Effects of reduced glutathione on the 12-lipoxygenase pathways in rat platelets
Arachidonic acid is converted into several more polar products in addition to 12-l-hydroperoxyeicosa-5,8,10,14-tetraenoic acid (12-HPETE) and 12-l-hydroxyeicosa-5,8,10,14-tetraenoic acid (12-HETE) by the cytosol fractions of rat platelets. The more polar products are formed via the lipoxygenase path...
Saved in:
Published in: | Biochemical journal Vol. 202; no. 3; pp. 771 - 776 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
15-03-1982
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Arachidonic acid is converted into several more polar products in addition to 12-l-hydroperoxyeicosa-5,8,10,14-tetraenoic acid (12-HPETE) and 12-l-hydroxyeicosa-5,8,10,14-tetraenoic acid (12-HETE) by the cytosol fractions of rat platelets. The more polar products are formed via the lipoxygenase pathways in the same way as are 12-HPETE and 12-HETE, since their formation is not inhibited by indomethacin but by eicosa-5,8,11,14-tetraynoic acid (ETYA). The presence of 0.5-1.5mm-reduced glutathione (GSH) in the reaction mixture prevents the formation of the more polar products and produces 12-HETE as the only metabolite from arachidonic acid by the 12-lipoxygenase pathway. l-Cysteine has the same effect as GSH. However, oxidized glutathione (GSSG) and l-cystine are not able to prevent the formation of the more polar products. The results indicate that 12-HPETE peroxidase in the 12-lipoxygenase pathway is a GSH-dependent peroxidase and the more polar products might be formed from the non-enzymic breakdown of the primary 12-lipoxygenase product of 12-HPETE, owing to insufficient capability of the subsequent peroxidase system to completely reduce 12-HPETE to 12-HETE. Thus the presence of GSH in the reaction mixture offers a convenient and precise cell-free assay system for 12-lipoxygenase in rat platelets. Routine assays of 12-lipoxygenase are carried out in the presence of 1mm-GSH in the reaction mixture. The synthesis of 12-HETE by 12-lipoxygenase is linear during the first 4 min of incubation at 37 degrees C, and has a pH optimum of 7.7. The 12-lipoxygenase reaches half-maximal activity at an arachidonate concentration of 20mum. Fractionation of cell homogenates indicates that the cytosol fraction possesses almost all the 12-lipoxygenase activity, whereas the microsomal fraction exhibits little enzyme activity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address and address for correspondence and reprint requests: Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0053, U.S.A. |
ISSN: | 0264-6021 1470-8728 |
DOI: | 10.1042/bj2020771 |