Classification and counting of cells in brightfield microscopy images: an application of convolutional neural networks
Microscopy is integral to medical research, facilitating the exploration of various biological questions, notably cell quantification. However, this process's time-consuming and error-prone nature, attributed to human intervention or automated methods usually applied to fluorescent images, pres...
Saved in:
Published in: | Scientific reports Vol. 14; no. 1; p. 9031 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
19-04-2024
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Microscopy is integral to medical research, facilitating the exploration of various biological questions, notably cell quantification. However, this process's time-consuming and error-prone nature, attributed to human intervention or automated methods usually applied to fluorescent images, presents challenges. In response, machine learning algorithms have been integrated into microscopy, automating tasks and constructing predictive models from vast datasets. These models adeptly learn representations for object detection, image segmentation, and target classification. An advantageous strategy involves utilizing unstained images, preserving cell integrity and enabling morphology-based classification—something hindered when fluorescent markers are used. The aim is to introduce a model proficient in classifying distinct cell lineages in digital contrast microscopy images. Additionally, the goal is to create a predictive model identifying lineage and determining optimal quantification of cell numbers. Employing a CNN machine learning algorithm, a classification model predicting cellular lineage achieved a remarkable accuracy of 93%, with ROC curve results nearing 1.0, showcasing robust performance. However, some lineages, namely SH-SY5Y (78%), HUH7_mayv (85%), and A549 (88%), exhibited slightly lower accuracies. These outcomes not only underscore the model's quality but also emphasize CNNs' potential in addressing the inherent complexities of microscopic images. |
---|---|
AbstractList | Microscopy is integral to medical research, facilitating the exploration of various biological questions, notably cell quantification. However, this process's time-consuming and error-prone nature, attributed to human intervention or automated methods usually applied to fluorescent images, presents challenges. In response, machine learning algorithms have been integrated into microscopy, automating tasks and constructing predictive models from vast datasets. These models adeptly learn representations for object detection, image segmentation, and target classification. An advantageous strategy involves utilizing unstained images, preserving cell integrity and enabling morphology-based classification—something hindered when fluorescent markers are used. The aim is to introduce a model proficient in classifying distinct cell lineages in digital contrast microscopy images. Additionally, the goal is to create a predictive model identifying lineage and determining optimal quantification of cell numbers. Employing a CNN machine learning algorithm, a classification model predicting cellular lineage achieved a remarkable accuracy of 93%, with ROC curve results nearing 1.0, showcasing robust performance. However, some lineages, namely SH-SY5Y (78%), HUH7_mayv (85%), and A549 (88%), exhibited slightly lower accuracies. These outcomes not only underscore the model's quality but also emphasize CNNs' potential in addressing the inherent complexities of microscopic images. Abstract Microscopy is integral to medical research, facilitating the exploration of various biological questions, notably cell quantification. However, this process's time-consuming and error-prone nature, attributed to human intervention or automated methods usually applied to fluorescent images, presents challenges. In response, machine learning algorithms have been integrated into microscopy, automating tasks and constructing predictive models from vast datasets. These models adeptly learn representations for object detection, image segmentation, and target classification. An advantageous strategy involves utilizing unstained images, preserving cell integrity and enabling morphology-based classification—something hindered when fluorescent markers are used. The aim is to introduce a model proficient in classifying distinct cell lineages in digital contrast microscopy images. Additionally, the goal is to create a predictive model identifying lineage and determining optimal quantification of cell numbers. Employing a CNN machine learning algorithm, a classification model predicting cellular lineage achieved a remarkable accuracy of 93%, with ROC curve results nearing 1.0, showcasing robust performance. However, some lineages, namely SH-SY5Y (78%), HUH7_mayv (85%), and A549 (88%), exhibited slightly lower accuracies. These outcomes not only underscore the model's quality but also emphasize CNNs' potential in addressing the inherent complexities of microscopic images. |
ArticleNumber | 9031 |
Author | Silveira, G. F. Ferreira, E. K. G. D. |
Author_xml | – sequence: 1 givenname: E. K. G. D. surname: Ferreira fullname: Ferreira, E. K. G. D. organization: Carlos Chagas Institute – sequence: 2 givenname: G. F. surname: Silveira fullname: Silveira, G. F. email: gfsilveira@gmail.com organization: Carlos Chagas Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38641688$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUtvFSEYJabG1to_4MKQuHEzymtmwJ258dGkiRtdE2Bg5MqFEWbatL9e5k5bjQtJyMfjnPM9znNwElO0ALzE6C1GlL8rDLeCN4iwphUdaZu7J-CMINY2hBJy8tf5FFyUskd1tUQwLJ6BU8o7hjvOz8D1LqhSvPNGzT5FqOIATVri7OMIk4PGhlCgj1BnP_6YnbdhgAdvciomTbfQH9Roy_vKg2qawoPMykzxOoVlvaoAo13yMcw3Kf8sL8BTp0KxF_fxHHz_9PHb7ktz9fXz5e7DVWMY7eamdbr2pogT3A1M1WY4MU5Trq0jxNGeYaY4orStm2GCtVYd01wIZVRPDD0Hl5vukNReTrmWm29lUl4eH1IepcqzN8FKphmlznR00DVVb7Q1ajDGOY5bxymrWm82rSmnX4stszz4ss5HRZuWIiliFPWt6FGFvv4Huk9LrnM4ourkWS9WFNlQ6zRLtu6xQIzkarLcTJbVZHk0Wd5V0qt76UUf7PBIebC0AugGKPUrjjb_yf0f2d82h7Zp |
Cites_doi | 10.1364/OPTICA.4.001437 10.1002/cyto.a.23774 10.1109/tnnls.2017.2766168 10.1109/CVPR.2015.7298594 10.1038/s41563-019-0339-y 10.1371/journal.pone.0211347 10.1109/CoNTESA50436.2020.9302852 10.1038/s41467-020-15784-x 10.1016/j.cell.2018.08.028 10.1042/BST20180391 10.1364/OE.380679 10.1016/j.neunet.2014.09.003 10.1002/cyto.a.23794 10.1534/g3.116.033654 10.1038/s41598-023-29694-7 10.1038/nature14539 10.1038/s41592-019-0403-1 10.1155/2013/592790 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI Q9U 7X8 DOA |
DOI | 10.1038/s41598-024-59625-z |
DatabaseName | SpringerOpen Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) ProQuest_Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Science Journals Biological Science Database Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 9031 |
ExternalDocumentID | oai_doaj_org_article_4b433fc63dbd4a7cbecadccff815f834 10_1038_s41598_024_59625_z 38641688 |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP CGR CUY CVF ECM EIF NPM AAYXX CITATION 7XB 8FK K9. M48 PQEST PQUKI Q9U 7X8 |
ID | FETCH-LOGICAL-c436t-5fb962a2f98fd4a32282cfb38bef22f37414a803350334121bba64b899aca72c3 |
IEDL.DBID | DOA |
ISSN | 2045-2322 |
IngestDate | Tue Oct 22 15:15:24 EDT 2024 Sat Oct 26 05:31:17 EDT 2024 Sat Nov 16 07:55:06 EST 2024 Fri Nov 22 01:15:48 EST 2024 Sat Nov 02 12:27:51 EDT 2024 Fri Oct 11 20:46:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Microscopic image Cell lineages Machine learning CNNs |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-5fb962a2f98fd4a32282cfb38bef22f37414a803350334121bba64b899aca72c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/4b433fc63dbd4a7cbecadccff815f834 |
PMID | 38641688 |
PQID | 3041684790 |
PQPubID | 2041939 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4b433fc63dbd4a7cbecadccff815f834 proquest_miscellaneous_3043075970 proquest_journals_3041684790 crossref_primary_10_1038_s41598_024_59625_z pubmed_primary_38641688 springer_journals_10_1038_s41598_024_59625_z |
PublicationCentury | 2000 |
PublicationDate | 2024-04-19 |
PublicationDateYYYYMMDD | 2024-04-19 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | JinLLiuBZhaoFDeep learning enables structured illumination microscopy with low light levels and enhanced speedNat. Commun.20201119342020NatCo..11.1934J1:CAS:528:DC%2BB3cXnvVCis7Y%3D10.1038/s41467-020-15784-x323219167176720 Xing, F., Xie, Y., Su, H., Liu, F. & Yang, L. Deep learning in microscopy image analysis: A survey. IEEE Transactions on Neural Networks and Learning Systems 1–19. https://doi.org/10.1109/tnnls.2017.2766168 (2017). SommerCGerlichDWMachine learning in cell biology: Teaching computers to recognize phenotypesJ. Cell Sci.201312624552955391:CAS:528:DC%2BC2cXhtFyksLg%3D24259662 OswalVBelleADiegelmannRNajarianKAn entropy-based automated cell nuclei segmentation and quantification: Application in analysis of wound healing processComput. Math. Methods Med.20132013110303211110.1155/2013/592790 PärnamaaTPartsLAccurate classification of protein subcellular localization from high-throughput microscopy images using deep learningG3201775138513921:CAS:528:DC%2BC1cXhslKntrrE10.1534/g3.116.033654283912435427497 CibasESDucatmanBSCytology: Diagnostic Principles and Clinical Correlates20093Elsevier Health Sciences MoenEDeep learning for cellular image analysisNat. Methods201916123312461:CAS:528:DC%2BC1MXhtVCitLzM10.1038/s41592-019-0403-1311337588759575 SchmidhuberJDeep learning in neural networks: An overviewNeural Netw.2015618511710.1016/j.neunet.2014.09.00325462637 Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 1409.1556 (2014). Perez, F. L. ROC curv. UFPR. http://leg.ufpr.br/~lucambio/CE225/20211S/ROC.html. ATCC. Sh-sy5y Cell line. American Type Culture Collection. Product Sheet A549. https://www.atcc.org/products/ccl-185#detailed-product-information (2023). LeCunYBengioYHintonGDeep learningNature20155214364442015Natur.521..436L1:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature1453926017442 KestenbachHJBota FilhoWJTransmission and Scanning Electron Microscopy1994ABM UNIFAL. Lining Epithelial Tissue. https://www.unifal-mg.edu.br/histologiainterativa/tecido-epitelial-de-revestimento-2/. Huh7-Cell line. Cell Culture Information for HuH-7. https://huh7.com/general-information/cell-culture-information/ (2023). Cope, G. Kernels in Image Processing 2013. https://www.naturefocused.com/articles/photography-image-processing-kernel.html. Szegedy, C. et al. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 1–9 (2015). NassarMLabel-free identification of white blood cells using machine learningCytom. Part A20199583684210.1002/cyto.a.23794 Uka, A., Tare, A., Polisi, X. & Panci, I. FASTER R-CNN for cell counting in low contrast microscopic images. In 2020 International Conference on Computing, Networking, Telecommunications & Engineering Sciences Applications (CoNTESA) 64–69. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9302852 (2020). von ChamierLLaineRFHenriquesRArtificial intelligence for microscopy: What you should knowBiochem. Soc. Trans.2019471029104010.1042/BST20180391 ATCC. A549 Cell line. American Type Culture Collection. Product Sheet A549. https://www.atcc.org/products/ccl-185#detailed-product-information (2023). FerreiraEKGDLaraDSilveiraGFCell quantification in digital contrast microscopy images with convolutional neural networks algorithmSci. Rep.20231325962023NatSR..13.2596F1:CAS:528:DC%2BB3sXjtlKgsr8%3D10.1038/s41598-023-29694-7367883279929078 OzakiYYamadaHKikuchiHHirotsuAMurakamiTMatsumotoTKonnoHLabel-free classification of cells based on supervised machine learning of subcellular structuresPLoS ONE20191411:CAS:528:DC%2BC1MXmtFCrsr4%3D10.1371/journal.pone.0211347306950596350988 NittaNIntelligent image-activated cell sortingCell201817512662761:CAS:528:DC%2BC1cXhsF2ltr3I10.1016/j.cell.2018.08.02830166209 LamVKNguyenTPhanTChungBMNehmetallahGRaubCBMachine learning with optical phase signatures for phenotypic profiling of cell linesCytom. Part A20199577577681:CAS:528:DC%2BC1MXhsVOkt7%2FI10.1002/cyto.a.23774 WuYIntelligent frequency-shifted optofluidic time-stretch quantitative phase imagingOpt. Express2020285192020OExpr..28..519W1:CAS:528:DC%2BB3cXht12htLzP10.1364/OE.38067932118978 RivensonYGöröcsZGünaydinHZhangYWangHOzcanADeep learning microscopyOptica20174143714432017Optic...4.1437R10.1364/OPTICA.4.001437 DoanMCarpenterAELeveraging machine vision in cell-based diagnostics to do more with lessNat. Mater.2019184144182019NatMa..18..414D1:CAS:528:DC%2BC1MXoslWns7w%3D10.1038/s41563-019-0339-y31000804 Y Rivenson (59625_CR11) 2017; 4 L Jin (59625_CR4) 2020; 11 Y Ozaki (59625_CR16) 2019; 14 59625_CR13 59625_CR12 EKGD Ferreira (59625_CR14) 2023; 13 E Moen (59625_CR6) 2019; 16 Y LeCun (59625_CR9) 2015; 521 M Nassar (59625_CR17) 2019; 95 C Sommer (59625_CR5) 2013; 126 N Nitta (59625_CR3) 2018; 175 J Schmidhuber (59625_CR10) 2015; 61 Y Wu (59625_CR19) 2020; 28 59625_CR24 59625_CR23 HJ Kestenbach (59625_CR1) 1994 59625_CR21 59625_CR28 59625_CR27 59625_CR26 M Doan (59625_CR18) 2019; 18 59625_CR25 VK Lam (59625_CR20) 2019; 95 L von Chamier (59625_CR7) 2019; 47 59625_CR8 V Oswal (59625_CR22) 2013; 2013 T Pärnamaa (59625_CR2) 2017; 7 ES Cibas (59625_CR15) 2009 |
References_xml | – volume: 126 start-page: 5529 issue: 24 year: 2013 ident: 59625_CR5 publication-title: J. Cell Sci. contributor: fullname: C Sommer – volume: 4 start-page: 1437 year: 2017 ident: 59625_CR11 publication-title: Optica doi: 10.1364/OPTICA.4.001437 contributor: fullname: Y Rivenson – volume-title: Transmission and Scanning Electron Microscopy year: 1994 ident: 59625_CR1 contributor: fullname: HJ Kestenbach – ident: 59625_CR13 – volume: 95 start-page: 757 issue: 7 year: 2019 ident: 59625_CR20 publication-title: Cytom. Part A doi: 10.1002/cyto.a.23774 contributor: fullname: VK Lam – ident: 59625_CR28 – ident: 59625_CR26 – ident: 59625_CR8 doi: 10.1109/tnnls.2017.2766168 – ident: 59625_CR12 doi: 10.1109/CVPR.2015.7298594 – volume: 18 start-page: 414 year: 2019 ident: 59625_CR18 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0339-y contributor: fullname: M Doan – ident: 59625_CR24 – volume-title: Cytology: Diagnostic Principles and Clinical Correlates year: 2009 ident: 59625_CR15 contributor: fullname: ES Cibas – volume: 14 issue: 1 year: 2019 ident: 59625_CR16 publication-title: PLoS ONE doi: 10.1371/journal.pone.0211347 contributor: fullname: Y Ozaki – ident: 59625_CR21 doi: 10.1109/CoNTESA50436.2020.9302852 – volume: 11 start-page: 1934 year: 2020 ident: 59625_CR4 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15784-x contributor: fullname: L Jin – volume: 175 start-page: 266 issue: 1 year: 2018 ident: 59625_CR3 publication-title: Cell doi: 10.1016/j.cell.2018.08.028 contributor: fullname: N Nitta – ident: 59625_CR27 – volume: 47 start-page: 1029 year: 2019 ident: 59625_CR7 publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20180391 contributor: fullname: L von Chamier – volume: 28 start-page: 519 year: 2020 ident: 59625_CR19 publication-title: Opt. Express doi: 10.1364/OE.380679 contributor: fullname: Y Wu – volume: 61 start-page: 85 year: 2015 ident: 59625_CR10 publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 contributor: fullname: J Schmidhuber – volume: 95 start-page: 836 year: 2019 ident: 59625_CR17 publication-title: Cytom. Part A doi: 10.1002/cyto.a.23794 contributor: fullname: M Nassar – ident: 59625_CR23 – volume: 7 start-page: 1385 issue: 5 year: 2017 ident: 59625_CR2 publication-title: G3 doi: 10.1534/g3.116.033654 contributor: fullname: T Pärnamaa – volume: 13 start-page: 2596 year: 2023 ident: 59625_CR14 publication-title: Sci. Rep. doi: 10.1038/s41598-023-29694-7 contributor: fullname: EKGD Ferreira – ident: 59625_CR25 – volume: 521 start-page: 436 year: 2015 ident: 59625_CR9 publication-title: Nature doi: 10.1038/nature14539 contributor: fullname: Y LeCun – volume: 16 start-page: 1233 year: 2019 ident: 59625_CR6 publication-title: Nat. Methods doi: 10.1038/s41592-019-0403-1 contributor: fullname: E Moen – volume: 2013 start-page: 1 year: 2013 ident: 59625_CR22 publication-title: Comput. Math. Methods Med. doi: 10.1155/2013/592790 contributor: fullname: V Oswal |
SSID | ssj0000529419 |
Score | 2.4700108 |
Snippet | Microscopy is integral to medical research, facilitating the exploration of various biological questions, notably cell quantification. However, this process's... Abstract Microscopy is integral to medical research, facilitating the exploration of various biological questions, notably cell quantification. However, this... |
SourceID | doaj proquest crossref pubmed springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 9031 |
SubjectTerms | 631/61 631/80 Algorithms Automation Cell lineages Classification CNNs Cytology Fluorescent indicators Humanities and Social Sciences Humans Image processing Learning algorithms Machine Learning Medical research Microscopic image Microscopy multidisciplinary Neural networks Neural Networks, Computer Neuroblastoma Prediction models Science Science (multidisciplinary) |
Title | Classification and counting of cells in brightfield microscopy images: an application of convolutional neural networks |
URI | https://link.springer.com/article/10.1038/s41598-024-59625-z https://www.ncbi.nlm.nih.gov/pubmed/38641688 https://www.proquest.com/docview/3041684790 https://search.proquest.com/docview/3043075970 https://doaj.org/article/4b433fc63dbd4a7cbecadccff815f834 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Lb9YwDI9g0iQuaA8eZQ8FiRtEa-M0TXfbYNNOXACJW5RHI-2wfmjdN2n767GTft-GAHHhVKlN0sR2YjtxfmbsXSPrQSUdBWkPoVDnCN8qEHXqmjYEGHSkDbeLL93n7-bTGcHkrFN9UUxYgQcuhDtSXgGkoCH6qFwX8J8uhpCSadpkoCCB1vqRM1VQvWWvmn6-JVODOZpQU9FtMqkEJZxpxf0vmigD9v_JyvzthDQrnvMt9ny2GPlJ6ek2ezKMO2yz5JC822W3Oa0lBfxkGnM3Rr5KAMEXidPO_MQvR-6zH54j1vgVheHRhZQ7fnmFK8p0jPX4o8PsXHMx3s6Cif8n4Mv8yGHj0wv27fzs68cLMSdTEEGBvhFt8jhsJ1NvEhIS57GRIXkwfkhSJkDLQjlTA9C5pmpk473TyqM75oLrZICXbGNcjMNrxp2H6Bot-zQEJX00dezIzdagNCTpKvZ-RVj7o2Bm2HzWDcYWNlhkg81ssPcVOyXar0sS3nV-gVJgZymw_5KCiu2vOGfnSThZqNHaRO3b1xV7u_6M04co78ZhscxlcJVDrwrLvCocX_cEjKYGTMU-rETgofG_D-jN_xjQHnsmSVYJVbLfZxs318vhgD2d4vIwS_pPO2oD2Q |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+and+counting+of+cells+in+brightfield+microscopy+images%3A+an+application+of+convolutional+neural+networks&rft.jtitle=Scientific+reports&rft.au=Ferreira%2C+E.+K.+G.+D.&rft.au=Silveira%2C+G.+F.&rft.date=2024-04-19&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-59625-z&rft.externalDocID=10_1038_s41598_024_59625_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |