truncated DNA-damage-signaling response is activated after DSB formation in the G1 phase of Saccharomyces cerevisiae
In Saccharomyces cerevisiae, the DNA damage response (DDR) is activated by the spatio-temporal colocalization of Mec1-Ddc2 kinase and the 9-1-1 clamp. In the absence of direct means to monitor Mec1 kinase activation in vivo, activation of the checkpoint kinase Rad53 has been taken as a proxy for DDR...
Saved in:
Published in: | Nucleic acids research Vol. 38; no. 7; pp. 2302 - 2313 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Oxford University Press
01-04-2010
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In Saccharomyces cerevisiae, the DNA damage response (DDR) is activated by the spatio-temporal colocalization of Mec1-Ddc2 kinase and the 9-1-1 clamp. In the absence of direct means to monitor Mec1 kinase activation in vivo, activation of the checkpoint kinase Rad53 has been taken as a proxy for DDR activation. Here, we identify serine 378 of the Rad55 recombination protein as a direct target site of Mec1. Rad55-S378 phosphorylation leads to an electrophoretic mobility shift of the protein and acts as a sentinel for Mec1 activation in vivo. A single double-stranded break (DSB) in G1-arrested cells causes phosphorylation of Rad55-S378, indicating activation of Mec1 kinase. However, Rad53 kinase is not detectably activated under these conditions. This response required Mec1-Ddc2 and loading of the 9-1-1 clamp by Rad24-RFC, but not Rad9 or Mrc1. In addition to Rad55-S378, two additional direct Mec1 kinase targets are phosphorylated, the middle subunit of the ssDNA-binding protein RPA, RPA2 and histone H2A (H2AX). These data suggest the existence of a truncated signaling pathway in response to a single DSB in G1-arrested cells that activates Mec1 without eliciting a full DDR involving the entire signaling pathway including the effector kinases. |
---|---|
AbstractList | In Saccharomyces cerevisiae, the DNA damage response (DDR) is activated by the spatio-temporal colocalization of Mec1-Ddc2 kinase and the 9-1-1 clamp. In the absence of direct means to monitor Mec1 kinase activation in vivo, activation of the checkpoint kinase Rad53 has been taken as a proxy for DDR activation. Here, we identify serine 378 of the Rad55 recombination protein as a direct target site of Mec1. Rad55-S378 phosphorylation leads to an electrophoretic mobility shift of the protein and acts as a sentinel for Mec1 activation in vivo. A single double-stranded break (DSB) in G1-arrested cells causes phosphorylation of Rad55-S378, indicating activation of Mec1 kinase. However, Rad53 kinase is not detectably activated under these conditions. This response required Mec1-Ddc2 and loading of the 9-1-1 clamp by Rad24-RFC, but not Rad9 or Mrc1. In addition to Rad55-S378, two additional direct Mec1 kinase targets are phosphorylated, the middle subunit of the ssDNA-binding protein RPA, RPA2 and histone H2A (H2AX). These data suggest the existence of a truncated signaling pathway in response to a single DSB in G1-arrested cells that activates Mec1 without eliciting a full DDR involving the entire signaling pathway including the effector kinases. In Saccharomyces cerevisiae , the DNA damage response (DDR) is activated by the spatio-temporal colocalization of Mec1-Ddc2 kinase and the 9-1-1 clamp. In the absence of direct means to monitor Mec1 kinase activation in vivo , activation of the checkpoint kinase Rad53 has been taken as a proxy for DDR activation. Here, we identify serine 378 of the Rad55 recombination protein as a direct target site of Mec1. Rad55-S378 phosphorylation leads to an electrophoretic mobility shift of the protein and acts as a sentinel for Mec1 activation in vivo . A single double-stranded break (DSB) in G1-arrested cells causes phosphorylation of Rad55-S378, indicating activation of Mec1 kinase. However, Rad53 kinase is not detectably activated under these conditions. This response required Mec1-Ddc2 and loading of the 9-1-1 clamp by Rad24-RFC, but not Rad9 or Mrc1. In addition to Rad55–S378, two additional direct Mec1 kinase targets are phosphorylated, the middle subunit of the ssDNA-binding protein RPA, RPA2 and histone H2A (H2AX). These data suggest the existence of a truncated signaling pathway in response to a single DSB in G1-arrested cells that activates Mec1 without eliciting a full DDR involving the entire signaling pathway including the effector kinases. |
Author | Janke, Ryan Rolfsmeier, Michael Cantin, Greg Heyer, Wolf-Dietrich Yates, John R. III Haghnazari, Edwin Herzberg, Kristina Bashkirov, Vladimir I Mar, Jordan |
AuthorAffiliation | 1 Department of Microbiology, University of California, Davis, CA 95616-8665, 2 Department of Cell Biology, SR-11, Scripps Research Institute, La Jolla, CA 92307 and 3 Department of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA |
AuthorAffiliation_xml | – name: 1 Department of Microbiology, University of California, Davis, CA 95616-8665, 2 Department of Cell Biology, SR-11, Scripps Research Institute, La Jolla, CA 92307 and 3 Department of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA |
Author_xml | – sequence: 1 fullname: Janke, Ryan – sequence: 2 fullname: Herzberg, Kristina – sequence: 3 fullname: Rolfsmeier, Michael – sequence: 4 fullname: Mar, Jordan – sequence: 5 fullname: Bashkirov, Vladimir I – sequence: 6 fullname: Haghnazari, Edwin – sequence: 7 fullname: Cantin, Greg – sequence: 8 fullname: Yates, John R. III – sequence: 9 fullname: Heyer, Wolf-Dietrich |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20061370$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URLeFE3fwjQMK9UfsOBek0kJBquCw9GzNOpOsIbGD7V2p_57ALhWcOM1hnvfVjJ4zchJiQEKec_aGs1ZeBEgXw_eZCyEekRWXWlR1q8UJWTHJVMVZbU7JWc7fGOM1V_UTcioY01w2bEVKSbvgoGBHrz9fVh1MMGCV_RBg9GGgCfMcQ0bqMwVX_P43Cn3BRK_X72gf0wTFx0B9oGWL9IbTeQtLIPZ0Dc5tIcXp3mGmDhPuffaAT8njHsaMz47znNx9eP_16mN1--Xm09XlbeVqqUu1EWbDEbteSSd1q13fdYr1nRKdMhw5NLrmbQvYqM44paRoN20j3BLQUrZSnpO3h955t5mwcxhKgtHOyU-Q7m0Eb__dBL-1Q9xbYZTkki0Fr44FKf7YYS528tnhOELAuMu2qWvNjTHN_0kpldCi1Qv5-kC6FHNO2D_cw5n9JdQuQu1R6EK_-PuFB_aPwQV4eQB6iBaG5LO9Wwu2XM-NMJop-RMakKmI |
CitedBy_id | crossref_primary_10_1038_s44318_024_00139_9 crossref_primary_10_3390_genes12091390 crossref_primary_10_7554_eLife_87357_3 crossref_primary_10_1016_j_dnarep_2013_02_004 crossref_primary_10_7554_eLife_59112 crossref_primary_10_7554_eLife_21687 crossref_primary_10_1093_nar_gkv1544 crossref_primary_10_1038_nsmb_2323 crossref_primary_10_1073_pnas_1705261114 crossref_primary_10_1371_journal_pone_0019626 crossref_primary_10_7554_eLife_87357 crossref_primary_10_1038_nature12585 crossref_primary_10_1038_nsmb_2105 crossref_primary_10_1093_nar_gkw182 crossref_primary_10_13070_mm_en_10_2868 crossref_primary_10_1016_j_jmb_2013_04_013 crossref_primary_10_1002_yea_1722 crossref_primary_10_1146_annurev_genet_051710_150955 crossref_primary_10_1371_journal_pbio_1000594 |
Cites_doi | 10.1038/15623 10.1093/emboj/18.22.6561 10.1016/S1097-2765(02)00705-0 10.1074/jbc.M807435200 10.1074/jbc.M507508200 10.1074/jbc.273.10.5858 10.1038/272795a0 10.1016/j.cell.2008.08.037 10.1126/science.1140321 10.1016/S1097-2765(01)00270-2 10.1126/science.271.5247.357 10.1128/MCB.20.12.4393-4404.2000 10.1038/cr.2008.1 10.1101/gad.291104 10.1038/nature02964 10.1038/ncb1101-958 10.1101/gad.903501 10.1038/nature07312 10.1016/S0076-6879(05)09010-5 10.1016/j.molcel.2008.03.023 10.1126/science.281.5374.272 10.1016/S1097-2765(01)00177-0 10.1128/MCB.01317-06 10.1073/pnas.0806621105 10.1038/ncb945 10.1016/j.cub.2004.09.047 10.1016/S1097-2765(02)00532-4 10.1016/j.cell.2004.08.015 10.1093/genetics/158.1.41 10.1128/MCB.24.10.4151-4165.2004 10.1016/0022-2836(90)90306-7 10.1128/JB.186.21.7149-7160.2004 10.1038/nature01368 10.1128/MCB.00330-08 10.1091/mbc.E03-07-0499 10.1073/pnas.0701622104 10.1074/jbc.M605176200 10.1093/emboj/17.14.4199 10.1101/gad.239802 10.1016/j.molcel.2008.01.016 10.1093/emboj/21.8.2030 10.1101/gad.10.4.395 10.1128/MCB.23.4.1441-1452.2003 10.1126/science.272.5268.1646 10.1016/S0955-0674(02)00312-5 10.1073/pnas.062502299 10.1128/MCB.23.17.6300-6314.2003 10.1093/emboj/18.16.4485 10.1126/science.1083430 10.1016/j.molcel.2007.11.015 10.1101/gad.11.9.1111 10.1073/pnas.250475697 10.1101/gad.14.16.2046 10.1093/emboj/20.11.2896 10.1038/emboj.2008.111 10.1016/S1097-2765(03)00169-2 10.1073/pnas.93.26.15075 10.1074/jbc.274.53.37538 10.1128/MCB.24.23.10126-10144.2004 10.1016/j.molcel.2006.11.027 10.1038/nature07215 |
ContentType | Journal Article |
Copyright | The Author(s) 2010. Published by Oxford University Press. 2010 |
Copyright_xml | – notice: The Author(s) 2010. Published by Oxford University Press. 2010 |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7TM 8FD FR3 M7N P64 RC3 5PM |
DOI | 10.1093/nar/gkp1222 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 2313 |
ExternalDocumentID | 10_1093_nar_gkp1222 20061370 US201301828605 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA092276 – fundername: NCI NIH HHS grantid: R01 CA92276 – fundername: NCRR NIH HHS grantid: P41 RR011823 – fundername: NIEHS NIH HHS grantid: T32ES007059 |
GroupedDBID | --- -DZ -~X .55 .GJ .I3 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 6.Y 70E 85S A8Z AAFWJ AAMVS AAOGV AAPPN AAPXW AAUQX AAVAP AAWDT AAYJJ ABPTD ABQLI ABQTQ ABSAR ABSMQ ACFRR ACGFO ACGFS ACIPB ACIWK ACNCT ACPQN ACPRK ACUTJ ADBBV ADHZD AEGXH AEKPW AENEX AENZO AEQTP AFFNX AFPKN AFRAH AFULF AFYAG AGKRT AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD AOIJS AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ BTTYL C1A CAG CIDKT COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN ESTFP F20 F5P FBQ FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KC5 KQ8 KSI M49 MBTAY MVM M~E NTWIH NU- OAWHX OBC OBS OEB OES OJQWA OJZSN OVD O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROX ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XFK XSB XSW YSK ZA5 ZKX ZXP ~91 ~D7 ~KM 0R~ AAHBH ABXVV ACMRT ACZBC AEHUL AFSHK AGMDO CGR CUY CVF ECM EIF NPM AAYXX ABEJV CITATION 7X8 7TM 8FD FR3 M7N P64 RC3 5PM |
ID | FETCH-LOGICAL-c436t-b28b1eedf53c3696cfdd50fd52d581e1a764199ae75d8c55329b972cdf5633933 |
IEDL.DBID | RPM |
ISSN | 0305-1048 |
IngestDate | Tue Sep 17 21:13:43 EDT 2024 Fri Oct 25 09:08:21 EDT 2024 Fri Oct 25 00:17:28 EDT 2024 Thu Nov 21 23:56:52 EST 2024 Tue Oct 15 23:37:13 EDT 2024 Wed Dec 27 19:13:59 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-b28b1eedf53c3696cfdd50fd52d581e1a764199ae75d8c55329b972cdf5633933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors. Present addresses: Kristina Herzberg, Hoffmann & Eitle, Munich, Germany. Jordan Mar, University of California, Berkeley, CA 94720, USA. Edwin Haghnazari, DiscoveRx Corp. Fremont, CA 94538, USA. Michael Rolfsmeier, Washington State University, Pullman, WA 99163, USA. Vladimir I. Bashkirov, Applied Biosystems, Foster City, CA 94404, USA. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2853130/ |
PMID | 20061370 |
PQID | 733526296 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2853130 proquest_miscellaneous_744618887 proquest_miscellaneous_733526296 crossref_primary_10_1093_nar_gkp1222 pubmed_primary_20061370 fao_agris_US201301828605 |
PublicationCentury | 2000 |
PublicationDate | 2010-04-01 |
PublicationDateYYYYMMDD | 2010-04-01 |
PublicationDate_xml | – month: 04 year: 2010 text: 2010-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2010 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 9488723 - J Biol Chem. 1998 Mar 6;273(10):5858-68 16966380 - Mol Cell Biol. 2006 Nov;26(22):8396-409 18471973 - Mol Cell. 2008 May 9;30(3):267-76 9159392 - Genes Dev. 1997 May 1;11(9):1111-21 14595109 - Mol Biol Cell. 2004 Jan;15(1):11-23 18166982 - Cell Res. 2008 Jan;18(1):99-113 15121837 - Mol Cell Biol. 2004 May;24(10):4151-65 2108251 - J Mol Biol. 1990 Mar 5;212(1):79-96 16793405 - Methods Enzymol. 2006;409:236-50 8986766 - Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15075-80 18922789 - J Biol Chem. 2008 Dec 19;283(51):35853-9 10559981 - Nat Cell Biol. 1999 Nov;1(7):393-8 18806779 - Nature. 2008 Oct 9;455(7214):770-4 11891124 - Curr Opin Cell Biol. 2002 Apr;14(2):237-45 15458641 - Curr Biol. 2004 Oct 5;14(19):1703-11 9657725 - Science. 1998 Jul 10;281(5374):272-4 15496928 - Nature. 2004 Oct 21;431(7011):1011-7 12791985 - Science. 2003 Jun 6;300(5625):1542-8 15155581 - Genes Dev. 2004 May 15;18(10):1154-64 15369670 - Cell. 2004 Sep 17;118(6):699-713 8553072 - Science. 1996 Jan 19;271(5247):357-60 15542824 - Mol Cell Biol. 2004 Dec;24(23):10126-44 17525332 - Science. 2007 May 25;316(5828):1160-6 12917350 - Mol Cell Biol. 2003 Sep;23(17):6300-14 11715016 - Nat Cell Biol. 2001 Nov;3(11):958-65 8600024 - Genes Dev. 1996 Feb 15;10(4):395-406 16864589 - J Biol Chem. 2006 Sep 22;281(38):27855-61 12453425 - Mol Cell. 2002 Nov;10(5):1189-99 11691833 - Genes Dev. 2001 Nov 1;15(21):2809-21 347306 - Nature. 1978 Apr 27;272(5656):795-8 11095737 - Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13749-54 11333217 - Genetics. 2001 May;158(1):41-64 12769855 - Mol Cell. 2003 May;11(5):1323-36 12598907 - Nat Cell Biol. 2003 Mar;5(3):255-60 16793401 - Methods Enzymol. 2006;409:166-82 10608806 - J Biol Chem. 1999 Dec 31;274(53):37538-43 18716619 - Nature. 2008 Oct 2;455(7213):689-92 12049741 - Mol Cell. 2002 May;9(5):1055-65 10449414 - EMBO J. 1999 Aug 16;18(16):4485-97 12556502 - Mol Cell Biol. 2003 Feb;23(4):1441-52 12556884 - Nature. 2003 Jan 30;421(6922):499-506 10562568 - EMBO J. 1999 Nov 15;18(22):6561-72 11239458 - Mol Cell. 2001 Feb;7(2):293-300 11904430 - Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3746-51 16365046 - J Biol Chem. 2006 Feb 17;281(7):3954-63 11953322 - EMBO J. 2002 Apr 15;21(8):2030-7 10825202 - Mol Cell Biol. 2000 Jun;20(12):4393-404 18082599 - Mol Cell. 2007 Dec 14;28(5):739-45 18805091 - Cell. 2008 Sep 19;134(6):981-94 11387222 - EMBO J. 2001 Jun 1;20(11):2896-906 9670034 - EMBO J. 1998 Jul 15;17(14):4199-209 18511906 - EMBO J. 2008 Jul 9;27(13):1875-85 17189191 - Mol Cell. 2006 Dec 28;24(6):891-901 17563356 - Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10364-9 11430828 - Mol Cell. 2001 Jun;7(6):1255-66 18541674 - Mol Cell Biol. 2008 Aug;28(15):4782-93 8658138 - Science. 1996 Jun 14;272(5268):1646-9 15489426 - J Bacteriol. 2004 Nov;186(21):7149-60 18406328 - Mol Cell. 2008 Apr 11;30(1):73-85 10950868 - Genes Dev. 2000 Aug 15;14(16):2046-59 19028869 - Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18730-4 12502744 - Genes Dev. 2002 Dec 15;16(24):3236-52 Pellicioli ( key 20170510160902_B15) 2001; 7 Ira ( key 20170510160902_B16) 2004; 431 Matsuoka ( key 20170510160902_B23) 2007; 316 Herzberg ( key 20170510160902_B28) 2006; 26 Wan ( key 20170510160902_B50) 2004; 15 Leroy ( key 20170510160902_B18) 2001; 20 Rogakou ( key 20170510160902_B37) 1998; 273 Sassanfar ( key 20170510160902_B52) 1990; 212 Usui ( key 20170510160902_B2) 2001; 7 Edwards ( key 20170510160902_B56) 1999; 1 Brush ( key 20170510160902_B39) 1996; 93 Shimada ( key 20170510160902_B53) 2002; 16 Nakamura ( key 20170510160902_B30) 2006; 409 Li ( key 20170510160902_B24) 2008; 18 Bashkirov ( key 20170510160902_B62) 2003; 23 Kim ( key 20170510160902_B33) 1999; 274 Majka ( key 20170510160902_B46) 2006; 281 Schwartz ( key 20170510160902_B8) 2002; 9 Courcelle ( key 20170510160902_B51) 2001; 158 Essers ( key 20170510160902_B36) 2002; 21 Huertas ( key 20170510160902_B54) 2008; 455 Melo ( key 20170510160902_B6) 2001; 15 Sanchez ( key 20170510160902_B11) 1996; 271 Baroni ( key 20170510160902_B41) 2004; 24 Lukas ( key 20170510160902_B21) 2003; 5 Zhu ( key 20170510160902_B47) 2008; 134 Paciotti ( key 20170510160902_B43) 2000; 14 Zhao ( key 20170510160902_B61) 2002; 99 Lee ( key 20170510160902_B13) 2003; 23 Ma ( key 20170510160902_B14) 2006; 281 Navadgi-Patil ( key 20170510160902_B57) 2008; 283 Sun ( key 20170510160902_B12) 1998; 281 Tercero ( key 20170510160902_B19) 2003; 11 Alcasabas ( key 20170510160902_B45) 2001; 3 Melo ( key 20170510160902_B48) 2002; 14 Furuya ( key 20170510160902_B60) 2004; 18 Sun ( key 20170510160902_B10) 1996; 10 Nelson ( key 20170510160902_B31) 1996; 272 Harper ( key 20170510160902_B1) 2007; 28 Bashkirov ( key 20170510160902_B29) 2006; 409 Bakkenist ( key 20170510160902_B3) 2003; 421 Mordes ( key 20170510160902_B58) 2008; 105 Mallory ( key 20170510160902_B32) 2000; 97 Fabre ( key 20170510160902_B17) 1978; 272 Zierhut ( key 20170510160902_B34) 2008; 27 Lisby ( key 20170510160902_B25) 2004; 118 Smolka ( key 20170510160902_B22) 2007; 104 Neecke ( key 20170510160902_B20) 1999; 18 O'R;eilly ( key 20170510160902_B49) 2004; 186 Shroff ( key 20170510160902_B38) 2004; 14 Frank-Vaillant ( key 20170510160902_B55) 2002; 10 Bashkirov ( key 20170510160902_B27) 2000; 20 Clerici ( key 20170510160902_B42) 2004; 24 Barlow ( key 20170510160902_B35) 2008; 30 Sung ( key 20170510160902_B26) 1997; 11 Mimitou ( key 20170510160902_B40) 2008; 455 Bonilla ( key 20170510160902_B5) 2008; 30 Paciotti ( key 20170510160902_B44) 1998; 17 Majka ( key 20170510160902_B7) 2006; 24 Puddu ( key 20170510160902_B59) 2008; 28 Pellicioli ( key 20170510160902_B9) 1999; 18 Zou ( key 20170510160902_B4) 2003; 300 |
References_xml | – volume: 1 start-page: 393 year: 1999 ident: key 20170510160902_B56 article-title: A Rad3-Rad26 complex responds to DNA damage independently of other checkpoint proteins publication-title: Nat. Cell Biol. doi: 10.1038/15623 contributor: fullname: Edwards – volume: 18 start-page: 6561 year: 1999 ident: key 20170510160902_B9 article-title: Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase publication-title: EMBO J. doi: 10.1093/emboj/18.22.6561 contributor: fullname: Pellicioli – volume: 10 start-page: 1189 year: 2002 ident: key 20170510160902_B55 article-title: Transient stability of DNA ends allows nonhomologous end joining to precede homologous recombination publication-title: Mol. Cell doi: 10.1016/S1097-2765(02)00705-0 contributor: fullname: Frank-Vaillant – volume: 283 start-page: 35853 year: 2008 ident: key 20170510160902_B57 article-title: Yeast DNA replication protein Dpb11 activates the Mec1/ATR checkpoint kinase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M807435200 contributor: fullname: Navadgi-Patil – volume: 409 start-page: 236 year: 2006 ident: key 20170510160902_B30 article-title: Techniques for gamma-H2AX detection publication-title: DNA Repair contributor: fullname: Nakamura – volume: 281 start-page: 3954 year: 2006 ident: key 20170510160902_B14 article-title: Activation of the checkpoint kinase Rad53 by the phosphatidyl inositol kinase-like kinase Mec1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M507508200 contributor: fullname: Ma – volume: 273 start-page: 5858 year: 1998 ident: key 20170510160902_B37 article-title: DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139 publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.10.5858 contributor: fullname: Rogakou – volume: 272 start-page: 795 year: 1978 ident: key 20170510160902_B17 article-title: Induced intragenic recombination in yeast can occur during the G1 mitotic phase publication-title: Nature doi: 10.1038/272795a0 contributor: fullname: Fabre – volume: 134 start-page: 981 year: 2008 ident: key 20170510160902_B47 article-title: Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends publication-title: Cell doi: 10.1016/j.cell.2008.08.037 contributor: fullname: Zhu – volume: 316 start-page: 1160 year: 2007 ident: key 20170510160902_B23 article-title: ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage publication-title: Science doi: 10.1126/science.1140321 contributor: fullname: Matsuoka – volume: 7 start-page: 1255 year: 2001 ident: key 20170510160902_B2 article-title: A DNA damage response pathway controlled by Tel1 and the Mre11 complex publication-title: Mol. Cell doi: 10.1016/S1097-2765(01)00270-2 contributor: fullname: Usui – volume: 271 start-page: 357 year: 1996 ident: key 20170510160902_B11 article-title: Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways publication-title: Science doi: 10.1126/science.271.5247.357 contributor: fullname: Sanchez – volume: 20 start-page: 4393 year: 2000 ident: key 20170510160902_B27 article-title: DNA repair protein Rad55 is a terminal substrate of the DNA damage checkpoints publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.20.12.4393-4404.2000 contributor: fullname: Bashkirov – volume: 18 start-page: 99 year: 2008 ident: key 20170510160902_B24 article-title: Homologous recombination in DNA repair and DNA damage tolerance publication-title: Cell Res. doi: 10.1038/cr.2008.1 contributor: fullname: Li – volume: 18 start-page: 1154 year: 2004 ident: key 20170510160902_B60 article-title: Chk1 activation requires Rad9 S/TQ-site phosphorylation to promote association with C-terminal BCRT domains of Rad4(TOPBP1) publication-title: Genes Dev. doi: 10.1101/gad.291104 contributor: fullname: Furuya – volume: 431 start-page: 1011 year: 2004 ident: key 20170510160902_B16 article-title: DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1 publication-title: Nature doi: 10.1038/nature02964 contributor: fullname: Ira – volume: 3 start-page: 958 year: 2001 ident: key 20170510160902_B45 article-title: Mrc1 transduces signals of DNA replication stress to activate Rad53 publication-title: Nature Cell Biol. doi: 10.1038/ncb1101-958 contributor: fullname: Alcasabas – volume: 15 start-page: 2809 year: 2001 ident: key 20170510160902_B6 article-title: Two checkpoint complexes are independently recruited to sites of DNA damage in vivo publication-title: Genes Dev. doi: 10.1101/gad.903501 contributor: fullname: Melo – volume: 455 start-page: 770 year: 2008 ident: key 20170510160902_B40 article-title: Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing publication-title: Nature doi: 10.1038/nature07312 contributor: fullname: Mimitou – volume: 409 start-page: 166 year: 2006 ident: key 20170510160902_B29 article-title: DNA-damage induced phosphorylation of Rad55 protein as a sentinel for DNA damage checkpoint activation in S publication-title: cerevisiae. Meth. Enzymol. doi: 10.1016/S0076-6879(05)09010-5 contributor: fullname: Bashkirov – volume: 30 start-page: 267 year: 2008 ident: key 20170510160902_B5 article-title: Colocalization of sensors is sufficient to activate the DNA damage checkpoint in the absence of damage publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.03.023 contributor: fullname: Bonilla – volume: 281 start-page: 272 year: 1998 ident: key 20170510160902_B12 article-title: Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint publication-title: Science doi: 10.1126/science.281.5374.272 contributor: fullname: Sun – volume: 7 start-page: 293 year: 2001 ident: key 20170510160902_B15 article-title: Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest publication-title: Mol. Cell doi: 10.1016/S1097-2765(01)00177-0 contributor: fullname: Pellicioli – volume: 26 start-page: 8396 year: 2006 ident: key 20170510160902_B28 article-title: Phosphorylation of Rad55 on serines 2, 8, and 14 is required for efficient homologous recombination in the recovery of stalled replication forks publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01317-06 contributor: fullname: Herzberg – volume: 105 start-page: 18730 year: 2008 ident: key 20170510160902_B58 article-title: Dpb11 activates the Mec1-Ddc2 complex publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0806621105 contributor: fullname: Mordes – volume: 5 start-page: 255 year: 2003 ident: key 20170510160902_B21 article-title: Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage publication-title: Nat. Cell Biol. doi: 10.1038/ncb945 contributor: fullname: Lukas – volume: 14 start-page: 1703 year: 2004 ident: key 20170510160902_B38 article-title: Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break publication-title: Curr. Biol. doi: 10.1016/j.cub.2004.09.047 contributor: fullname: Shroff – volume: 9 start-page: 1055 year: 2002 ident: key 20170510160902_B8 article-title: Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint publication-title: Mol. Cell doi: 10.1016/S1097-2765(02)00532-4 contributor: fullname: Schwartz – volume: 118 start-page: 699 year: 2004 ident: key 20170510160902_B25 article-title: Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins publication-title: Cell doi: 10.1016/j.cell.2004.08.015 contributor: fullname: Lisby – volume: 158 start-page: 41 year: 2001 ident: key 20170510160902_B51 article-title: Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli publication-title: Genetics doi: 10.1093/genetics/158.1.41 contributor: fullname: Courcelle – volume: 24 start-page: 4151 year: 2004 ident: key 20170510160902_B41 article-title: The functions of budding yeast Sae2 in the DNA damage response require Mec1- and Tel1-dependent phosphorylation publication-title: Mol. Biol. Cell doi: 10.1128/MCB.24.10.4151-4165.2004 contributor: fullname: Baroni – volume: 212 start-page: 79 year: 1990 ident: key 20170510160902_B52 article-title: Nature of the SOS-inducing signal in Escherichia coli: the involvement of DNA replication publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(90)90306-7 contributor: fullname: Sassanfar – volume: 186 start-page: 7149 year: 2004 ident: key 20170510160902_B49 article-title: Isolation of SOS constitutive mutants of Escherichia coli publication-title: J. Bact. doi: 10.1128/JB.186.21.7149-7160.2004 contributor: fullname: O'R;eilly – volume: 421 start-page: 499 year: 2003 ident: key 20170510160902_B3 article-title: DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation publication-title: Nature doi: 10.1038/nature01368 contributor: fullname: Bakkenist – volume: 28 start-page: 4782 year: 2008 ident: key 20170510160902_B59 article-title: Phosphorylation of the budding yeast 9-1-1 complex is required for Dpb11 function in the full activation of the UV-induced DNA damage checkpoint publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00330-08 contributor: fullname: Puddu – volume: 15 start-page: 11 year: 2004 ident: key 20170510160902_B50 article-title: Mek1 kinase activity functions downstream of RED1 in the regulation of meiotic double strand break repair in budding yeast publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E03-07-0499 contributor: fullname: Wan – volume: 104 start-page: 10364 year: 2007 ident: key 20170510160902_B22 article-title: Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0701622104 contributor: fullname: Smolka – volume: 281 start-page: 27855 year: 2006 ident: key 20170510160902_B46 article-title: Replication protein A directs loading of the DNA damage checkpoint clamp to 5'-DNA junctions publication-title: J. Biol. Chem. doi: 10.1074/jbc.M605176200 contributor: fullname: Majka – volume: 17 start-page: 4199 year: 1998 ident: key 20170510160902_B44 article-title: Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p publication-title: EMBO J. doi: 10.1093/emboj/17.14.4199 contributor: fullname: Paciotti – volume: 16 start-page: 3236 year: 2002 ident: key 20170510160902_B53 article-title: ORC and the intra-S-phase checkpoint: a threshold regulates Rad53p activation in S phase publication-title: Genes Dev. doi: 10.1101/gad.239802 contributor: fullname: Shimada – volume: 30 start-page: 73 year: 2008 ident: key 20170510160902_B35 article-title: Differential regulation of the cellular response to DNA double-strand breaks in G1 publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.01.016 contributor: fullname: Barlow – volume: 21 start-page: 2030 year: 2002 ident: key 20170510160902_B36 article-title: Nuclear dynamics of RAD52 group homologous recombination proteins in response to DNA damage publication-title: EMBO J. doi: 10.1093/emboj/21.8.2030 contributor: fullname: Essers – volume: 10 start-page: 395 year: 1996 ident: key 20170510160902_B10 article-title: Spk1/Rad53 is regulated by Mec1-dependent protein phosphorylation in DNA replication and damage checkpoint pathways publication-title: Genes Dev. doi: 10.1101/gad.10.4.395 contributor: fullname: Sun – volume: 23 start-page: 1441 year: 2003 ident: key 20170510160902_B62 article-title: Direct kinase-to-kinase signaling mediated by the FHA phosphoprotein recognition domain of the Dun1 DNA damage checkpoint kinase publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.4.1441-1452.2003 contributor: fullname: Bashkirov – volume: 272 start-page: 1646 year: 1996 ident: key 20170510160902_B31 article-title: Thymine-thymine dimer bypass by yeast DNA polymerase zeta publication-title: Science doi: 10.1126/science.272.5268.1646 contributor: fullname: Nelson – volume: 14 start-page: 237 year: 2002 ident: key 20170510160902_B48 article-title: A unified view of the DNA-damage checkpoint publication-title: Curr. Opin. Cell Biol. doi: 10.1016/S0955-0674(02)00312-5 contributor: fullname: Melo – volume: 99 start-page: 3746 year: 2002 ident: key 20170510160902_B61 article-title: The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1 publication-title: Proc Natl Acad. Sci. USA doi: 10.1073/pnas.062502299 contributor: fullname: Zhao – volume: 23 start-page: 6300 year: 2003 ident: key 20170510160902_B13 article-title: Rad53 phosphorylation site clusters are important for Rad53 regulation and signaling publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.17.6300-6314.2003 contributor: fullname: Lee – volume: 18 start-page: 4485 year: 1999 ident: key 20170510160902_B20 article-title: Cell cycle progression in the presence of irreparable DNA damage is controlled by a Mec1-and Rad53-dependent checkpoint in budding yeast publication-title: EMBO J. doi: 10.1093/emboj/18.16.4485 contributor: fullname: Neecke – volume: 300 start-page: 1542 year: 2003 ident: key 20170510160902_B4 article-title: Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes publication-title: Science doi: 10.1126/science.1083430 contributor: fullname: Zou – volume: 28 start-page: 739 year: 2007 ident: key 20170510160902_B1 article-title: The DNA damage response: ten years after publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.11.015 contributor: fullname: Harper – volume: 11 start-page: 1111 year: 1997 ident: key 20170510160902_B26 article-title: Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase publication-title: Genes Dev. doi: 10.1101/gad.11.9.1111 contributor: fullname: Sung – volume: 97 start-page: 13749 year: 2000 ident: key 20170510160902_B32 article-title: Protein kinase activity of Tel1p and Mec1p, two Saccharomyces cerevisiae proteins related to the human ATM protein kinase publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.250475697 contributor: fullname: Mallory – volume: 14 start-page: 2046 year: 2000 ident: key 20170510160902_B43 article-title: The checkpoint protein Ddc2, functionally related to the S. pombe Rad26, interacts with Mec1 and is regulated by Mec1-dependent phosphorylation in budding yeast publication-title: Genes Dev. doi: 10.1101/gad.14.16.2046 contributor: fullname: Paciotti – volume: 20 start-page: 2896 year: 2001 ident: key 20170510160902_B18 article-title: Silent repair accounts for cell cycle specificity in the signaling of oxidative DNA lesions publication-title: EMBO J. doi: 10.1093/emboj/20.11.2896 contributor: fullname: Leroy – volume: 27 start-page: 1875 year: 2008 ident: key 20170510160902_B34 article-title: Break dosage, cell cycle stage and DNA replication influence DNA double strand break response publication-title: EMBO J. doi: 10.1038/emboj.2008.111 contributor: fullname: Zierhut – volume: 11 start-page: 1323 year: 2003 ident: key 20170510160902_B19 article-title: A central role for DNA replication forks in checkpoint activation and response publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00169-2 contributor: fullname: Tercero – volume: 93 start-page: 15075 year: 1996 ident: key 20170510160902_B39 article-title: The ATM homologue MEC1 is required for phosphorylation of replication protein A in yeast publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.93.26.15075 contributor: fullname: Brush – volume: 274 start-page: 37538 year: 1999 ident: key 20170510160902_B33 article-title: Substrate specificities and identification of putative substrates of ATM kinase family members publication-title: J. Biol. Chem doi: 10.1074/jbc.274.53.37538 contributor: fullname: Kim – volume: 24 start-page: 10126 year: 2004 ident: key 20170510160902_B42 article-title: A Tel1/MRX-dependent checkpoint inhibits the metaphase-to-anaphase transition after UV irradiation in the absence of Mec1 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.23.10126-10144.2004 contributor: fullname: Clerici – volume: 24 start-page: 891 year: 2006 ident: key 20170510160902_B7 article-title: The checkpoint clamp activates Mec1 kinase during initiation of the DNA damage checkpoint publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.11.027 contributor: fullname: Majka – volume: 455 start-page: U689 year: 2008 ident: key 20170510160902_B54 article-title: CDK targets Sae2 to control DNA-end resection and homologous recombination publication-title: Nature doi: 10.1038/nature07215 contributor: fullname: Huertas |
SSID | ssj0014154 |
Score | 2.115032 |
Snippet | In Saccharomyces cerevisiae, the DNA damage response (DDR) is activated by the spatio-temporal colocalization of Mec1-Ddc2 kinase and the 9-1-1 clamp. In the... In Saccharomyces cerevisiae , the DNA damage response (DDR) is activated by the spatio-temporal colocalization of Mec1-Ddc2 kinase and the 9-1-1 clamp. In the... |
SourceID | pubmedcentral proquest crossref pubmed fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2302 |
SubjectTerms | Adaptor Proteins, Signal Transducing - metabolism Cell Cycle Proteins - metabolism Checkpoint Kinase 2 DNA Breaks, Double-Stranded DNA Repair DNA-Binding Proteins - chemistry DNA-Binding Proteins - metabolism Electrophoretic Mobility Shift Assay G1 Phase - genetics Genome Integrity, Repair and Histones - metabolism Intracellular Signaling Peptides and Proteins - metabolism Phosphorylation Protein-Serine-Threonine Kinases - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - metabolism Serine - metabolism Signal Transduction |
Title | truncated DNA-damage-signaling response is activated after DSB formation in the G1 phase of Saccharomyces cerevisiae |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20061370 https://search.proquest.com/docview/733526296 https://search.proquest.com/docview/744618887 https://pubmed.ncbi.nlm.nih.gov/PMC2853130 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6RXuCCoAUaHtUcKm6us16v7T2GpKUXKqRQiZu13kdrQTZR0lTi3zOztqMWIQ6cvbZWO-N57HzzDWOnCvPoxuKf5rm2SW6aLNFemMR4IbR0xChGieLlorz6Xs3PiSZHDr0wEbRvmvYs_FyehfY2YivXS5MOOLH065dZhj4GbW86YiOMDYcUvS8doEfqOKMixWZe9U15mLmnQW_Smx9rjj6RSIDJfQuaUvzAI428Xv0t2PwTM_nACV28YM_76BGm3S5fsicuHLKjacDMefkLPkLEc8aL8kP2dDbMcjti91O42-yI_9VZmF9NE6uXaEgSQm9oakiHTYeVddBugXod7uPSOEEc5otPsG9yhDYABo3wmcP6Fl0grDwstKHuLdwDWh0wETq8bbV7xa4vzr_NLpN-4kJiclHcJU1WNRy9ppfC0KA_462VE29lZmXFHddlkXOltCulrYyUIlONKjODLxRCKCFes4OwCu6YgUPrkKvGNHRhYt1EeY2Zo5voAo_cZXLMTodTr9cdsUbdFcRFjXKqezmN2TFKpNY3aPLq60VGhVZOre8T_AIMYqrxOKnQoYNb7bZ1SY1kRaaKfyzBNJhj9l-O2ZtOsPtdDHoxZuUjke8XECP34yeoqJGZu1fMt__95jv2rIMnEDToPTtA3XAf2GhrdyfxtuAk6vpvBoMC5Q |
link.rule.ids | 230,315,729,782,786,866,887,27934,27935,53802,53804 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6t7IG9DAbbKIPtHtDeQhI7zo_HroV1GlSTCtLeIsd2INqaVi1F2n-_s5NUgKY98GwncnLnO5_vu-8ATjKKowtNO60MpfYiVTBPllx5quRcCmMZxWygOJ4mk5_p6MzS5IiuFsaB9lVRnda_Z6d1deuwlYuZ8jucmP_jcsjIx5Dt9XvwkvZrwLogvU0ekE9qWKMcyWaUtmV5FLv7tVz6N78WIXlFSwNsHTi3fYof-KReKef_Om4-RU0-cEPnO8_8gF143Z47cdAMv4EXpt6D_UFNMffsD35GhwR1V-x7sD3susDtw_0A75ZryxxrNI4mA0_LGZkgz-I-pC1lx2WDsjVYrdBWSdy7qa73OI6mX3BTHolVjXTcxK8hLm7JeeK8xKlUtu6L1kD2CpUDHa8qad7C9fnZ1XDstb0aPBXx-M4rWFqE5G9LwZVtEahKrUVQasG0SEMTyiSOwiyTJhE6VUJwlhVZwhQ9EHOecf4Otup5bQ4ADdmVKCtUYa9atAmyUlLMaQIZk6gME3046aSVLxpKjrxJpfOc5Ju38u3DAUkylzdkLPPrKbMp2tAWzQf0BuzEm9PvtCkSWZv5epUntgQtZln8nykUQIcp2eY-vG8UYrOKTp_6kDxSlc0Ey-X9eIQ0xHF6txpx-OwnP8H2-OryIr_4Nvn-AV41IAcLMDqCLdITcwy9lV5_dDvlL_N5F3A |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6RIgEXHi3Q8JxDxc31Y_08hqShCIgqhUrcrPU-WgviRElTiX_PzNqOWoQ4wNm71tozO7Oz8803AEcFxdGVpp1mQ6m9WFWRJ61QnrJCyMQwoxgHiqfzbPYtn5wwTc6u1ZcD7auqPm5-LI6b-tJhK1cL5fc4Mf_syzgiH0O2119p6w_gLu3ZIO4D9S6BQH6pZY5yRJtx3pXmUfzuN3LtX3xfheQZmQqYnbjgXsU3_NLAyuWfjpy_IydvuKLpo__4iMfwsDt_4qgd8gTumGYfDkYNxd6Ln_gOHSLUXbXvw_1x3w3uAK5HeLXeMoOs0TiZjTwtF2SKPMZ_SC5px3WLtjVYb5CrJa7dUNeDHCfz97grk8S6QTp24ocQV5fkRHFpcS4V13_RGshuoXLg400tzVM4n558HZ96Xc8GT8UivfKqKK9C8rs2EYpbBSqrdRJYnUQ6yUMTyiyNw6KQJkt0rpJEREVVZJGiCakQhRDPYK9ZNuYQ0JB9iYtKVXzlok1QWEmxpwlkSuIyUTKEo15i5aql5ijblLooScZlJ-MhHJI0S3lBRrM8n0ecqg25eD6gN2Av4pJ-J6dKZGOW202ZcSlaGhXpX4ZQIB3mZKOH8LxVit0qep0aQnZLXXYDmNP79hPSEsft3WnFi3-e-RbunU2m5eePs08v4UGLdWCc0SvYIzUxr2Gw0ds3brP8Ar2zGfA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+truncated+DNA-damage-signaling+response+is+activated+after+DSB+formation+in+the+G1+phase+of+Saccharomyces+cerevisiae&rft.jtitle=Nucleic+acids+research&rft.au=Janke%2C+Ryan&rft.au=Herzberg%2C+Kristina&rft.au=Rolfsmeier%2C+Michael&rft.au=Mar%2C+Jordan&rft.date=2010-04-01&rft.eissn=1362-4962&rft.volume=38&rft.issue=7&rft.spage=2302&rft.epage=2313&rft_id=info:doi/10.1093%2Fnar%2Fgkp1222&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |