truncated DNA-damage-signaling response is activated after DSB formation in the G1 phase of Saccharomyces cerevisiae

In Saccharomyces cerevisiae, the DNA damage response (DDR) is activated by the spatio-temporal colocalization of Mec1-Ddc2 kinase and the 9-1-1 clamp. In the absence of direct means to monitor Mec1 kinase activation in vivo, activation of the checkpoint kinase Rad53 has been taken as a proxy for DDR...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research Vol. 38; no. 7; pp. 2302 - 2313
Main Authors: Janke, Ryan, Herzberg, Kristina, Rolfsmeier, Michael, Mar, Jordan, Bashkirov, Vladimir I, Haghnazari, Edwin, Cantin, Greg, Yates, John R. III, Heyer, Wolf-Dietrich
Format: Journal Article
Language:English
Published: England Oxford University Press 01-04-2010
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In Saccharomyces cerevisiae, the DNA damage response (DDR) is activated by the spatio-temporal colocalization of Mec1-Ddc2 kinase and the 9-1-1 clamp. In the absence of direct means to monitor Mec1 kinase activation in vivo, activation of the checkpoint kinase Rad53 has been taken as a proxy for DDR activation. Here, we identify serine 378 of the Rad55 recombination protein as a direct target site of Mec1. Rad55-S378 phosphorylation leads to an electrophoretic mobility shift of the protein and acts as a sentinel for Mec1 activation in vivo. A single double-stranded break (DSB) in G1-arrested cells causes phosphorylation of Rad55-S378, indicating activation of Mec1 kinase. However, Rad53 kinase is not detectably activated under these conditions. This response required Mec1-Ddc2 and loading of the 9-1-1 clamp by Rad24-RFC, but not Rad9 or Mrc1. In addition to Rad55-S378, two additional direct Mec1 kinase targets are phosphorylated, the middle subunit of the ssDNA-binding protein RPA, RPA2 and histone H2A (H2AX). These data suggest the existence of a truncated signaling pathway in response to a single DSB in G1-arrested cells that activates Mec1 without eliciting a full DDR involving the entire signaling pathway including the effector kinases.
AbstractList In Saccharomyces cerevisiae, the DNA damage response (DDR) is activated by the spatio-temporal colocalization of Mec1-Ddc2 kinase and the 9-1-1 clamp. In the absence of direct means to monitor Mec1 kinase activation in vivo, activation of the checkpoint kinase Rad53 has been taken as a proxy for DDR activation. Here, we identify serine 378 of the Rad55 recombination protein as a direct target site of Mec1. Rad55-S378 phosphorylation leads to an electrophoretic mobility shift of the protein and acts as a sentinel for Mec1 activation in vivo. A single double-stranded break (DSB) in G1-arrested cells causes phosphorylation of Rad55-S378, indicating activation of Mec1 kinase. However, Rad53 kinase is not detectably activated under these conditions. This response required Mec1-Ddc2 and loading of the 9-1-1 clamp by Rad24-RFC, but not Rad9 or Mrc1. In addition to Rad55-S378, two additional direct Mec1 kinase targets are phosphorylated, the middle subunit of the ssDNA-binding protein RPA, RPA2 and histone H2A (H2AX). These data suggest the existence of a truncated signaling pathway in response to a single DSB in G1-arrested cells that activates Mec1 without eliciting a full DDR involving the entire signaling pathway including the effector kinases.
In Saccharomyces cerevisiae , the DNA damage response (DDR) is activated by the spatio-temporal colocalization of Mec1-Ddc2 kinase and the 9-1-1 clamp. In the absence of direct means to monitor Mec1 kinase activation in vivo , activation of the checkpoint kinase Rad53 has been taken as a proxy for DDR activation. Here, we identify serine 378 of the Rad55 recombination protein as a direct target site of Mec1. Rad55-S378 phosphorylation leads to an electrophoretic mobility shift of the protein and acts as a sentinel for Mec1 activation in vivo . A single double-stranded break (DSB) in G1-arrested cells causes phosphorylation of Rad55-S378, indicating activation of Mec1 kinase. However, Rad53 kinase is not detectably activated under these conditions. This response required Mec1-Ddc2 and loading of the 9-1-1 clamp by Rad24-RFC, but not Rad9 or Mrc1. In addition to Rad55–S378, two additional direct Mec1 kinase targets are phosphorylated, the middle subunit of the ssDNA-binding protein RPA, RPA2 and histone H2A (H2AX). These data suggest the existence of a truncated signaling pathway in response to a single DSB in G1-arrested cells that activates Mec1 without eliciting a full DDR involving the entire signaling pathway including the effector kinases.
Author Janke, Ryan
Rolfsmeier, Michael
Cantin, Greg
Heyer, Wolf-Dietrich
Yates, John R. III
Haghnazari, Edwin
Herzberg, Kristina
Bashkirov, Vladimir I
Mar, Jordan
AuthorAffiliation 1 Department of Microbiology, University of California, Davis, CA 95616-8665, 2 Department of Cell Biology, SR-11, Scripps Research Institute, La Jolla, CA 92307 and 3 Department of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA
AuthorAffiliation_xml – name: 1 Department of Microbiology, University of California, Davis, CA 95616-8665, 2 Department of Cell Biology, SR-11, Scripps Research Institute, La Jolla, CA 92307 and 3 Department of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA
Author_xml – sequence: 1
  fullname: Janke, Ryan
– sequence: 2
  fullname: Herzberg, Kristina
– sequence: 3
  fullname: Rolfsmeier, Michael
– sequence: 4
  fullname: Mar, Jordan
– sequence: 5
  fullname: Bashkirov, Vladimir I
– sequence: 6
  fullname: Haghnazari, Edwin
– sequence: 7
  fullname: Cantin, Greg
– sequence: 8
  fullname: Yates, John R. III
– sequence: 9
  fullname: Heyer, Wolf-Dietrich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20061370$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URLeFE3fwjQMK9UfsOBek0kJBquCw9GzNOpOsIbGD7V2p_57ALhWcOM1hnvfVjJ4zchJiQEKec_aGs1ZeBEgXw_eZCyEekRWXWlR1q8UJWTHJVMVZbU7JWc7fGOM1V_UTcioY01w2bEVKSbvgoGBHrz9fVh1MMGCV_RBg9GGgCfMcQ0bqMwVX_P43Cn3BRK_X72gf0wTFx0B9oGWL9IbTeQtLIPZ0Dc5tIcXp3mGmDhPuffaAT8njHsaMz47znNx9eP_16mN1--Xm09XlbeVqqUu1EWbDEbteSSd1q13fdYr1nRKdMhw5NLrmbQvYqM44paRoN20j3BLQUrZSnpO3h955t5mwcxhKgtHOyU-Q7m0Eb__dBL-1Q9xbYZTkki0Fr44FKf7YYS528tnhOELAuMu2qWvNjTHN_0kpldCi1Qv5-kC6FHNO2D_cw5n9JdQuQu1R6EK_-PuFB_aPwQV4eQB6iBaG5LO9Wwu2XM-NMJop-RMakKmI
CitedBy_id crossref_primary_10_1038_s44318_024_00139_9
crossref_primary_10_3390_genes12091390
crossref_primary_10_7554_eLife_87357_3
crossref_primary_10_1016_j_dnarep_2013_02_004
crossref_primary_10_7554_eLife_59112
crossref_primary_10_7554_eLife_21687
crossref_primary_10_1093_nar_gkv1544
crossref_primary_10_1038_nsmb_2323
crossref_primary_10_1073_pnas_1705261114
crossref_primary_10_1371_journal_pone_0019626
crossref_primary_10_7554_eLife_87357
crossref_primary_10_1038_nature12585
crossref_primary_10_1038_nsmb_2105
crossref_primary_10_1093_nar_gkw182
crossref_primary_10_13070_mm_en_10_2868
crossref_primary_10_1016_j_jmb_2013_04_013
crossref_primary_10_1002_yea_1722
crossref_primary_10_1146_annurev_genet_051710_150955
crossref_primary_10_1371_journal_pbio_1000594
Cites_doi 10.1038/15623
10.1093/emboj/18.22.6561
10.1016/S1097-2765(02)00705-0
10.1074/jbc.M807435200
10.1074/jbc.M507508200
10.1074/jbc.273.10.5858
10.1038/272795a0
10.1016/j.cell.2008.08.037
10.1126/science.1140321
10.1016/S1097-2765(01)00270-2
10.1126/science.271.5247.357
10.1128/MCB.20.12.4393-4404.2000
10.1038/cr.2008.1
10.1101/gad.291104
10.1038/nature02964
10.1038/ncb1101-958
10.1101/gad.903501
10.1038/nature07312
10.1016/S0076-6879(05)09010-5
10.1016/j.molcel.2008.03.023
10.1126/science.281.5374.272
10.1016/S1097-2765(01)00177-0
10.1128/MCB.01317-06
10.1073/pnas.0806621105
10.1038/ncb945
10.1016/j.cub.2004.09.047
10.1016/S1097-2765(02)00532-4
10.1016/j.cell.2004.08.015
10.1093/genetics/158.1.41
10.1128/MCB.24.10.4151-4165.2004
10.1016/0022-2836(90)90306-7
10.1128/JB.186.21.7149-7160.2004
10.1038/nature01368
10.1128/MCB.00330-08
10.1091/mbc.E03-07-0499
10.1073/pnas.0701622104
10.1074/jbc.M605176200
10.1093/emboj/17.14.4199
10.1101/gad.239802
10.1016/j.molcel.2008.01.016
10.1093/emboj/21.8.2030
10.1101/gad.10.4.395
10.1128/MCB.23.4.1441-1452.2003
10.1126/science.272.5268.1646
10.1016/S0955-0674(02)00312-5
10.1073/pnas.062502299
10.1128/MCB.23.17.6300-6314.2003
10.1093/emboj/18.16.4485
10.1126/science.1083430
10.1016/j.molcel.2007.11.015
10.1101/gad.11.9.1111
10.1073/pnas.250475697
10.1101/gad.14.16.2046
10.1093/emboj/20.11.2896
10.1038/emboj.2008.111
10.1016/S1097-2765(03)00169-2
10.1073/pnas.93.26.15075
10.1074/jbc.274.53.37538
10.1128/MCB.24.23.10126-10144.2004
10.1016/j.molcel.2006.11.027
10.1038/nature07215
ContentType Journal Article
Copyright The Author(s) 2010. Published by Oxford University Press. 2010
Copyright_xml – notice: The Author(s) 2010. Published by Oxford University Press. 2010
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7TM
8FD
FR3
M7N
P64
RC3
5PM
DOI 10.1093/nar/gkp1222
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Genetics Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 2313
ExternalDocumentID 10_1093_nar_gkp1222
20061370
US201301828605
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA092276
– fundername: NCI NIH HHS
  grantid: R01 CA92276
– fundername: NCRR NIH HHS
  grantid: P41 RR011823
– fundername: NIEHS NIH HHS
  grantid: T32ES007059
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
6.Y
70E
85S
A8Z
AAFWJ
AAMVS
AAOGV
AAPPN
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACNCT
ACPQN
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AEKPW
AENEX
AENZO
AEQTP
AFFNX
AFPKN
AFRAH
AFULF
AFYAG
AGKRT
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
AOIJS
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
BTTYL
C1A
CAG
CIDKT
COF
CS3
CXTWN
CZ4
D0S
DFGAJ
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
ELUNK
EMOBN
ESTFP
F20
F5P
FBQ
FEDTE
GROUPED_DOAJ
GX1
H13
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KC5
KQ8
KSI
M49
MBTAY
MVM
M~E
NTWIH
NU-
OAWHX
OBC
OBS
OEB
OES
OJQWA
OJZSN
OVD
O~Y
P2P
PB-
PEELM
PQQKQ
QBD
R44
RD5
RNI
RNS
ROL
ROX
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TCN
TEORI
TN5
TOX
TR2
UHB
WG7
WOQ
X7H
X7M
XFK
XSB
XSW
YSK
ZA5
ZKX
ZXP
~91
~D7
~KM
0R~
AAHBH
ABXVV
ACMRT
ACZBC
AEHUL
AFSHK
AGMDO
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
ABEJV
CITATION
7X8
7TM
8FD
FR3
M7N
P64
RC3
5PM
ID FETCH-LOGICAL-c436t-b28b1eedf53c3696cfdd50fd52d581e1a764199ae75d8c55329b972cdf5633933
IEDL.DBID RPM
ISSN 0305-1048
IngestDate Tue Sep 17 21:13:43 EDT 2024
Fri Oct 25 09:08:21 EDT 2024
Fri Oct 25 00:17:28 EDT 2024
Thu Nov 21 23:56:52 EST 2024
Tue Oct 15 23:37:13 EDT 2024
Wed Dec 27 19:13:59 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-b28b1eedf53c3696cfdd50fd52d581e1a764199ae75d8c55329b972cdf5633933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.
Present addresses: Kristina Herzberg, Hoffmann & Eitle, Munich, Germany.
Jordan Mar, University of California, Berkeley, CA 94720, USA.
Edwin Haghnazari, DiscoveRx Corp. Fremont, CA 94538, USA.
Michael Rolfsmeier, Washington State University, Pullman, WA 99163, USA.
Vladimir I. Bashkirov, Applied Biosystems, Foster City, CA 94404, USA.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2853130/
PMID 20061370
PQID 733526296
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2853130
proquest_miscellaneous_744618887
proquest_miscellaneous_733526296
crossref_primary_10_1093_nar_gkp1222
pubmed_primary_20061370
fao_agris_US201301828605
PublicationCentury 2000
PublicationDate 2010-04-01
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-04-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2010
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 9488723 - J Biol Chem. 1998 Mar 6;273(10):5858-68
16966380 - Mol Cell Biol. 2006 Nov;26(22):8396-409
18471973 - Mol Cell. 2008 May 9;30(3):267-76
9159392 - Genes Dev. 1997 May 1;11(9):1111-21
14595109 - Mol Biol Cell. 2004 Jan;15(1):11-23
18166982 - Cell Res. 2008 Jan;18(1):99-113
15121837 - Mol Cell Biol. 2004 May;24(10):4151-65
2108251 - J Mol Biol. 1990 Mar 5;212(1):79-96
16793405 - Methods Enzymol. 2006;409:236-50
8986766 - Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15075-80
18922789 - J Biol Chem. 2008 Dec 19;283(51):35853-9
10559981 - Nat Cell Biol. 1999 Nov;1(7):393-8
18806779 - Nature. 2008 Oct 9;455(7214):770-4
11891124 - Curr Opin Cell Biol. 2002 Apr;14(2):237-45
15458641 - Curr Biol. 2004 Oct 5;14(19):1703-11
9657725 - Science. 1998 Jul 10;281(5374):272-4
15496928 - Nature. 2004 Oct 21;431(7011):1011-7
12791985 - Science. 2003 Jun 6;300(5625):1542-8
15155581 - Genes Dev. 2004 May 15;18(10):1154-64
15369670 - Cell. 2004 Sep 17;118(6):699-713
8553072 - Science. 1996 Jan 19;271(5247):357-60
15542824 - Mol Cell Biol. 2004 Dec;24(23):10126-44
17525332 - Science. 2007 May 25;316(5828):1160-6
12917350 - Mol Cell Biol. 2003 Sep;23(17):6300-14
11715016 - Nat Cell Biol. 2001 Nov;3(11):958-65
8600024 - Genes Dev. 1996 Feb 15;10(4):395-406
16864589 - J Biol Chem. 2006 Sep 22;281(38):27855-61
12453425 - Mol Cell. 2002 Nov;10(5):1189-99
11691833 - Genes Dev. 2001 Nov 1;15(21):2809-21
347306 - Nature. 1978 Apr 27;272(5656):795-8
11095737 - Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13749-54
11333217 - Genetics. 2001 May;158(1):41-64
12769855 - Mol Cell. 2003 May;11(5):1323-36
12598907 - Nat Cell Biol. 2003 Mar;5(3):255-60
16793401 - Methods Enzymol. 2006;409:166-82
10608806 - J Biol Chem. 1999 Dec 31;274(53):37538-43
18716619 - Nature. 2008 Oct 2;455(7213):689-92
12049741 - Mol Cell. 2002 May;9(5):1055-65
10449414 - EMBO J. 1999 Aug 16;18(16):4485-97
12556502 - Mol Cell Biol. 2003 Feb;23(4):1441-52
12556884 - Nature. 2003 Jan 30;421(6922):499-506
10562568 - EMBO J. 1999 Nov 15;18(22):6561-72
11239458 - Mol Cell. 2001 Feb;7(2):293-300
11904430 - Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3746-51
16365046 - J Biol Chem. 2006 Feb 17;281(7):3954-63
11953322 - EMBO J. 2002 Apr 15;21(8):2030-7
10825202 - Mol Cell Biol. 2000 Jun;20(12):4393-404
18082599 - Mol Cell. 2007 Dec 14;28(5):739-45
18805091 - Cell. 2008 Sep 19;134(6):981-94
11387222 - EMBO J. 2001 Jun 1;20(11):2896-906
9670034 - EMBO J. 1998 Jul 15;17(14):4199-209
18511906 - EMBO J. 2008 Jul 9;27(13):1875-85
17189191 - Mol Cell. 2006 Dec 28;24(6):891-901
17563356 - Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10364-9
11430828 - Mol Cell. 2001 Jun;7(6):1255-66
18541674 - Mol Cell Biol. 2008 Aug;28(15):4782-93
8658138 - Science. 1996 Jun 14;272(5268):1646-9
15489426 - J Bacteriol. 2004 Nov;186(21):7149-60
18406328 - Mol Cell. 2008 Apr 11;30(1):73-85
10950868 - Genes Dev. 2000 Aug 15;14(16):2046-59
19028869 - Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18730-4
12502744 - Genes Dev. 2002 Dec 15;16(24):3236-52
Pellicioli ( key 20170510160902_B15) 2001; 7
Ira ( key 20170510160902_B16) 2004; 431
Matsuoka ( key 20170510160902_B23) 2007; 316
Herzberg ( key 20170510160902_B28) 2006; 26
Wan ( key 20170510160902_B50) 2004; 15
Leroy ( key 20170510160902_B18) 2001; 20
Rogakou ( key 20170510160902_B37) 1998; 273
Sassanfar ( key 20170510160902_B52) 1990; 212
Usui ( key 20170510160902_B2) 2001; 7
Edwards ( key 20170510160902_B56) 1999; 1
Brush ( key 20170510160902_B39) 1996; 93
Shimada ( key 20170510160902_B53) 2002; 16
Nakamura ( key 20170510160902_B30) 2006; 409
Li ( key 20170510160902_B24) 2008; 18
Bashkirov ( key 20170510160902_B62) 2003; 23
Kim ( key 20170510160902_B33) 1999; 274
Majka ( key 20170510160902_B46) 2006; 281
Schwartz ( key 20170510160902_B8) 2002; 9
Courcelle ( key 20170510160902_B51) 2001; 158
Essers ( key 20170510160902_B36) 2002; 21
Huertas ( key 20170510160902_B54) 2008; 455
Melo ( key 20170510160902_B6) 2001; 15
Sanchez ( key 20170510160902_B11) 1996; 271
Baroni ( key 20170510160902_B41) 2004; 24
Lukas ( key 20170510160902_B21) 2003; 5
Zhu ( key 20170510160902_B47) 2008; 134
Paciotti ( key 20170510160902_B43) 2000; 14
Zhao ( key 20170510160902_B61) 2002; 99
Lee ( key 20170510160902_B13) 2003; 23
Ma ( key 20170510160902_B14) 2006; 281
Navadgi-Patil ( key 20170510160902_B57) 2008; 283
Sun ( key 20170510160902_B12) 1998; 281
Tercero ( key 20170510160902_B19) 2003; 11
Alcasabas ( key 20170510160902_B45) 2001; 3
Melo ( key 20170510160902_B48) 2002; 14
Furuya ( key 20170510160902_B60) 2004; 18
Sun ( key 20170510160902_B10) 1996; 10
Nelson ( key 20170510160902_B31) 1996; 272
Harper ( key 20170510160902_B1) 2007; 28
Bashkirov ( key 20170510160902_B29) 2006; 409
Bakkenist ( key 20170510160902_B3) 2003; 421
Mordes ( key 20170510160902_B58) 2008; 105
Mallory ( key 20170510160902_B32) 2000; 97
Fabre ( key 20170510160902_B17) 1978; 272
Zierhut ( key 20170510160902_B34) 2008; 27
Lisby ( key 20170510160902_B25) 2004; 118
Smolka ( key 20170510160902_B22) 2007; 104
Neecke ( key 20170510160902_B20) 1999; 18
O'R;eilly ( key 20170510160902_B49) 2004; 186
Shroff ( key 20170510160902_B38) 2004; 14
Frank-Vaillant ( key 20170510160902_B55) 2002; 10
Bashkirov ( key 20170510160902_B27) 2000; 20
Clerici ( key 20170510160902_B42) 2004; 24
Barlow ( key 20170510160902_B35) 2008; 30
Sung ( key 20170510160902_B26) 1997; 11
Mimitou ( key 20170510160902_B40) 2008; 455
Bonilla ( key 20170510160902_B5) 2008; 30
Paciotti ( key 20170510160902_B44) 1998; 17
Majka ( key 20170510160902_B7) 2006; 24
Puddu ( key 20170510160902_B59) 2008; 28
Pellicioli ( key 20170510160902_B9) 1999; 18
Zou ( key 20170510160902_B4) 2003; 300
References_xml – volume: 1
  start-page: 393
  year: 1999
  ident: key 20170510160902_B56
  article-title: A Rad3-Rad26 complex responds to DNA damage independently of other checkpoint proteins
  publication-title: Nat. Cell Biol.
  doi: 10.1038/15623
  contributor:
    fullname: Edwards
– volume: 18
  start-page: 6561
  year: 1999
  ident: key 20170510160902_B9
  article-title: Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase
  publication-title: EMBO J.
  doi: 10.1093/emboj/18.22.6561
  contributor:
    fullname: Pellicioli
– volume: 10
  start-page: 1189
  year: 2002
  ident: key 20170510160902_B55
  article-title: Transient stability of DNA ends allows nonhomologous end joining to precede homologous recombination
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00705-0
  contributor:
    fullname: Frank-Vaillant
– volume: 283
  start-page: 35853
  year: 2008
  ident: key 20170510160902_B57
  article-title: Yeast DNA replication protein Dpb11 activates the Mec1/ATR checkpoint kinase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M807435200
  contributor:
    fullname: Navadgi-Patil
– volume: 409
  start-page: 236
  year: 2006
  ident: key 20170510160902_B30
  article-title: Techniques for gamma-H2AX detection
  publication-title: DNA Repair
  contributor:
    fullname: Nakamura
– volume: 281
  start-page: 3954
  year: 2006
  ident: key 20170510160902_B14
  article-title: Activation of the checkpoint kinase Rad53 by the phosphatidyl inositol kinase-like kinase Mec1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M507508200
  contributor:
    fullname: Ma
– volume: 273
  start-page: 5858
  year: 1998
  ident: key 20170510160902_B37
  article-title: DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.10.5858
  contributor:
    fullname: Rogakou
– volume: 272
  start-page: 795
  year: 1978
  ident: key 20170510160902_B17
  article-title: Induced intragenic recombination in yeast can occur during the G1 mitotic phase
  publication-title: Nature
  doi: 10.1038/272795a0
  contributor:
    fullname: Fabre
– volume: 134
  start-page: 981
  year: 2008
  ident: key 20170510160902_B47
  article-title: Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends
  publication-title: Cell
  doi: 10.1016/j.cell.2008.08.037
  contributor:
    fullname: Zhu
– volume: 316
  start-page: 1160
  year: 2007
  ident: key 20170510160902_B23
  article-title: ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage
  publication-title: Science
  doi: 10.1126/science.1140321
  contributor:
    fullname: Matsuoka
– volume: 7
  start-page: 1255
  year: 2001
  ident: key 20170510160902_B2
  article-title: A DNA damage response pathway controlled by Tel1 and the Mre11 complex
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(01)00270-2
  contributor:
    fullname: Usui
– volume: 271
  start-page: 357
  year: 1996
  ident: key 20170510160902_B11
  article-title: Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways
  publication-title: Science
  doi: 10.1126/science.271.5247.357
  contributor:
    fullname: Sanchez
– volume: 20
  start-page: 4393
  year: 2000
  ident: key 20170510160902_B27
  article-title: DNA repair protein Rad55 is a terminal substrate of the DNA damage checkpoints
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.20.12.4393-4404.2000
  contributor:
    fullname: Bashkirov
– volume: 18
  start-page: 99
  year: 2008
  ident: key 20170510160902_B24
  article-title: Homologous recombination in DNA repair and DNA damage tolerance
  publication-title: Cell Res.
  doi: 10.1038/cr.2008.1
  contributor:
    fullname: Li
– volume: 18
  start-page: 1154
  year: 2004
  ident: key 20170510160902_B60
  article-title: Chk1 activation requires Rad9 S/TQ-site phosphorylation to promote association with C-terminal BCRT domains of Rad4(TOPBP1)
  publication-title: Genes Dev.
  doi: 10.1101/gad.291104
  contributor:
    fullname: Furuya
– volume: 431
  start-page: 1011
  year: 2004
  ident: key 20170510160902_B16
  article-title: DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1
  publication-title: Nature
  doi: 10.1038/nature02964
  contributor:
    fullname: Ira
– volume: 3
  start-page: 958
  year: 2001
  ident: key 20170510160902_B45
  article-title: Mrc1 transduces signals of DNA replication stress to activate Rad53
  publication-title: Nature Cell Biol.
  doi: 10.1038/ncb1101-958
  contributor:
    fullname: Alcasabas
– volume: 15
  start-page: 2809
  year: 2001
  ident: key 20170510160902_B6
  article-title: Two checkpoint complexes are independently recruited to sites of DNA damage in vivo
  publication-title: Genes Dev.
  doi: 10.1101/gad.903501
  contributor:
    fullname: Melo
– volume: 455
  start-page: 770
  year: 2008
  ident: key 20170510160902_B40
  article-title: Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing
  publication-title: Nature
  doi: 10.1038/nature07312
  contributor:
    fullname: Mimitou
– volume: 409
  start-page: 166
  year: 2006
  ident: key 20170510160902_B29
  article-title: DNA-damage induced phosphorylation of Rad55 protein as a sentinel for DNA damage checkpoint activation in S
  publication-title: cerevisiae. Meth. Enzymol.
  doi: 10.1016/S0076-6879(05)09010-5
  contributor:
    fullname: Bashkirov
– volume: 30
  start-page: 267
  year: 2008
  ident: key 20170510160902_B5
  article-title: Colocalization of sensors is sufficient to activate the DNA damage checkpoint in the absence of damage
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.03.023
  contributor:
    fullname: Bonilla
– volume: 281
  start-page: 272
  year: 1998
  ident: key 20170510160902_B12
  article-title: Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint
  publication-title: Science
  doi: 10.1126/science.281.5374.272
  contributor:
    fullname: Sun
– volume: 7
  start-page: 293
  year: 2001
  ident: key 20170510160902_B15
  article-title: Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(01)00177-0
  contributor:
    fullname: Pellicioli
– volume: 26
  start-page: 8396
  year: 2006
  ident: key 20170510160902_B28
  article-title: Phosphorylation of Rad55 on serines 2, 8, and 14 is required for efficient homologous recombination in the recovery of stalled replication forks
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01317-06
  contributor:
    fullname: Herzberg
– volume: 105
  start-page: 18730
  year: 2008
  ident: key 20170510160902_B58
  article-title: Dpb11 activates the Mec1-Ddc2 complex
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0806621105
  contributor:
    fullname: Mordes
– volume: 5
  start-page: 255
  year: 2003
  ident: key 20170510160902_B21
  article-title: Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb945
  contributor:
    fullname: Lukas
– volume: 14
  start-page: 1703
  year: 2004
  ident: key 20170510160902_B38
  article-title: Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2004.09.047
  contributor:
    fullname: Shroff
– volume: 9
  start-page: 1055
  year: 2002
  ident: key 20170510160902_B8
  article-title: Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00532-4
  contributor:
    fullname: Schwartz
– volume: 118
  start-page: 699
  year: 2004
  ident: key 20170510160902_B25
  article-title: Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins
  publication-title: Cell
  doi: 10.1016/j.cell.2004.08.015
  contributor:
    fullname: Lisby
– volume: 158
  start-page: 41
  year: 2001
  ident: key 20170510160902_B51
  article-title: Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli
  publication-title: Genetics
  doi: 10.1093/genetics/158.1.41
  contributor:
    fullname: Courcelle
– volume: 24
  start-page: 4151
  year: 2004
  ident: key 20170510160902_B41
  article-title: The functions of budding yeast Sae2 in the DNA damage response require Mec1- and Tel1-dependent phosphorylation
  publication-title: Mol. Biol. Cell
  doi: 10.1128/MCB.24.10.4151-4165.2004
  contributor:
    fullname: Baroni
– volume: 212
  start-page: 79
  year: 1990
  ident: key 20170510160902_B52
  article-title: Nature of the SOS-inducing signal in Escherichia coli: the involvement of DNA replication
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(90)90306-7
  contributor:
    fullname: Sassanfar
– volume: 186
  start-page: 7149
  year: 2004
  ident: key 20170510160902_B49
  article-title: Isolation of SOS constitutive mutants of Escherichia coli
  publication-title: J. Bact.
  doi: 10.1128/JB.186.21.7149-7160.2004
  contributor:
    fullname: O'R;eilly
– volume: 421
  start-page: 499
  year: 2003
  ident: key 20170510160902_B3
  article-title: DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation
  publication-title: Nature
  doi: 10.1038/nature01368
  contributor:
    fullname: Bakkenist
– volume: 28
  start-page: 4782
  year: 2008
  ident: key 20170510160902_B59
  article-title: Phosphorylation of the budding yeast 9-1-1 complex is required for Dpb11 function in the full activation of the UV-induced DNA damage checkpoint
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00330-08
  contributor:
    fullname: Puddu
– volume: 15
  start-page: 11
  year: 2004
  ident: key 20170510160902_B50
  article-title: Mek1 kinase activity functions downstream of RED1 in the regulation of meiotic double strand break repair in budding yeast
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E03-07-0499
  contributor:
    fullname: Wan
– volume: 104
  start-page: 10364
  year: 2007
  ident: key 20170510160902_B22
  article-title: Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0701622104
  contributor:
    fullname: Smolka
– volume: 281
  start-page: 27855
  year: 2006
  ident: key 20170510160902_B46
  article-title: Replication protein A directs loading of the DNA damage checkpoint clamp to 5'-DNA junctions
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M605176200
  contributor:
    fullname: Majka
– volume: 17
  start-page: 4199
  year: 1998
  ident: key 20170510160902_B44
  article-title: Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p
  publication-title: EMBO J.
  doi: 10.1093/emboj/17.14.4199
  contributor:
    fullname: Paciotti
– volume: 16
  start-page: 3236
  year: 2002
  ident: key 20170510160902_B53
  article-title: ORC and the intra-S-phase checkpoint: a threshold regulates Rad53p activation in S phase
  publication-title: Genes Dev.
  doi: 10.1101/gad.239802
  contributor:
    fullname: Shimada
– volume: 30
  start-page: 73
  year: 2008
  ident: key 20170510160902_B35
  article-title: Differential regulation of the cellular response to DNA double-strand breaks in G1
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.01.016
  contributor:
    fullname: Barlow
– volume: 21
  start-page: 2030
  year: 2002
  ident: key 20170510160902_B36
  article-title: Nuclear dynamics of RAD52 group homologous recombination proteins in response to DNA damage
  publication-title: EMBO J.
  doi: 10.1093/emboj/21.8.2030
  contributor:
    fullname: Essers
– volume: 10
  start-page: 395
  year: 1996
  ident: key 20170510160902_B10
  article-title: Spk1/Rad53 is regulated by Mec1-dependent protein phosphorylation in DNA replication and damage checkpoint pathways
  publication-title: Genes Dev.
  doi: 10.1101/gad.10.4.395
  contributor:
    fullname: Sun
– volume: 23
  start-page: 1441
  year: 2003
  ident: key 20170510160902_B62
  article-title: Direct kinase-to-kinase signaling mediated by the FHA phosphoprotein recognition domain of the Dun1 DNA damage checkpoint kinase
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.4.1441-1452.2003
  contributor:
    fullname: Bashkirov
– volume: 272
  start-page: 1646
  year: 1996
  ident: key 20170510160902_B31
  article-title: Thymine-thymine dimer bypass by yeast DNA polymerase zeta
  publication-title: Science
  doi: 10.1126/science.272.5268.1646
  contributor:
    fullname: Nelson
– volume: 14
  start-page: 237
  year: 2002
  ident: key 20170510160902_B48
  article-title: A unified view of the DNA-damage checkpoint
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/S0955-0674(02)00312-5
  contributor:
    fullname: Melo
– volume: 99
  start-page: 3746
  year: 2002
  ident: key 20170510160902_B61
  article-title: The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1
  publication-title: Proc Natl Acad. Sci. USA
  doi: 10.1073/pnas.062502299
  contributor:
    fullname: Zhao
– volume: 23
  start-page: 6300
  year: 2003
  ident: key 20170510160902_B13
  article-title: Rad53 phosphorylation site clusters are important for Rad53 regulation and signaling
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.17.6300-6314.2003
  contributor:
    fullname: Lee
– volume: 18
  start-page: 4485
  year: 1999
  ident: key 20170510160902_B20
  article-title: Cell cycle progression in the presence of irreparable DNA damage is controlled by a Mec1-and Rad53-dependent checkpoint in budding yeast
  publication-title: EMBO J.
  doi: 10.1093/emboj/18.16.4485
  contributor:
    fullname: Neecke
– volume: 300
  start-page: 1542
  year: 2003
  ident: key 20170510160902_B4
  article-title: Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes
  publication-title: Science
  doi: 10.1126/science.1083430
  contributor:
    fullname: Zou
– volume: 28
  start-page: 739
  year: 2007
  ident: key 20170510160902_B1
  article-title: The DNA damage response: ten years after
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.11.015
  contributor:
    fullname: Harper
– volume: 11
  start-page: 1111
  year: 1997
  ident: key 20170510160902_B26
  article-title: Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase
  publication-title: Genes Dev.
  doi: 10.1101/gad.11.9.1111
  contributor:
    fullname: Sung
– volume: 97
  start-page: 13749
  year: 2000
  ident: key 20170510160902_B32
  article-title: Protein kinase activity of Tel1p and Mec1p, two Saccharomyces cerevisiae proteins related to the human ATM protein kinase
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.250475697
  contributor:
    fullname: Mallory
– volume: 14
  start-page: 2046
  year: 2000
  ident: key 20170510160902_B43
  article-title: The checkpoint protein Ddc2, functionally related to the S. pombe Rad26, interacts with Mec1 and is regulated by Mec1-dependent phosphorylation in budding yeast
  publication-title: Genes Dev.
  doi: 10.1101/gad.14.16.2046
  contributor:
    fullname: Paciotti
– volume: 20
  start-page: 2896
  year: 2001
  ident: key 20170510160902_B18
  article-title: Silent repair accounts for cell cycle specificity in the signaling of oxidative DNA lesions
  publication-title: EMBO J.
  doi: 10.1093/emboj/20.11.2896
  contributor:
    fullname: Leroy
– volume: 27
  start-page: 1875
  year: 2008
  ident: key 20170510160902_B34
  article-title: Break dosage, cell cycle stage and DNA replication influence DNA double strand break response
  publication-title: EMBO J.
  doi: 10.1038/emboj.2008.111
  contributor:
    fullname: Zierhut
– volume: 11
  start-page: 1323
  year: 2003
  ident: key 20170510160902_B19
  article-title: A central role for DNA replication forks in checkpoint activation and response
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00169-2
  contributor:
    fullname: Tercero
– volume: 93
  start-page: 15075
  year: 1996
  ident: key 20170510160902_B39
  article-title: The ATM homologue MEC1 is required for phosphorylation of replication protein A in yeast
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.93.26.15075
  contributor:
    fullname: Brush
– volume: 274
  start-page: 37538
  year: 1999
  ident: key 20170510160902_B33
  article-title: Substrate specificities and identification of putative substrates of ATM kinase family members
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.274.53.37538
  contributor:
    fullname: Kim
– volume: 24
  start-page: 10126
  year: 2004
  ident: key 20170510160902_B42
  article-title: A Tel1/MRX-dependent checkpoint inhibits the metaphase-to-anaphase transition after UV irradiation in the absence of Mec1
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.23.10126-10144.2004
  contributor:
    fullname: Clerici
– volume: 24
  start-page: 891
  year: 2006
  ident: key 20170510160902_B7
  article-title: The checkpoint clamp activates Mec1 kinase during initiation of the DNA damage checkpoint
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.11.027
  contributor:
    fullname: Majka
– volume: 455
  start-page: U689
  year: 2008
  ident: key 20170510160902_B54
  article-title: CDK targets Sae2 to control DNA-end resection and homologous recombination
  publication-title: Nature
  doi: 10.1038/nature07215
  contributor:
    fullname: Huertas
SSID ssj0014154
Score 2.115032
Snippet In Saccharomyces cerevisiae, the DNA damage response (DDR) is activated by the spatio-temporal colocalization of Mec1-Ddc2 kinase and the 9-1-1 clamp. In the...
In Saccharomyces cerevisiae , the DNA damage response (DDR) is activated by the spatio-temporal colocalization of Mec1-Ddc2 kinase and the 9-1-1 clamp. In the...
