03978-6 – ident: ref_11 doi: 10.3390/rs11192249 – volume: 8 start-page: 41 year: 2017 ident: ref_31 article-title: Sentinel-1A SAR and sentinel-2A MSI data fusion for urban ecosystem service mapping publication-title: Remote Sens. Appl. Soc. Environ. contributor: fullname: Haas – volume: 2 start-page: 27 year: 2008 ident: ref_9 article-title: A comparison of the performance of pixel-based and object-based classifications over images with various spatial resolutions publication-title: Online J. Earth Sci. contributor: fullname: Gao – ident: ref_29 doi: 10.1109/PRRS.2018.8486155 – volume: 12 start-page: 313 year: 1980 ident: ref_54 article-title: A combined nonparametric approach to feature selection and binary decision tree design publication-title: Pattern Recognit. doi: 10.1016/0031-3203(80)90029-1 contributor: fullname: Rounds – ident: ref_56 – volume: 35 start-page: 521 year: 2011 ident: ref_35 article-title: Urban sprawl pattern and land-use change detection in Yazd, Iran publication-title: Habitat Int. doi: 10.1016/j.habitatint.2011.02.004 contributor: fullname: Shahraki – volume: 6 start-page: 175 year: 2017 ident: ref_20 article-title: Quantification of annual urban growth of Dar es Salaam Tanzania from Landsat time Series data publication-title: Adv. Remote Sens. doi: 10.4236/ars.2017.63013 contributor: fullname: Gombe – ident: ref_10 – volume: 6 start-page: 477 year: 2009 ident: ref_38 article-title: Comparisson of Pixel-Based and Obgectoriented Knowledge Based Classification Methods Using SPOT5 Imagery publication-title: WSEAS Trans. Inf. Sci. Appl. contributor: fullname: Chen – volume: 50 start-page: 187 year: 2017 ident: ref_55 article-title: Towards improved land use mapping of irrigated croplands: Performance assessment of different image classification algorithms and approaches publication-title: Eur. J. Remote Sens. doi: 10.1080/22797254.2017.1308235 contributor: fullname: Basukala – ident: ref_22 doi: 10.3390/rs9010074 – volume: 7 start-page: 48 year: 2013 ident: ref_34 article-title: An evaluation on fixed wing and multi-rotor UAV images using photogrammetric image processing publication-title: Int. J. Comput. Electr. Autom. Control. Inf. Eng. contributor: fullname: Tahar – ident: ref_41 – volume: 108 start-page: 102828 year: 2019 ident: ref_30 article-title: Detecting historic informal settlement fires with sentinel 1 and 2 satellite data-Two case studies in Cape Town publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2019.102828 contributor: fullname: Gibson – ident: ref_14 doi: 10.3390/land10111264 – volume: 31 start-page: 525 year: 2011 ident: ref_3 article-title: A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2010.11.007 contributor: fullname: Szuster – ident: ref_23 doi: 10.3390/rs12142291 – volume: 74 start-page: 1007 year: 2008 ident: ref_17 article-title: Factors affecting spatial variation of classification uncertainty in an image object-based vegetation mapping publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.74.8.1007 contributor: fullname: Yu – volume: 44 start-page: 2950 year: 2006 ident: ref_8 article-title: A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.876704 contributor: fullname: Zhang – volume: 49 start-page: 87 year: 2016 ident: ref_18 article-title: A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Li – volume: 29 start-page: 351 year: 2014 ident: ref_45 article-title: A comparative assessment between object and pixel-based classification approaches for land use-land cover mapping using SPOT 5 imagery publication-title: Geocarto Int. doi: 10.1080/10106049.2013.768300 contributor: fullname: Tehrany – ident: ref_53 – volume: 65 start-page: 2 year: 2010 ident: ref_7 article-title: Object based image analysis for remote sensing publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2009.06.004 contributor: fullname: Blaschke – ident: ref_32 doi: 10.3390/rs11060655 – ident: ref_47 – ident: ref_13 doi: 10.3390/land10121365 – volume: 252 start-page: 112128 year: 2021 ident: ref_19 article-title: National-scale mapping of building height using Sentinel-1 and Sentinel-2 time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112128 contributor: fullname: Frantz – volume: 13 start-page: 884 year: 2011 ident: ref_37 article-title: Comparing object-based and pixel-based classifications for mapping savannas publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Whiteside – ident: ref_40 – volume: 118 start-page: 259 year: 2012 ident: ref_4 article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imager publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.11.020 contributor: fullname: Duro – volume: 40 start-page: 557 year: 2015 ident: ref_51 article-title: Assessment of Large Scale land Cover Change Classifications and Drivers of Deforestation in Indonesia publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprsarchives-XL-7-W3-557-2015 contributor: fullname: Wijaya – ident: ref_12 doi: 10.3390/land11010082 – ident: ref_24 doi: 10.3390/s18113921 – volume: 74 start-page: 503 year: 2000 ident: ref_52 article-title: Multiple Criteria for Evaluating Machine Learning Algorithms for Land Cover Classification from Satellite Data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00142-5 contributor: fullname: DeFries – ident: ref_6 – volume: 7 start-page: 1 year: 2010 ident: ref_48 article-title: Land cover classification of remotely sensed satellite data using bayesian and hybrid classifier publication-title: Int. J. Comput. Appl. contributor: fullname: Pradhan – ident: ref_46 – ident: ref_25 doi: 10.3390/rs11242912 – volume: 4 start-page: 584 year: 2015 ident: ref_49 article-title: Land cover classification using support vector machine publication-title: Int. J. Eng. Res. Technol. contributor: fullname: Rudrapal – volume: 45 start-page: 444 year: 2014 ident: ref_44 article-title: Forest cover dynamics analysis and prediction modeling using logistic regression model publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2014.05.003 contributor: fullname: Kumar – ident: ref_43 – volume: 67 start-page: 83 year: 2001 ident: ref_2 article-title: Measurement and monitoring of urban sprawl in a rapidly growing region using entropy publication-title: Photogramm. Eng. Remote Sens. contributor: fullname: Yeh – ident: ref_26 doi: 10.1007/978-3-030-37393-1_21 – volume: 115 start-page: 1145 year: 2011 ident: ref_50 article-title: Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.12.017 contributor: fullname: Myint – volume: 115 start-page: 22 year: 2016 ident: ref_36 article-title: Remote sensing platforms and sensors: A survey publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.10.004 contributor: fullname: Toth |
SSID | ssj0000331904 |
Score | 2.3911138 |
Snippet | One of the main problems in developing countries is unplanned urban growth and land use change. Timely identification of new constructions can be a good... |
SourceID | doaj swepub proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 3227 |
SubjectTerms | Accuracy Bayesian analysis Classification Coefficients Decision trees Developing countries Earth Image classification Information sources Land cover land cover change Land use LDCs Nearest-neighbor object-based classification Pixels Remote sensing satellite images Satellites Social conditions Social problems Software Suburban areas Support vector machines UAV Unmanned aerial vehicles Urban areas Urban development Urban sprawl Vegetation Vegetation cover |
Title | Investigating the Ability to Identify New Constructions in Urban Areas Using Images from Unmanned Aerial Vehicles, Google Earth, and Sentinel-2 |
URI | https://www.proquest.com/docview/2686183991 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-315843 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-208277 https://doaj.org/article/4b9e412d9f9a4c9c8b697045a0a692c7 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgF7ggKCACBY3Ex6lRE9tx4uNCty0XLmUrbpY_u1VbL2q2h_0V_GXGTrbsXsqltyiybMvzMn6jzLwh5BOjujI2iDI4aUvuK11q513ZITvgnXWtrlLt8Mlp--NXdzhNMjl3rb5STtggDzwc3AE30vOaOhmk5lbazgjZIg_BOYSkdqgjr8RGMJV9MENoVXzQI2UY1x_c9DX6a4Rvu3UDZaH-bXa5qRiab5mj5-TZSA9hMmzrBXnk4y55MnYqn69ekj8bwhjxHJC-wSTnt65guYCh7DasAH0XpF6ca3XYHi4izG6Mjji31z3kVAH4fo3upIdUYwKzeK2T04VJBiWc-XlOmduH48Xi_MrDFA9rvg86OjhNy0R_VdJXZHY0_fntpBybKpSWM7Esbfr9zaVrgtBGM9FQ41xjKxssNwEfQu1d60VrnaXMiIY1gbogbY2BoPacvSY7cRH9GwLMI5vyOEVTM95wYzr0F64yFMO4ijpTkI_rg1a_B-0MhTFHMof6Z46CfE02uBuR9K7zC0SBGlGg_oeCguytLajGj7BXVHQiEUBZF-TLYNWtVQ4vziZ5lcvlXLEaqRgryOf7Bva3iiJnatu3D7Hpd-QpTcUUOfl3j-wgJPx78rh3tx8ymv8CHWn76A |
link.rule.ids | 230,315,782,786,866,887,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+the+Ability+to+Identify+New+Constructions+in+Urban+Areas+Using+Images+from+Unmanned+Aerial+Vehicles%2C+Google+Earth%2C+and+Sentinel-2&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Fahime+Arabi+Aliabad&rft.au=Hamid+Reza+Ghafarian+Malamiri&rft.au=Shojaei%2C+Saeed&rft.au=Sarsangi%2C+Alireza&rft.date=2022-07-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=13&rft.spage=3227&rft_id=info:doi/10.3390%2Frs14133227&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |