Prediction of late/early arrivals in container terminals – A qualitative approach

Vessel arrival uncertainty in ports has become a very common problem worldwide. Although ship operators have to notify the Estimated Time of Arrival (ETA) at predetermined time intervals, they frequently have to update the latest ETA due to unforeseen circumstances. This causes a series of inconveni...

Full description

Saved in:
Bibliographic Details
Published in:European journal of transport and infrastructure research Vol. 15; no. 4
Main Authors: Pani, Claudia, Vanelslander, Thierry, Fancello, Gianfranco, Cannas, Massimo
Format: Journal Article
Language:English
Published: TU Delft OPEN Publishing 28-09-2015
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Vessel arrival uncertainty in ports has become a very common problem worldwide. Although ship operators have to notify the Estimated Time of Arrival (ETA) at predetermined time intervals, they frequently have to update the latest ETA due to unforeseen circumstances. This causes a series of inconveniences that often impact on the efficiency of terminal operations, especially in the daily planning scenario. Thus, for our study we adopted a machine learning approach in order to provide a qualitative estimate of the vessel delay/advance and to help mitigate the consequences of late/early arrivals in port. Using data on delays/advances at the individual vessel level, a comparative study between two transshipment container terminals is presented and the performance of three algorithmic models is evaluated. Results of the research indicate that when the distribution of the outcome is bimodal the performance of the discrete models is highly relevant for acquiring data characteristics. Therefore, the models are not flexible in representing data when the outcome distribution exhibits unimodal behavior. Moreover, graphical visualisation of the importance-plots made it possible to underline the most significant variables which might explain vessel arrival uncertainty at the two European ports.
AbstractList Vessel arrival uncertainty in ports has become a very common problem worldwide. Although ship operators have to notify the Estimated Time of Arrival (ETA) at predetermined time intervals, they frequently have to update the latest ETA due to unforeseen circumstances. This causes a series of inconveniences that often impact on the efficiency of terminal operations, especially in the daily planning scenario. Thus, for our study we adopted a machine learning approach in order to provide a qualitative estimate of the vessel delay/advance and to help mitigate the consequences of late/early arrivals in port. Using data on delays/advances at the individual vessel level, a comparative study between two transshipment container terminals is presented and the performance of three algorithmic models is evaluated. Results of the research indicate that when the distribution of the outcome is bimodal the performance of the discrete models is highly relevant for acquiring data characteristics. Therefore, the models are not flexible in representing data when the outcome distribution exhibits unimodal behavior. Moreover, graphical visualisation of the importance-plots made it possible to underline the most significant variables which might explain vessel arrival uncertainty at the two European ports.
Author Vanelslander, Thierry
Fancello, Gianfranco
Cannas, Massimo
Pani, Claudia
Author_xml – sequence: 1
  givenname: Claudia
  surname: Pani
  fullname: Pani, Claudia
– sequence: 2
  givenname: Thierry
  surname: Vanelslander
  fullname: Vanelslander, Thierry
– sequence: 3
  givenname: Gianfranco
  surname: Fancello
  fullname: Fancello, Gianfranco
– sequence: 4
  givenname: Massimo
  surname: Cannas
  fullname: Cannas, Massimo
BookMark eNpNkGFKw0AQhRepYK09grAXSJpNNrvJz1KqVgqK1t_LZDLRLWm2bmKh_7yDN_Qkpq2Iw4N5PIZv4F2yQeMaYuxaRKHIdKon8_vV4imMI5GGvWSYRLk6Y0ORKh1oIcXgn79g47ZdR_0kcRYpNWTPj55Ki511DXcVr6GjCYGv9xy8tzuoW24bjq7pwDbkeUd-Y5tD_P35xaf8_QNq20Fnd8Rhu_UO8O2KnVf9BY1_94i93MxXs7tg-XC7mE2XAcpEdYHGHGUMJFQCCCVpHQtQUUlpCgXGRYqSMBEgK5IiESWAFEoVva1ELKMyGbHFiVs6WJuttxvwe-PAmmPg_KsB31msyWikPC0IoP8iM4VZnGNeYlGIHFED9Kz0xELv2tZT9ccTkTkWbY5Fm0PRppc0h6KTH2DNdhM
CitedBy_id crossref_primary_10_1109_JSEN_2024_3370605
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.18757/EJTIR.2015.15.4.3096
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 1567-7141
ExternalDocumentID oai_doaj_org_article_7ce95beaae77486c829c9dcbb19cc7aa
10_18757_EJTIR_2015_15_4_3096
GroupedDBID 29G
2WC
5GY
5VS
AAFWJ
AAYXX
ACGFO
ACHQT
ADBBV
ADDVE
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
BCNDV
C1A
CITATION
E3Z
EBS
EJD
GROUPED_DOAJ
KQ8
M~E
OK1
P2P
RNS
TR2
ID FETCH-LOGICAL-c436t-7c9c42ae163acade7721a60de55abc2b5c4ec31a4fe4131daa4166b131f1240d3
IEDL.DBID DOA
ISSN 1567-7141
IngestDate Tue Oct 22 15:10:55 EDT 2024
Fri Nov 22 03:02:00 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-7c9c42ae163acade7721a60de55abc2b5c4ec31a4fe4131daa4166b131f1240d3
OpenAccessLink https://doaj.org/article/7ce95beaae77486c829c9dcbb19cc7aa
ParticipantIDs doaj_primary_oai_doaj_org_article_7ce95beaae77486c829c9dcbb19cc7aa
crossref_primary_10_18757_EJTIR_2015_15_4_3096
PublicationCentury 2000
PublicationDate 2015-09-28
PublicationDateYYYYMMDD 2015-09-28
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-28
  day: 28
PublicationDecade 2010
PublicationTitle European journal of transport and infrastructure research
PublicationYear 2015
Publisher TU Delft OPEN Publishing
Publisher_xml – name: TU Delft OPEN Publishing
SSID ssj0000328066
Score 2.2034216
Snippet Vessel arrival uncertainty in ports has become a very common problem worldwide. Although ship operators have to notify the Estimated Time of Arrival (ETA) at...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
Title Prediction of late/early arrivals in container terminals – A qualitative approach
URI https://doaj.org/article/7ce95beaae77486c829c9dcbb19cc7aa
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF20F72In_jNHrymzcdmkxyrtqgHEVvB2zI7u4GCtJK2d_-D_9Bf4kySlt68CHsISwjLmyHvLTvzVoib0mZINIWByjIIVERpnBdOB5g4UIVNwPn66oRR9vye3w_YJmd91RfXhDX2wA1wvQx9kVoP4Emo5BrzuMDCobVRgZhBI41CvbGZqv_BCZ8Y6rZlh03be56EHhuARmmXhuomIRv1b5DRhmd_TS7DfbHXqkLZb1ZzILb89FDsrJqG50di9FLxiQqjKGel_CCF2PPsTSyhqiaULXM5mUquOwfu5pNtjQtN_3x9y75seidrk2-5shE_Fm_DwfjuIWjvQwhQJXoRZFigisGThAIunidhHIEOnU9TsBjbFJXHJAJVeqKmyAGQ2tKWHkti8dAlJ6IznU39qZBEQikStzsdO5WjtqVVJJw8e-8Qp-VnorsCxnw2theGtwuMpBk8jR9fDSNpaCjDSJ6JW4Zv_TK7VtcTFEvTxtL8Fcvz__jIhdjlpXFNR5xfis6iWvorsT13y-s6R34BU1bD0Q
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+late%2Fearly+arrivals+in+container+terminals+%E2%80%93+A+qualitative+approach&rft.jtitle=European+journal+of+transport+and+infrastructure+research&rft.au=Claudia+Pani&rft.au=Thierry+Vanelslander&rft.au=Gianfranco+Fancello&rft.au=Massimo+Cannas&rft.date=2015-09-28&rft.pub=TU+Delft+OPEN+Publishing&rft.eissn=1567-7141&rft.volume=15&rft.issue=4&rft_id=info:doi/10.18757%2Fejtir.2015.15.4.3096&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7ce95beaae77486c829c9dcbb19cc7aa
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-7141&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-7141&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-7141&client=summon