SourceID pubmedcentral
proquest
crossref
pubmed
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2302
SubjectTerms Adaptor Proteins, Signal Transducing - metabolism
Cell Cycle Proteins - metabolism
Checkpoint Kinase 2
DNA Breaks, Double-Stranded
DNA Repair
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - metabolism
Electrophoretic Mobility Shift Assay
G1 Phase - genetics
Genome Integrity, Repair and
Histones - metabolism
Intracellular Signaling Peptides and Proteins - metabolism
Phosphorylation
Protein-Serine-Threonine Kinases - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - metabolism
Serine - metabolism
Signal Transduction
Title truncated DNA-damage-signaling response is activated after DSB formation in the G1 phase of Saccharomyces cerevisiae
URI https://www.ncbi.nlm.nih.gov/pubmed/20061370
https://search.proquest.com/docview/733526296
https://search.proquest.com/docview/744618887
https://pubmed.ncbi.nlm.nih.gov/PMC2853130
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6RXuCCoAUaHtUcKm6us16v7T2GpKUXKqRQiZu13kdrQTZR0lTi3zOztqMWIQ6cvbZWO-N57HzzDWOnCvPoxuKf5rm2SW6aLNFemMR4IbR0xChGieLlorz6Xs3PiSZHDr0wEbRvmvYs_FyehfY2YivXS5MOOLH065dZhj4GbW86YiOMDYcUvS8doEfqOKMixWZe9U15mLmnQW_Smx9rjj6RSIDJfQuaUvzAI428Xv0t2PwTM_nACV28YM_76BGm3S5fsicuHLKjacDMefkLPkLEc8aL8kP2dDbMcjti91O42-yI_9VZmF9NE6uXaEgSQm9oakiHTYeVddBugXod7uPSOEEc5otPsG9yhDYABo3wmcP6Fl0grDwstKHuLdwDWh0wETq8bbV7xa4vzr_NLpN-4kJiclHcJU1WNRy9ppfC0KA_462VE29lZmXFHddlkXOltCulrYyUIlONKjODLxRCKCFes4OwCu6YgUPrkKvGNHRhYt1EeY2Zo5voAo_cZXLMTodTr9cdsUbdFcRFjXKqezmN2TFKpNY3aPLq60VGhVZOre8T_AIMYqrxOKnQoYNb7bZ1SY1kRaaKfyzBNJhj9l-O2ZtOsPtdDHoxZuUjke8XECP34yeoqJGZu1fMt__95jv2rIMnEDToPTtA3XAf2GhrdyfxtuAk6vpvBoMC5Q
link.rule.ids 230,315,729,782,786,866,887,27934,27935,53802,53804
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6t7IG9DAbbKIPtHtDeQhI7zo_HroV1GlSTCtLeIsd2INqaVi1F2n-_s5NUgKY98GwncnLnO5_vu-8ATjKKowtNO60MpfYiVTBPllx5quRcCmMZxWygOJ4mk5_p6MzS5IiuFsaB9lVRnda_Z6d1deuwlYuZ8jucmP_jcsjIx5Dt9XvwkvZrwLogvU0ekE9qWKMcyWaUtmV5FLv7tVz6N78WIXlFSwNsHTi3fYof-KReKef_Om4-RU0-cEPnO8_8gF143Z47cdAMv4EXpt6D_UFNMffsD35GhwR1V-x7sD3susDtw_0A75ZryxxrNI4mA0_LGZkgz-I-pC1lx2WDsjVYrdBWSdy7qa73OI6mX3BTHolVjXTcxK8hLm7JeeK8xKlUtu6L1kD2CpUDHa8qad7C9fnZ1XDstb0aPBXx-M4rWFqE5G9LwZVtEahKrUVQasG0SEMTyiSOwiyTJhE6VUJwlhVZwhQ9EHOecf4Otup5bQ4ADdmVKCtUYa9atAmyUlLMaQIZk6gME3046aSVLxpKjrxJpfOc5Ju38u3DAUkylzdkLPPrKbMp2tAWzQf0BuzEm9PvtCkSWZv5epUntgQtZln8nykUQIcp2eY-vG8UYrOKTp_6kDxSlc0Ey-X9eIQ0xHF6txpx-OwnP8H2-OryIr_4Nvn-AV41IAcLMDqCLdITcwy9lV5_dDvlL_N5F3A
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6RIgEXHi3Q8JxDxc31Y_08hqShCIgqhUrcrPU-WgviRElTiX_PzNqOWoQ4wNm71tozO7Oz8803AEcFxdGVpp1mQ6m9WFWRJ61QnrJCyMQwoxgHiqfzbPYtn5wwTc6u1ZcD7auqPm5-LI6b-tJhK1cL5fc4Mf_syzgiH0O2119p6w_gLu3ZIO4D9S6BQH6pZY5yRJtx3pXmUfzuN3LtX3xfheQZmQqYnbjgXsU3_NLAyuWfjpy_IydvuKLpo__4iMfwsDt_4qgd8gTumGYfDkYNxd6Ln_gOHSLUXbXvw_1x3w3uAK5HeLXeMoOs0TiZjTwtF2SKPMZ_SC5px3WLtjVYb5CrJa7dUNeDHCfz97grk8S6QTp24ocQV5fkRHFpcS4V13_RGshuoXLg400tzVM4n558HZ96Xc8GT8UivfKqKK9C8rs2EYpbBSqrdRJYnUQ6yUMTyiyNw6KQJkt0rpJEREVVZJGiCakQhRDPYK9ZNuYQ0JB9iYtKVXzlok1QWEmxpwlkSuIyUTKEo15i5aql5ijblLooScZlJ-MhHJI0S3lBRrM8n0ecqg25eD6gN2Av4pJ-J6dKZGOW202ZcSlaGhXpX4ZQIB3mZKOH8LxVit0qep0aQnZLXXYDmNP79hPSEsft3WnFi3-e-RbunU2m5eePs08v4UGLdWCc0SvYIzUxr2Gw0ds3brP8Ar2zGfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+truncated+DNA-damage-signaling+response+is+activated+after+DSB+formation+in+the+G1+phase+of+Saccharomyces+cerevisiae&rft.jtitle=Nucleic+acids+research&rft.au=Janke%2C+Ryan&rft.au=Herzberg%2C+Kristina&rft.au=Rolfsmeier%2C+Michael&rft.au=Mar%2C+Jordan&rft.date=2010-04-01&rft.eissn=1362-4962&rft.volume=38&rft.issue=7&rft.spage=2302&rft.epage=2313&rft_id=info:doi/10.1093%2Fnar%2Fgkp1222&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon