Classification and counting of cells in brightfield microscopy images: an application of convolutional neural networks

Microscopy is integral to medical research, facilitating the exploration of various biological questions, notably cell quantification. However, this process's time-consuming and error-prone nature, attributed to human intervention or automated methods usually applied to fluorescent images, pres...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 14; no. 1; p. 9031
Main Authors: Ferreira, E. K. G. D., Silveira, G. F.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 19-04-2024
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Microscopy is integral to medical research, facilitating the exploration of various biological questions, notably cell quantification. However, this process's time-consuming and error-prone nature, attributed to human intervention or automated methods usually applied to fluorescent images, presents challenges. In response, machine learning algorithms have been integrated into microscopy, automating tasks and constructing predictive models from vast datasets. These models adeptly learn representations for object detection, image segmentation, and target classification. An advantageous strategy involves utilizing unstained images, preserving cell integrity and enabling morphology-based classification—something hindered when fluorescent markers are used. The aim is to introduce a model proficient in classifying distinct cell lineages in digital contrast microscopy images. Additionally, the goal is to create a predictive model identifying lineage and determining optimal quantification of cell numbers. Employing a CNN machine learning algorithm, a classification model predicting cellular lineage achieved a remarkable accuracy of 93%, with ROC curve results nearing 1.0, showcasing robust performance. However, some lineages, namely SH-SY5Y (78%), HUH7_mayv (85%), and A549 (88%), exhibited slightly lower accuracies. These outcomes not only underscore the model's quality but also emphasize CNNs' potential in addressing the inherent complexities of microscopic images.
AbstractList Microscopy is integral to medical research, facilitating the exploration of various biological questions, notably cell quantification. However, this process's time-consuming and error-prone nature, attributed to human intervention or automated methods usually applied to fluorescent images, presents challenges. In response, machine learning algorithms have been integrated into microscopy, automating tasks and constructing predictive models from vast datasets. These models adeptly learn representations for object detection, image segmentation, and target classification. An advantageous strategy involves utilizing unstained images, preserving cell integrity and enabling morphology-based classification—something hindered when fluorescent markers are used. The aim is to introduce a model proficient in classifying distinct cell lineages in digital contrast microscopy images. Additionally, the goal is to create a predictive model identifying lineage and determining optimal quantification of cell numbers. Employing a CNN machine learning algorithm, a classification model predicting cellular lineage achieved a remarkable accuracy of 93%, with ROC curve results nearing 1.0, showcasing robust performance. However, some lineages, namely SH-SY5Y (78%), HUH7_mayv (85%), and A549 (88%), exhibited slightly lower accuracies. These outcomes not only underscore the model's quality but also emphasize CNNs' potential in addressing the inherent complexities of microscopic images.
Abstract Microscopy is integral to medical research, facilitating the exploration of various biological questions, notably cell quantification. However, this process's time-consuming and error-prone nature, attributed to human intervention or automated methods usually applied to fluorescent images, presents challenges. In response, machine learning algorithms have been integrated into microscopy, automating tasks and constructing predictive models from vast datasets. These models adeptly learn representations for object detection, image segmentation, and target classification. An advantageous strategy involves utilizing unstained images, preserving cell integrity and enabling morphology-based classification—something hindered when fluorescent markers are used. The aim is to introduce a model proficient in classifying distinct cell lineages in digital contrast microscopy images. Additionally, the goal is to create a predictive model identifying lineage and determining optimal quantification of cell numbers. Employing a CNN machine learning algorithm, a classification model predicting cellular lineage achieved a remarkable accuracy of 93%, with ROC curve results nearing 1.0, showcasing robust performance. However, some lineages, namely SH-SY5Y (78%), HUH7_mayv (85%), and A549 (88%), exhibited slightly lower accuracies. These outcomes not only underscore the model's quality but also emphasize CNNs' potential in addressing the inherent complexities of microscopic images.
ArticleNumber 9031
Author Silveira, G. F.
Ferreira, E. K. G. D.
Author_xml – sequence: 1
  givenname: E. K. G. D.
  surname: Ferreira
  fullname: Ferreira, E. K. G. D.
  organization: Carlos Chagas Institute
– sequence: 2
  givenname: G. F.
  surname: Silveira
  fullname: Silveira, G. F.
  email: gfsilveira@gmail.com
  organization: Carlos Chagas Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38641688$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtvFSEYJabG1to_4MKQuHEzymtmwJ258dGkiRtdE2Bg5MqFEWbatL9e5k5bjQtJyMfjnPM9znNwElO0ALzE6C1GlL8rDLeCN4iwphUdaZu7J-CMINY2hBJy8tf5FFyUskd1tUQwLJ6BU8o7hjvOz8D1LqhSvPNGzT5FqOIATVri7OMIk4PGhlCgj1BnP_6YnbdhgAdvciomTbfQH9Roy_vKg2qawoPMykzxOoVlvaoAo13yMcw3Kf8sL8BTp0KxF_fxHHz_9PHb7ktz9fXz5e7DVWMY7eamdbr2pogT3A1M1WY4MU5Trq0jxNGeYaY4orStm2GCtVYd01wIZVRPDD0Hl5vukNReTrmWm29lUl4eH1IepcqzN8FKphmlznR00DVVb7Q1ajDGOY5bxymrWm82rSmnX4stszz4ss5HRZuWIiliFPWt6FGFvv4Huk9LrnM4ourkWS9WFNlQ6zRLtu6xQIzkarLcTJbVZHk0Wd5V0qt76UUf7PBIebC0AugGKPUrjjb_yf0f2d82h7Zp
Cites_doi 10.1364/OPTICA.4.001437
10.1002/cyto.a.23774
10.1109/tnnls.2017.2766168
10.1109/CVPR.2015.7298594
10.1038/s41563-019-0339-y
10.1371/journal.pone.0211347
10.1109/CoNTESA50436.2020.9302852
10.1038/s41467-020-15784-x
10.1016/j.cell.2018.08.028
10.1042/BST20180391
10.1364/OE.380679
10.1016/j.neunet.2014.09.003
10.1002/cyto.a.23794
10.1534/g3.116.033654
10.1038/s41598-023-29694-7
10.1038/nature14539
10.1038/s41592-019-0403-1
10.1155/2013/592790
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
7X8
DOA
DOI 10.1038/s41598-024-59625-z
DatabaseName SpringerOpen
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Science Journals
Biological Science Database
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 9031
ExternalDocumentID oai_doaj_org_article_4b433fc63dbd4a7cbecadccff815f834
10_1038_s41598_024_59625_z
38641688
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7XB
8FK
K9.
M48
PQEST
PQUKI
Q9U
7X8
ID FETCH-LOGICAL-c436t-5fb962a2f98fd4a32282cfb38bef22f37414a803350334121bba64b899aca72c3
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Tue Oct 22 15:15:24 EDT 2024
Sat Oct 26 05:31:17 EDT 2024
Sat Nov 16 07:55:06 EST 2024
Fri Nov 22 01:15:48 EST 2024
Sat Nov 02 12:27:51 EDT 2024
Fri Oct 11 20:46:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Microscopic image
Cell lineages
Machine learning
CNNs
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-5fb962a2f98fd4a32282cfb38bef22f37414a803350334121bba64b899aca72c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/4b433fc63dbd4a7cbecadccff815f834
PMID 38641688
PQID 3041684790
PQPubID 2041939
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_4b433fc63dbd4a7cbecadccff815f834
proquest_miscellaneous_3043075970
proquest_journals_3041684790
crossref_primary_10_1038_s41598_024_59625_z
pubmed_primary_38641688
springer_journals_10_1038_s41598_024_59625_z
PublicationCentury 2000
PublicationDate 2024-04-19
PublicationDateYYYYMMDD 2024-04-19
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References JinLLiuBZhaoFDeep learning enables structured illumination microscopy with low light levels and enhanced speedNat. Commun.20201119342020NatCo..11.1934J1:CAS:528:DC%2BB3cXnvVCis7Y%3D10.1038/s41467-020-15784-x323219167176720
Xing, F., Xie, Y., Su, H., Liu, F. & Yang, L. Deep learning in microscopy image analysis: A survey. IEEE Transactions on Neural Networks and Learning Systems 1–19. https://doi.org/10.1109/tnnls.2017.2766168 (2017).
SommerCGerlichDWMachine learning in cell biology: Teaching computers to recognize phenotypesJ. Cell Sci.201312624552955391:CAS:528:DC%2BC2cXhtFyksLg%3D24259662
OswalVBelleADiegelmannRNajarianKAn entropy-based automated cell nuclei segmentation and quantification: Application in analysis of wound healing processComput. Math. Methods Med.20132013110303211110.1155/2013/592790
PärnamaaTPartsLAccurate classification of protein subcellular localization from high-throughput microscopy images using deep learningG3201775138513921:CAS:528:DC%2BC1cXhslKntrrE10.1534/g3.116.033654283912435427497
CibasESDucatmanBSCytology: Diagnostic Principles and Clinical Correlates20093Elsevier Health Sciences
MoenEDeep learning for cellular image analysisNat. Methods201916123312461:CAS:528:DC%2BC1MXhtVCitLzM10.1038/s41592-019-0403-1311337588759575
SchmidhuberJDeep learning in neural networks: An overviewNeural Netw.2015618511710.1016/j.neunet.2014.09.00325462637
Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 1409.1556 (2014).
Perez, F. L. ROC curv. UFPR. http://leg.ufpr.br/~lucambio/CE225/20211S/ROC.html.
ATCC. Sh-sy5y Cell line. American Type Culture Collection. Product Sheet A549. https://www.atcc.org/products/ccl-185#detailed-product-information (2023).
LeCunYBengioYHintonGDeep learningNature20155214364442015Natur.521..436L1:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature1453926017442
KestenbachHJBota FilhoWJTransmission and Scanning Electron Microscopy1994ABM
UNIFAL. Lining Epithelial Tissue. https://www.unifal-mg.edu.br/histologiainterativa/tecido-epitelial-de-revestimento-2/.
Huh7-Cell line. Cell Culture Information for HuH-7. https://huh7.com/general-information/cell-culture-information/ (2023).
Cope, G. Kernels in Image Processing 2013. https://www.naturefocused.com/articles/photography-image-processing-kernel.html.
Szegedy, C. et al. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 1–9 (2015).
NassarMLabel-free identification of white blood cells using machine learningCytom. Part A20199583684210.1002/cyto.a.23794
Uka, A., Tare, A., Polisi, X. & Panci, I. FASTER R-CNN for cell counting in low contrast microscopic images. In 2020 International Conference on Computing, Networking, Telecommunications & Engineering Sciences Applications (CoNTESA) 64–69. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9302852 (2020).
von ChamierLLaineRFHenriquesRArtificial intelligence for microscopy: What you should knowBiochem. Soc. Trans.2019471029104010.1042/BST20180391
ATCC. A549 Cell line. American Type Culture Collection. Product Sheet A549. https://www.atcc.org/products/ccl-185#detailed-product-information (2023).
FerreiraEKGDLaraDSilveiraGFCell quantification in digital contrast microscopy images with convolutional neural networks algorithmSci. Rep.20231325962023NatSR..13.2596F1:CAS:528:DC%2BB3sXjtlKgsr8%3D10.1038/s41598-023-29694-7367883279929078
OzakiYYamadaHKikuchiHHirotsuAMurakamiTMatsumotoTKonnoHLabel-free classification of cells based on supervised machine learning of subcellular structuresPLoS ONE20191411:CAS:528:DC%2BC1MXmtFCrsr4%3D10.1371/journal.pone.0211347306950596350988
NittaNIntelligent image-activated cell sortingCell201817512662761:CAS:528:DC%2BC1cXhsF2ltr3I10.1016/j.cell.2018.08.02830166209
LamVKNguyenTPhanTChungBMNehmetallahGRaubCBMachine learning with optical phase signatures for phenotypic profiling of cell linesCytom. Part A20199577577681:CAS:528:DC%2BC1MXhsVOkt7%2FI10.1002/cyto.a.23774
WuYIntelligent frequency-shifted optofluidic time-stretch quantitative phase imagingOpt. Express2020285192020OExpr..28..519W1:CAS:528:DC%2BB3cXht12htLzP10.1364/OE.38067932118978
RivensonYGöröcsZGünaydinHZhangYWangHOzcanADeep learning microscopyOptica20174143714432017Optic...4.1437R10.1364/OPTICA.4.001437
DoanMCarpenterAELeveraging machine vision in cell-based diagnostics to do more with lessNat. Mater.2019184144182019NatMa..18..414D1:CAS:528:DC%2BC1MXoslWns7w%3D10.1038/s41563-019-0339-y31000804
Y Rivenson (59625_CR11) 2017; 4
L Jin (59625_CR4) 2020; 11
Y Ozaki (59625_CR16) 2019; 14
59625_CR13
59625_CR12
EKGD Ferreira (59625_CR14) 2023; 13
E Moen (59625_CR6) 2019; 16
Y LeCun (59625_CR9) 2015; 521
M Nassar (59625_CR17) 2019; 95
C Sommer (59625_CR5) 2013; 126
N Nitta (59625_CR3) 2018; 175
J Schmidhuber (59625_CR10) 2015; 61
Y Wu (59625_CR19) 2020; 28
59625_CR24
59625_CR23
HJ Kestenbach (59625_CR1) 1994
59625_CR21
59625_CR28
59625_CR27
59625_CR26
M Doan (59625_CR18) 2019; 18
59625_CR25
VK Lam (59625_CR20) 2019; 95
L von Chamier (59625_CR7) 2019; 47
59625_CR8
V Oswal (59625_CR22) 2013; 2013
T Pärnamaa (59625_CR2) 2017; 7
ES Cibas (59625_CR15) 2009
References_xml – volume: 126
  start-page: 5529
  issue: 24
  year: 2013
  ident: 59625_CR5
  publication-title: J. Cell Sci.
  contributor:
    fullname: C Sommer
– volume: 4
  start-page: 1437
  year: 2017
  ident: 59625_CR11
  publication-title: Optica
  doi: 10.1364/OPTICA.4.001437
  contributor:
    fullname: Y Rivenson
– volume-title: Transmission and Scanning Electron Microscopy
  year: 1994
  ident: 59625_CR1
  contributor:
    fullname: HJ Kestenbach
– ident: 59625_CR13
– volume: 95
  start-page: 757
  issue: 7
  year: 2019
  ident: 59625_CR20
  publication-title: Cytom. Part A
  doi: 10.1002/cyto.a.23774
  contributor:
    fullname: VK Lam
– ident: 59625_CR28
– ident: 59625_CR26
– ident: 59625_CR8
  doi: 10.1109/tnnls.2017.2766168
– ident: 59625_CR12
  doi: 10.1109/CVPR.2015.7298594
– volume: 18
  start-page: 414
  year: 2019
  ident: 59625_CR18
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0339-y
  contributor:
    fullname: M Doan
– ident: 59625_CR24
– volume-title: Cytology: Diagnostic Principles and Clinical Correlates
  year: 2009
  ident: 59625_CR15
  contributor:
    fullname: ES Cibas
– volume: 14
  issue: 1
  year: 2019
  ident: 59625_CR16
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0211347
  contributor:
    fullname: Y Ozaki
– ident: 59625_CR21
  doi: 10.1109/CoNTESA50436.2020.9302852
– volume: 11
  start-page: 1934
  year: 2020
  ident: 59625_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15784-x
  contributor:
    fullname: L Jin
– volume: 175
  start-page: 266
  issue: 1
  year: 2018
  ident: 59625_CR3
  publication-title: Cell
  doi: 10.1016/j.cell.2018.08.028
  contributor:
    fullname: N Nitta
– ident: 59625_CR27
– volume: 47
  start-page: 1029
  year: 2019
  ident: 59625_CR7
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST20180391
  contributor:
    fullname: L von Chamier
– volume: 28
  start-page: 519
  year: 2020
  ident: 59625_CR19
  publication-title: Opt. Express
  doi: 10.1364/OE.380679
  contributor:
    fullname: Y Wu
– volume: 61
  start-page: 85
  year: 2015
  ident: 59625_CR10
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
  contributor:
    fullname: J Schmidhuber
– volume: 95
  start-page: 836
  year: 2019
  ident: 59625_CR17
  publication-title: Cytom. Part A
  doi: 10.1002/cyto.a.23794
  contributor:
    fullname: M Nassar
– ident: 59625_CR23
– volume: 7
  start-page: 1385
  issue: 5
  year: 2017
  ident: 59625_CR2
  publication-title: G3
  doi: 10.1534/g3.116.033654
  contributor:
    fullname: T Pärnamaa
– volume: 13
  start-page: 2596
  year: 2023
  ident: 59625_CR14
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-29694-7
  contributor:
    fullname: EKGD Ferreira
– ident: 59625_CR25
– volume: 521
  start-page: 436
  year: 2015
  ident: 59625_CR9
  publication-title: Nature
  doi: 10.1038/nature14539
  contributor:
    fullname: Y LeCun
– volume: 16
  start-page: 1233
  year: 2019
  ident: 59625_CR6
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0403-1
  contributor:
    fullname: E Moen
– volume: 2013
  start-page: 1
  year: 2013
  ident: 59625_CR22
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2013/592790
  contributor:
    fullname: V Oswal
SSID ssj0000529419
Score 2.4700108
Snippet Microscopy is integral to medical research, facilitating the exploration of various biological questions, notably cell quantification. However, this process's...
Abstract Microscopy is integral to medical research, facilitating the exploration of various biological questions, notably cell quantification. However, this...
SourceID doaj
proquest
crossref
pubmed
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 9031
SubjectTerms 631/61
631/80
Algorithms
Automation
Cell lineages
Classification
CNNs
Cytology
Fluorescent indicators
Humanities and Social Sciences
Humans
Image processing
Learning algorithms
Machine Learning
Medical research
Microscopic image
Microscopy
multidisciplinary
Neural networks
Neural Networks, Computer
Neuroblastoma
Prediction models
Science
Science (multidisciplinary)
Title Classification and counting of cells in brightfield microscopy images: an application of convolutional neural networks
URI https://link.springer.com/article/10.1038/s41598-024-59625-z
https://www.ncbi.nlm.nih.gov/pubmed/38641688
https://www.proquest.com/docview/3041684790
https://search.proquest.com/docview/3043075970
https://doaj.org/article/4b433fc63dbd4a7cbecadccff815f834
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Lb9YwDI9g0iQuaA8eZQ8FiRtEa-M0TXfbYNNOXACJW5RHI-2wfmjdN2n767GTft-GAHHhVKlN0sR2YjtxfmbsXSPrQSUdBWkPoVDnCN8qEHXqmjYEGHSkDbeLL93n7-bTGcHkrFN9UUxYgQcuhDtSXgGkoCH6qFwX8J8uhpCSadpkoCCB1vqRM1VQvWWvmn6-JVODOZpQU9FtMqkEJZxpxf0vmigD9v_JyvzthDQrnvMt9ny2GPlJ6ek2ezKMO2yz5JC822W3Oa0lBfxkGnM3Rr5KAMEXidPO_MQvR-6zH54j1vgVheHRhZQ7fnmFK8p0jPX4o8PsXHMx3s6Cif8n4Mv8yGHj0wv27fzs68cLMSdTEEGBvhFt8jhsJ1NvEhIS57GRIXkwfkhSJkDLQjlTA9C5pmpk473TyqM75oLrZICXbGNcjMNrxp2H6Bot-zQEJX00dezIzdagNCTpKvZ-RVj7o2Bm2HzWDcYWNlhkg81ssPcVOyXar0sS3nV-gVJgZymw_5KCiu2vOGfnSThZqNHaRO3b1xV7u_6M04co78ZhscxlcJVDrwrLvCocX_cEjKYGTMU-rETgofG_D-jN_xjQHnsmSVYJVbLfZxs318vhgD2d4vIwS_pPO2oD2Q
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+and+counting+of+cells+in+brightfield+microscopy+images%3A+an+application+of+convolutional+neural+networks&rft.jtitle=Scientific+reports&rft.au=Ferreira%2C+E.+K.+G.+D.&rft.au=Silveira%2C+G.+F.&rft.date=2024-04-19&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-59625-z&rft.externalDocID=10_1038_s41598_024_59625_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon