Carvacrol promotes neuroprotection in the mouse hemiparkinsonian model

Highlights • TRPM7 increases after injections of 6-hydroxydopamine into the striatum. • Carvacrol reduces the loss of dopaminergic neurons induced by 6-hydroxydopamine. • Caspase-3 upregulation after 6-hydroxydopamine is attenuated by carvacrol. • Asymmetrical use of the forelimbs after 6-hydroxydop...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience Vol. 356; pp. 176 - 181
Main Authors: Dati, L.M, Ulrich, H, Real, C.C, Feng, Z.P, Sun, H.S, Britto, L.R
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 25-07-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Highlights • TRPM7 increases after injections of 6-hydroxydopamine into the striatum. • Carvacrol reduces the loss of dopaminergic neurons induced by 6-hydroxydopamine. • Caspase-3 upregulation after 6-hydroxydopamine is attenuated by carvacrol. • Asymmetrical use of the forelimbs after 6-hydroxydopamine was reduced by carvacrol.
AbstractList Carvacrol is a monoterpene that has been linked to neuroprotection in several animal models of neurodegeneration, including ischemia, epilepsy and traumatic neuronal injury. In this study, we investigated the effects of carvacrol (i.p.) upon the neurodegeneration induced by 6-hydroxy-dopamine unilateral intrastriatal injections in mice. We have also used the cylinder test to assess the behavioral effects of carvacrol in that model of Parkinson's disease, and immunoblots to evaluate the levels of caspase-3 and TRPM7, one of major targets of carvacrol. Behavioral testing revealed that carvacrol largely reduced the asymmetrical use of the forelimbs induced by unilateral 6-hydroxy-dopamine. Carvacrol dramatically reduced the loss of tyrosine hydroxylase immunostaining both in the substantia nigra and in the striatum that are typical of the model. Immunoblots for tyrosine hydroxylase confirmed this effect. Caspase-3 levels were very high after toxin injections, but carvacrol appeared to reduce them to control levels. Finally, TRPM7, observed by immunoblots, increased after 6-hydroxy-dopamine, suggesting the involvement of this cation channel in the ensuing neurodegenerative process. The present data suggest that carvacrol promotes a marked neuroprotection in the 6-hydroxy-dopamine model of Parkinson's disease, possibly by its non-specific blocking effect upon TRPM7 channels.
Highlights • TRPM7 increases after injections of 6-hydroxydopamine into the striatum. • Carvacrol reduces the loss of dopaminergic neurons induced by 6-hydroxydopamine. • Caspase-3 upregulation after 6-hydroxydopamine is attenuated by carvacrol. • Asymmetrical use of the forelimbs after 6-hydroxydopamine was reduced by carvacrol.
•TRPM7 increases after injections of 6-hydroxydopamine into the striatum.•Carvacrol reduces the loss of dopaminergic neurons induced by 6-hydroxydopamine.•Caspase-3 upregulation after 6-hydroxydopamine is attenuated by carvacrol.•Asymmetrical use of the forelimbs after 6-hydroxydopamine was reduced by carvacrol. Carvacrol is a monoterpene that has been linked to neuroprotection in several animal models of neurodegeneration, including ischemia, epilepsy and traumatic neuronal injury. In this study, we investigated the effects of carvacrol (i.p.) upon the neurodegeneration induced by 6-hydroxy-dopamine unilateral intrastriatal injections in mice. We have also used the cylinder test to assess the behavioral effects of carvacrol in that model of Parkinson’s disease, and immunoblots to evaluate the levels of caspase-3 and TRPM7, one of major targets of carvacrol. Behavioral testing revealed that carvacrol largely reduced the asymmetrical use of the forelimbs induced by unilateral 6-hydroxy-dopamine. Carvacrol dramatically reduced the loss of tyrosine hydroxylase immunostaining both in the substantia nigra and in the striatum that are typical of the model. Immunoblots for tyrosine hydroxylase confirmed this effect. Caspase-3 levels were very high after toxin injections, but carvacrol appeared to reduce them to control levels. Finally, TRPM7, observed by immunoblots, increased after 6-hydroxy-dopamine, suggesting the involvement of this cation channel in the ensuing neurodegenerative process. The present data suggest that carvacrol promotes a marked neuroprotection in the 6-hydroxy-dopamine model of Parkinson’s disease, possibly by its non-specific blocking effect upon TRPM7 channels.
Author Feng, Z.P
Britto, L.R
Real, C.C
Sun, H.S
Dati, L.M
Ulrich, H
Author_xml – sequence: 1
  fullname: Dati, L.M
– sequence: 2
  fullname: Ulrich, H
– sequence: 3
  fullname: Real, C.C
– sequence: 4
  fullname: Feng, Z.P
– sequence: 5
  fullname: Sun, H.S
– sequence: 6
  fullname: Britto, L.R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28526576$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9rGzEQxUVJaJw_X6EsPfWym5G0Wsk9BIrbNAFDDmnPQtbOEjm7kiPtGvztI9duKTlFFyHx5s2b35yTEx88EvKZQkWBNtfryuMUQ7IOvcWKAZUViAoo_0BmVEleSlHXJ2QGHJqyFoydkfOU1pCPqPlHcsaUYI2QzYzcLkzcGhtDX2xiGMKIqfjjnl8j2tEFXzhfjE9YDGFKWDzh4DYmPjufgnfG5-8W-0ty2pk-4dXxviC_b3_8WtyVy4ef94tvy9LWXIxl11Leqi7HUFwoy-aNYIZLJiR2UCODOQjOamtWYOwKEISslVIrxaxsWcv4Bfly8M3xXiZMox5cstj3xmOOp-kcQHEmgWfp14M0D5dSxE5vohtM3GkKes9Rr_X_HPWeowahM8dc_OnYZ1oN2P4r_QsuC74fBJin3TqM-mjTupix6Ta49_W5eWNje-edNf0z7jCtwxR95qmpTkyDftxvdL9QKnkesWn4K_0Cocg
CitedBy_id crossref_primary_10_1080_07391102_2019_1590243
crossref_primary_10_1371_journal_pone_0246003
crossref_primary_10_1007_s12640_019_00144_5
crossref_primary_10_1080_07391102_2022_2086923
crossref_primary_10_3390_ijms232213840
crossref_primary_10_1016_j_biopha_2022_113611
crossref_primary_10_3390_ijms21217897
crossref_primary_10_1016_j_neuint_2019_02_021
crossref_primary_10_1007_s00210_019_01754_8
crossref_primary_10_3390_ijms24010223
crossref_primary_10_3390_ijms24076073
crossref_primary_10_1111_bcpt_13282
crossref_primary_10_1134_S181971242402003X
crossref_primary_10_1007_s10973_022_11327_2
crossref_primary_10_1590_0004_282x20190079
crossref_primary_10_2174_1871527320666210506185042
crossref_primary_10_2174_1570159X16666180905094123
crossref_primary_10_1016_j_ceca_2024_102886
crossref_primary_10_1007_s00210_019_01793_1
crossref_primary_10_2174_1871520621666210901111932
crossref_primary_10_5897_JPP2017_0467
crossref_primary_10_1007_s12640_023_00660_5
crossref_primary_10_1016_j_exer_2024_109938
crossref_primary_10_1016_j_aca_2018_08_061
crossref_primary_10_1007_s00213_023_06487_4
crossref_primary_10_1016_j_phymed_2020_153422
crossref_primary_10_1111_cns_14459
crossref_primary_10_1007_s12264_024_01242_x
crossref_primary_10_1016_j_lfs_2019_116795
crossref_primary_10_1109_JSEN_2022_3159026
crossref_primary_10_1111_ejn_15565
crossref_primary_10_3390_biom9120835
crossref_primary_10_1007_s11011_018_0314_3
crossref_primary_10_1016_j_expneurol_2024_114780
crossref_primary_10_1016_j_brainres_2024_148954
crossref_primary_10_1002_cbin_12048
crossref_primary_10_1007_s12640_019_00088_w
crossref_primary_10_2174_1570159X21666221223120251
crossref_primary_10_1007_s12035_022_02723_8
crossref_primary_10_3390_cells7120231
crossref_primary_10_1016_j_biopha_2020_109825
crossref_primary_10_3390_ijms23105470
Cites_doi 10.1016/j.biocel.2010.04.006
10.1038/nn.2395
10.1186/gb-2011-12-3-218
10.1016/j.bbrc.2015.05.007
10.1016/j.ydbio.2013.11.015
10.1007/978-94-007-0265-3_29
10.1155/2015/379817
10.1194/jlr.M900255-JLR200
10.1016/j.tips.2004.10.004
10.1080/19336950.2015.1075675
10.1016/j.ceca.2016.02.012
10.1371/journal.pone.0033584
10.1007/s00441-004-0938-y
10.1016/j.bbr.2011.09.025
10.1073/pnas.040556597
10.1007/978-3-540-34891-7_19
10.1186/s13041-015-0102-5
10.1085/jgp.200509410
10.1007/978-3-642-54215-2_21
10.1016/j.ceca.2008.11.009
10.2174/1568026611313030009
10.1016/j.neuint.2015.07.020
10.18632/oncotarget.3872
10.1111/epi.13645
10.1016/j.bbr.2011.12.007
10.1016/j.pharmthera.2015.05.006
10.1016/S0092-8674(03)01017-1
10.1016/j.neulet.2012.09.044
10.1007/s12035-014-9032-y
10.1371/journal.pone.0075532
ContentType Journal Article
Copyright IBRO
2017 IBRO
Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: IBRO
– notice: 2017 IBRO
– notice: Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1016/j.neuroscience.2017.05.013
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1873-7544
EndPage 181
ExternalDocumentID 10_1016_j_neuroscience_2017_05_013
28526576
S0306452217303366
1_s2_0_S0306452217303366
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.1-
.55
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABTEW
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEVXI
AFCTW
AFJKZ
AFKWA
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJUYK
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMQ
HVGLF
HZ~
IHE
J1W
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSN
SSZ
T5K
UNMZH
WUQ
X7M
YYP
Z5R
ZGI
ZXP
~G-
AADPK
AAIAV
ABYKQ
AJBFU
EFLBG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c435t-fd13d8f0058358c29652a37257ef04e20905324cab0acb0e0574888b82c7d2d23
ISSN 0306-4522
IngestDate Fri Oct 25 03:14:50 EDT 2024
Thu Sep 26 17:04:20 EDT 2024
Wed Oct 16 00:59:49 EDT 2024
Fri Feb 23 02:29:37 EST 2024
Tue Oct 15 22:56:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords analysis of variance
ANOVA
neuroprotection
PFA
SEM
standard error of the mean
carvacrol
paraformaldehyde
dopamine
TRP channels
Language English
License Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c435t-fd13d8f0058358c29652a37257ef04e20905324cab0acb0e0574888b82c7d2d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28526576
PQID 1900832703
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1900832703
crossref_primary_10_1016_j_neuroscience_2017_05_013
pubmed_primary_28526576
elsevier_sciencedirect_doi_10_1016_j_neuroscience_2017_05_013
elsevier_clinicalkeyesjournals_1_s2_0_S0306452217303366
PublicationCentury 2000
PublicationDate 2017-07-25
PublicationDateYYYYMMDD 2017-07-25
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neuroscience
PublicationTitleAlternate Neuroscience
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Decker, McNeill, Lambert, Overton, Chen, Lorca, Johnson, Brockerhoff, Mohapatra, MacArthur, Panula, Masino, Runnels, Cornell (b0030) 2014; 386
Sun, Sukumaran, Schaar, Singh (b0140) 2015; 9
Paxinos, Franklin (b0115) 2001
Yu, Zhang, Chen, Pei, Hua, Qian, He, Liu, Xu (b0160) 2012; 7
Khan, Ahmad, Alshammari, Baig, Lohani, Somvanshi, Hague (b0075) 2015; 2015
Oz, Lozon, Sultan, Yang, Galadari (b0100) 2015; 152
Glajch, Fleming, Surmeier, Osten (b0050) 2012; 230
Hotta, Nakata, Katsukawa, Hori, Takahashi, Inoue (b0065) 2010; 51
Sukumaran, Schaar, Sun, Singh (b0130) 2016; 60
Aarts, Iihara, Wei, Xiong, Arundine, Cerwinski, Macdonald, Tymianski (b0005) 2003; 115
Smith, Heuer, Dunnett, Lane (b0125) 2012; 226
Verma, Quillinan, Yang, Nakayama, Cheng, Kelley, Herson (b0155) 2012; 530
Dadon, Minke (b0025) 2010; 42
Schober (b0120) 2004; 318
Hartmann, Hunot, Michel, Muriel, Vyas, Faucheux, Mouatt-Prigent, Turmel, Srinivasan, Ruberg, Evan, Agid, Hirsch (b0055) 2000; 97
Chen, Xu, Xiao, Liu, Fang, Liu, Turlova, Barszczyk, Zhong, Sun, Britto, Feng, Sun (b0010) 2015; 8
Chen, Barszczyk, Turlova, Deurloo, Liu, Yang, Rutka, Feng, Sun (b0015) 2015; 6
Turlova, Bae, Deurloo, Chen, Barszczyk, Horgen, Fleig, Feng, Sun (b0150) 2016; 53
Hernandes, Santos, Café-Mendes, Lima, Scavone, Munhoz, Britto (b0060) 2013; 8
Penner, Fleig (b0110) 2007; 179
Sun, Jackson, Martin, Jansen, Teves, Cui, Kiyonaka, Mori, Jones, Forder, Golde, Orser, Macdonald, Tymianski (b0135) 2009; 12
Khalil, Kovac, Morris, Walker (b0070) 2017; 58
Cook, Heuvel, Vink (b0020) 2009; 22
Miller, Zhang (b0085) 2011; 704
Takada, Numata, Mori (b0145) 2013; 13
Fleig, Penner (b0045) 2004; 25
Oh, Chun, Park, Kim, Park, Chung (b0095) 2015; 463
Demeuse, Penner, Fleig (b0035) 2006; 127
Parnas, Peters, Dadon, Lev, Vertkin, Slutsky, Minke (b0105) 2009; 45
Li, Zhang, Zhou, Zhang, Liang, Liu, Wei, Li, Meng, Xia, Dan, Song (b0080) 2015; 90
Fleig, Chubanov (b0040) 2014; 222
Nilius, Owsianik (b0090) 2011; 12
Sukumaran (10.1016/j.neuroscience.2017.05.013_b0130) 2016; 60
Smith (10.1016/j.neuroscience.2017.05.013_b0125) 2012; 226
Khalil (10.1016/j.neuroscience.2017.05.013_b0070) 2017; 58
Parnas (10.1016/j.neuroscience.2017.05.013_b0105) 2009; 45
Demeuse (10.1016/j.neuroscience.2017.05.013_b0035) 2006; 127
Nilius (10.1016/j.neuroscience.2017.05.013_b0090) 2011; 12
Yu (10.1016/j.neuroscience.2017.05.013_b0160) 2012; 7
Turlova (10.1016/j.neuroscience.2017.05.013_b0150) 2016; 53
Hotta (10.1016/j.neuroscience.2017.05.013_b0065) 2010; 51
Oh (10.1016/j.neuroscience.2017.05.013_b0095) 2015; 463
Takada (10.1016/j.neuroscience.2017.05.013_b0145) 2013; 13
Hernandes (10.1016/j.neuroscience.2017.05.013_b0060) 2013; 8
Schober (10.1016/j.neuroscience.2017.05.013_b0120) 2004; 318
Sun (10.1016/j.neuroscience.2017.05.013_b0140) 2015; 9
Decker (10.1016/j.neuroscience.2017.05.013_b0030) 2014; 386
Oz (10.1016/j.neuroscience.2017.05.013_b0100) 2015; 152
Glajch (10.1016/j.neuroscience.2017.05.013_b0050) 2012; 230
Fleig (10.1016/j.neuroscience.2017.05.013_b0040) 2014; 222
Cook (10.1016/j.neuroscience.2017.05.013_b0020) 2009; 22
Li (10.1016/j.neuroscience.2017.05.013_b0080) 2015; 90
Dadon (10.1016/j.neuroscience.2017.05.013_b0025) 2010; 42
Aarts (10.1016/j.neuroscience.2017.05.013_b0005) 2003; 115
Verma (10.1016/j.neuroscience.2017.05.013_b0155) 2012; 530
Hartmann (10.1016/j.neuroscience.2017.05.013_b0055) 2000; 97
Khan (10.1016/j.neuroscience.2017.05.013_b0075) 2015; 2015
Penner (10.1016/j.neuroscience.2017.05.013_b0110) 2007; 179
Paxinos (10.1016/j.neuroscience.2017.05.013_b0115) 2001
Chen (10.1016/j.neuroscience.2017.05.013_b0015) 2015; 6
Fleig (10.1016/j.neuroscience.2017.05.013_b0045) 2004; 25
Sun (10.1016/j.neuroscience.2017.05.013_b0135) 2009; 12
Miller (10.1016/j.neuroscience.2017.05.013_b0085) 2011; 704
Chen (10.1016/j.neuroscience.2017.05.013_b0010) 2015; 8
References_xml – volume: 51
  start-page: 132
  year: 2010
  end-page: 139
  ident: b0065
  article-title: Carvacrol, a component of thyme oil, activates PPARalpha and gamma and suppresses COX-2 expression
  publication-title: J Lipid Res
  contributor:
    fullname: Inoue
– volume: 463
  start-page: 7
  year: 2015
  end-page: 12
  ident: b0095
  article-title: Regulation of basal autophagy by transient receptor potential melastatin 7 (TRPM7) channel
  publication-title: Biochem Biophys Res Commun
  contributor:
    fullname: Chung
– volume: 386
  start-page: 428
  year: 2014
  end-page: 439
  ident: b0030
  article-title: Abnormal differentiation of dopaminergic neurons in zebrafish trpm7 mutant larvae impairs development of the motor pattern
  publication-title: Dev Biol
  contributor:
    fullname: Cornell
– volume: 12
  start-page: 218
  year: 2011
  ident: b0090
  article-title: The transient receptor potential family of ion channels
  publication-title: Genome Biol
  contributor:
    fullname: Owsianik
– volume: 22
  start-page: 188
  year: 2009
  end-page: 189
  ident: b0020
  article-title: Characterisation of TRPM channel mRNA levels in Parkinson disease. In: The 12th International Magnesium Symposium
  publication-title: Magnesium Res
  contributor:
    fullname: Vink
– volume: 2015
  start-page: 379817
  year: 2015
  ident: b0075
  article-title: Implication of Caspase-3 as a common therapeutic target for multineurodegenerative disorders and its inhibition using nonpeptidyl natural compounds
  publication-title: Biomed Res Int
  contributor:
    fullname: Hague
– volume: 53
  start-page: 595
  year: 2016
  end-page: 610
  ident: b0150
  article-title: TRPM7 regulates axonal outgrowth and maturation of primary hippocampal neurons
  publication-title: Mol Neurobiol
  contributor:
    fullname: Sun
– volume: 179
  start-page: 313
  year: 2007
  end-page: 328
  ident: b0110
  article-title: The Mg2+ and Mg(2+)-nucleotide-regulated channel kinase TRPM7
  publication-title: Handb Exp Pharmacol
  contributor:
    fullname: Fleig
– volume: 60
  start-page: 123
  year: 2016
  end-page: 132
  ident: b0130
  article-title: Functional role of TRP channels in modulating ER stress and autophagy
  publication-title: Cell Calcium
  contributor:
    fullname: Singh
– volume: 7
  start-page: e33584
  year: 2012
  ident: b0160
  article-title: Carvacrol, a food-additive, provides neuroprotection on focal cerebral ischemia/reperfusion injury in mice
  publication-title: PLoS One
  contributor:
    fullname: Xu
– volume: 42
  start-page: 1430
  year: 2010
  end-page: 1445
  ident: b0025
  article-title: Cellular functions of transient receptor potential channels
  publication-title: Int J Biochem Cell Biol
  contributor:
    fullname: Minke
– volume: 58
  start-page: 263
  year: 2017
  end-page: 273
  ident: b0070
  article-title: Carvacrol after status epilepticus (SE) prevents recurrent SE, early seizures, cell death and cognitive decline
  publication-title: Epilepsia
  contributor:
    fullname: Walker
– volume: 12
  start-page: 1300
  year: 2009
  end-page: 1307
  ident: b0135
  article-title: Supression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia
  publication-title: Nat Neurosci
  contributor:
    fullname: Tymianski
– volume: 704
  start-page: 531
  year: 2011
  end-page: 544
  ident: b0085
  article-title: TRP channels as mediators of oxidative stress
  publication-title: Adv Exp Med Biol
  contributor:
    fullname: Zhang
– volume: 6
  start-page: 16321
  year: 2015
  end-page: 16340
  ident: b0015
  article-title: Inhibition of TRPM7 by carvacrol suppresses glioblastoma cell proliferation, migration and invasion
  publication-title: Oncotarget
  contributor:
    fullname: Sun
– volume: 222
  start-page: 521
  year: 2014
  end-page: 546
  ident: b0040
  article-title: TRPM7
  publication-title: Handb Exp Pharmacol
  contributor:
    fullname: Chubanov
– volume: 318
  start-page: 215
  year: 2004
  end-page: 224
  ident: b0120
  article-title: Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP
  publication-title: Cell Tissue Res
  contributor:
    fullname: Schober
– volume: 115
  start-page: 863
  year: 2003
  end-page: 877
  ident: b0005
  article-title: A key role for TRPM7 channels in anoxic neuronal death
  publication-title: Cell
  contributor:
    fullname: Tymianski
– volume: 90
  start-page: 107
  year: 2015
  end-page: 113
  ident: b0080
  article-title: Carvacrol attenuates traumatic neuronal injury through store-operated Ca2+ entry-independent regulation of intracellular Ca2+ homeostasis
  publication-title: Neurochem Int
  contributor:
    fullname: Song
– volume: 8
  start-page: 11
  year: 2015
  ident: b0010
  article-title: TRPM7 inhibitor carvacrol protects brain from neonatal hypoxic-ischemic injury
  publication-title: Mol Brain
  contributor:
    fullname: Sun
– volume: 9
  start-page: 253
  year: 2015
  end-page: 261
  ident: b0140
  article-title: TRPM7 and its role in neurodegenerative diseases
  publication-title: Channels
  contributor:
    fullname: Singh
– volume: 8
  start-page: e75532
  year: 2013
  ident: b0060
  article-title: Microglial cells are involved in the susceptibility of NADPHoxidase knockout mice to 6-hydroxy-dopamine-induced neurodegeneration
  publication-title: PLoS One
  contributor:
    fullname: Britto
– year: 2001
  ident: b0115
  article-title: The mouse brain in stereotaxic coordinates
  contributor:
    fullname: Franklin
– volume: 530
  start-page: 41
  year: 2012
  end-page: 46
  ident: b0155
  article-title: TRPM2 channel activation following in vitro ischemia contributes to male hippocampal cell death
  publication-title: Neurosci Lett
  contributor:
    fullname: Herson
– volume: 25
  start-page: 633
  year: 2004
  end-page: 639
  ident: b0045
  article-title: The TRPM ion channel subfamily: molecular, biophysical and functional features
  publication-title: Trends Pharmacol Sci
  contributor:
    fullname: Penner
– volume: 127
  start-page: 421
  year: 2006
  end-page: 434
  ident: b0035
  article-title: TRPM7 channel is regulated by magnesium nucleotides via its kinase domain
  publication-title: J Gen Physiol
  contributor:
    fullname: Fleig
– volume: 230
  start-page: 309
  year: 2012
  end-page: 316
  ident: b0050
  article-title: Sensorimotor assessment of the unilateral 6-hydroxydopamine mouse model of Parkinson’s disease
  publication-title: Behav Brain Res
  contributor:
    fullname: Osten
– volume: 13
  start-page: 332
  year: 2013
  end-page: 334
  ident: b0145
  article-title: Targeting TRPs in neurodegenerative disorders
  publication-title: Curr Top Med Chem
  contributor:
    fullname: Mori
– volume: 45
  start-page: 300
  year: 2009
  end-page: 309
  ident: b0105
  article-title: Carvacrol is a novel inhibitor of Drosophila TRPL and mammalian TRPM7 channels
  publication-title: Cell Calcium
  contributor:
    fullname: Minke
– volume: 226
  start-page: 281
  year: 2012
  end-page: 292
  ident: b0125
  article-title: Unilateral nigrostriatal 6-hydroxydopamine lesions in mice. II: Predicting L-DOPA-induced dyskinesia
  publication-title: Behav Brain Res
  contributor:
    fullname: Lane
– volume: 97
  start-page: 2875
  year: 2000
  end-page: 2880
  ident: b0055
  article-title: Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease
  publication-title: Proc Natl Acad Sci USA
  contributor:
    fullname: Hirsch
– volume: 152
  start-page: 83
  year: 2015
  end-page: 97
  ident: b0100
  article-title: Effects of monoterpenes on ion channels of excitable cells
  publication-title: Pharmacol Ther
  contributor:
    fullname: Galadari
– volume: 42
  start-page: 1430
  year: 2010
  ident: 10.1016/j.neuroscience.2017.05.013_b0025
  article-title: Cellular functions of transient receptor potential channels
  publication-title: Int J Biochem Cell Biol
  doi: 10.1016/j.biocel.2010.04.006
  contributor:
    fullname: Dadon
– volume: 12
  start-page: 1300
  year: 2009
  ident: 10.1016/j.neuroscience.2017.05.013_b0135
  article-title: Supression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia
  publication-title: Nat Neurosci
  doi: 10.1038/nn.2395
  contributor:
    fullname: Sun
– volume: 12
  start-page: 218
  year: 2011
  ident: 10.1016/j.neuroscience.2017.05.013_b0090
  article-title: The transient receptor potential family of ion channels
  publication-title: Genome Biol
  doi: 10.1186/gb-2011-12-3-218
  contributor:
    fullname: Nilius
– volume: 463
  start-page: 7
  year: 2015
  ident: 10.1016/j.neuroscience.2017.05.013_b0095
  article-title: Regulation of basal autophagy by transient receptor potential melastatin 7 (TRPM7) channel
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2015.05.007
  contributor:
    fullname: Oh
– volume: 386
  start-page: 428
  year: 2014
  ident: 10.1016/j.neuroscience.2017.05.013_b0030
  article-title: Abnormal differentiation of dopaminergic neurons in zebrafish trpm7 mutant larvae impairs development of the motor pattern
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2013.11.015
  contributor:
    fullname: Decker
– volume: 704
  start-page: 531
  year: 2011
  ident: 10.1016/j.neuroscience.2017.05.013_b0085
  article-title: TRP channels as mediators of oxidative stress
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-94-007-0265-3_29
  contributor:
    fullname: Miller
– volume: 2015
  start-page: 379817
  year: 2015
  ident: 10.1016/j.neuroscience.2017.05.013_b0075
  article-title: Implication of Caspase-3 as a common therapeutic target for multineurodegenerative disorders and its inhibition using nonpeptidyl natural compounds
  publication-title: Biomed Res Int
  doi: 10.1155/2015/379817
  contributor:
    fullname: Khan
– volume: 51
  start-page: 132
  year: 2010
  ident: 10.1016/j.neuroscience.2017.05.013_b0065
  article-title: Carvacrol, a component of thyme oil, activates PPARalpha and gamma and suppresses COX-2 expression
  publication-title: J Lipid Res
  doi: 10.1194/jlr.M900255-JLR200
  contributor:
    fullname: Hotta
– volume: 25
  start-page: 633
  year: 2004
  ident: 10.1016/j.neuroscience.2017.05.013_b0045
  article-title: The TRPM ion channel subfamily: molecular, biophysical and functional features
  publication-title: Trends Pharmacol Sci
  doi: 10.1016/j.tips.2004.10.004
  contributor:
    fullname: Fleig
– volume: 9
  start-page: 253
  year: 2015
  ident: 10.1016/j.neuroscience.2017.05.013_b0140
  article-title: TRPM7 and its role in neurodegenerative diseases
  publication-title: Channels
  doi: 10.1080/19336950.2015.1075675
  contributor:
    fullname: Sun
– volume: 60
  start-page: 123
  issue: 2
  year: 2016
  ident: 10.1016/j.neuroscience.2017.05.013_b0130
  article-title: Functional role of TRP channels in modulating ER stress and autophagy
  publication-title: Cell Calcium
  doi: 10.1016/j.ceca.2016.02.012
  contributor:
    fullname: Sukumaran
– volume: 7
  start-page: e33584
  year: 2012
  ident: 10.1016/j.neuroscience.2017.05.013_b0160
  article-title: Carvacrol, a food-additive, provides neuroprotection on focal cerebral ischemia/reperfusion injury in mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0033584
  contributor:
    fullname: Yu
– volume: 318
  start-page: 215
  year: 2004
  ident: 10.1016/j.neuroscience.2017.05.013_b0120
  article-title: Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP
  publication-title: Cell Tissue Res
  doi: 10.1007/s00441-004-0938-y
  contributor:
    fullname: Schober
– volume: 226
  start-page: 281
  year: 2012
  ident: 10.1016/j.neuroscience.2017.05.013_b0125
  article-title: Unilateral nigrostriatal 6-hydroxydopamine lesions in mice. II: Predicting L-DOPA-induced dyskinesia
  publication-title: Behav Brain Res
  doi: 10.1016/j.bbr.2011.09.025
  contributor:
    fullname: Smith
– volume: 97
  start-page: 2875
  year: 2000
  ident: 10.1016/j.neuroscience.2017.05.013_b0055
  article-title: Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.040556597
  contributor:
    fullname: Hartmann
– volume: 179
  start-page: 313
  year: 2007
  ident: 10.1016/j.neuroscience.2017.05.013_b0110
  article-title: The Mg2+ and Mg(2+)-nucleotide-regulated channel kinase TRPM7
  publication-title: Handb Exp Pharmacol
  doi: 10.1007/978-3-540-34891-7_19
  contributor:
    fullname: Penner
– volume: 8
  start-page: 11
  year: 2015
  ident: 10.1016/j.neuroscience.2017.05.013_b0010
  article-title: TRPM7 inhibitor carvacrol protects brain from neonatal hypoxic-ischemic injury
  publication-title: Mol Brain
  doi: 10.1186/s13041-015-0102-5
  contributor:
    fullname: Chen
– volume: 127
  start-page: 421
  year: 2006
  ident: 10.1016/j.neuroscience.2017.05.013_b0035
  article-title: TRPM7 channel is regulated by magnesium nucleotides via its kinase domain
  publication-title: J Gen Physiol
  doi: 10.1085/jgp.200509410
  contributor:
    fullname: Demeuse
– volume: 222
  start-page: 521
  year: 2014
  ident: 10.1016/j.neuroscience.2017.05.013_b0040
  article-title: TRPM7
  publication-title: Handb Exp Pharmacol
  doi: 10.1007/978-3-642-54215-2_21
  contributor:
    fullname: Fleig
– volume: 45
  start-page: 300
  year: 2009
  ident: 10.1016/j.neuroscience.2017.05.013_b0105
  article-title: Carvacrol is a novel inhibitor of Drosophila TRPL and mammalian TRPM7 channels
  publication-title: Cell Calcium
  doi: 10.1016/j.ceca.2008.11.009
  contributor:
    fullname: Parnas
– volume: 22
  start-page: 188
  year: 2009
  ident: 10.1016/j.neuroscience.2017.05.013_b0020
  article-title: Characterisation of TRPM channel mRNA levels in Parkinson disease. In: The 12th International Magnesium Symposium
  publication-title: Magnesium Res
  contributor:
    fullname: Cook
– year: 2001
  ident: 10.1016/j.neuroscience.2017.05.013_b0115
  contributor:
    fullname: Paxinos
– volume: 13
  start-page: 332
  year: 2013
  ident: 10.1016/j.neuroscience.2017.05.013_b0145
  article-title: Targeting TRPs in neurodegenerative disorders
  publication-title: Curr Top Med Chem
  doi: 10.2174/1568026611313030009
  contributor:
    fullname: Takada
– volume: 90
  start-page: 107
  year: 2015
  ident: 10.1016/j.neuroscience.2017.05.013_b0080
  article-title: Carvacrol attenuates traumatic neuronal injury through store-operated Ca2+ entry-independent regulation of intracellular Ca2+ homeostasis
  publication-title: Neurochem Int
  doi: 10.1016/j.neuint.2015.07.020
  contributor:
    fullname: Li
– volume: 6
  start-page: 16321
  year: 2015
  ident: 10.1016/j.neuroscience.2017.05.013_b0015
  article-title: Inhibition of TRPM7 by carvacrol suppresses glioblastoma cell proliferation, migration and invasion
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.3872
  contributor:
    fullname: Chen
– volume: 58
  start-page: 263
  year: 2017
  ident: 10.1016/j.neuroscience.2017.05.013_b0070
  article-title: Carvacrol after status epilepticus (SE) prevents recurrent SE, early seizures, cell death and cognitive decline
  publication-title: Epilepsia
  doi: 10.1111/epi.13645
  contributor:
    fullname: Khalil
– volume: 230
  start-page: 309
  year: 2012
  ident: 10.1016/j.neuroscience.2017.05.013_b0050
  article-title: Sensorimotor assessment of the unilateral 6-hydroxydopamine mouse model of Parkinson’s disease
  publication-title: Behav Brain Res
  doi: 10.1016/j.bbr.2011.12.007
  contributor:
    fullname: Glajch
– volume: 152
  start-page: 83
  year: 2015
  ident: 10.1016/j.neuroscience.2017.05.013_b0100
  article-title: Effects of monoterpenes on ion channels of excitable cells
  publication-title: Pharmacol Ther
  doi: 10.1016/j.pharmthera.2015.05.006
  contributor:
    fullname: Oz
– volume: 115
  start-page: 863
  year: 2003
  ident: 10.1016/j.neuroscience.2017.05.013_b0005
  article-title: A key role for TRPM7 channels in anoxic neuronal death
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)01017-1
  contributor:
    fullname: Aarts
– volume: 530
  start-page: 41
  year: 2012
  ident: 10.1016/j.neuroscience.2017.05.013_b0155
  article-title: TRPM2 channel activation following in vitro ischemia contributes to male hippocampal cell death
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2012.09.044
  contributor:
    fullname: Verma
– volume: 53
  start-page: 595
  year: 2016
  ident: 10.1016/j.neuroscience.2017.05.013_b0150
  article-title: TRPM7 regulates axonal outgrowth and maturation of primary hippocampal neurons
  publication-title: Mol Neurobiol
  doi: 10.1007/s12035-014-9032-y
  contributor:
    fullname: Turlova
– volume: 8
  start-page: e75532
  year: 2013
  ident: 10.1016/j.neuroscience.2017.05.013_b0060
  article-title: Microglial cells are involved in the susceptibility of NADPHoxidase knockout mice to 6-hydroxy-dopamine-induced neurodegeneration
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0075532
  contributor:
    fullname: Hernandes
SSID ssj0000543
Score 2.4817114
Snippet Highlights • TRPM7 increases after injections of 6-hydroxydopamine into the striatum. • Carvacrol reduces the loss of dopaminergic neurons induced by...
•TRPM7 increases after injections of 6-hydroxydopamine into the striatum.•Carvacrol reduces the loss of dopaminergic neurons induced by...
Carvacrol is a monoterpene that has been linked to neuroprotection in several animal models of neurodegeneration, including ischemia, epilepsy and traumatic...
SourceID proquest
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 176
SubjectTerms Animals
carvacrol
Disease Models, Animal
dopamine
Male
Mice, Inbred C57BL
Monoterpenes - pharmacology
Neurology
Neurons - drug effects
Neurons - metabolism
neuroprotection
Neuroprotection - drug effects
Neuroprotective Agents - pharmacology
Parkinson Disease - drug therapy
Substantia Nigra - drug effects
TRP channels
Title Carvacrol promotes neuroprotection in the mouse hemiparkinsonian model
URI https://www.clinicalkey.es/playcontent/1-s2.0-S0306452217303366
https://dx.doi.org/10.1016/j.neuroscience.2017.05.013
https://www.ncbi.nlm.nih.gov/pubmed/28526576
https://search.proquest.com/docview/1900832703
Volume 356
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZNcumltE0f27RFhdLLYiNLtqU99LBsNmxLG0qTQOhF2LIMCa2zxJtD_31nJMs2CQsppRezDKwfM6NvRqN5EPK-VlwUeMJYJdxEKRjcqMxNHuGR2owxY5nCQuHViTw-V4fLdDnkqg60_yppoIGssXL2L6Td3xQI8BtkDleQOlzvJfcFDvsxmH2-dpl2tp26npVdQ4ZRaiNu-u0UGwasC4yYg-eNq93Nxhn7rMdDy8teCw4LnwbwJf4aB9rZT8BUF6VZ9bTv1g0UmC7iRU8Ddjl8-RF_i8dBh8RFM32Bso-EhWqYIfXIVWCxPMIO7d62eEBVUkTYZG-MuCIbY2Yi85H5TfwElzvI7oMMl_GozSd2OU26xqtisGd9luEJvhC-TwIwJkSe75A9DngEcLg3_7Q8_zyY7MynV4YPCN1pXSLgtidu82S27VScx3L6mDzqthp07nXkCXlgm6dkf94Um6tfv-kH6pJ_3anKPjnq1YYGtaG31IZeNBTUhjq1obfVhjq1eUbOjpani1XUjdiIDPjJm6iuElGpGodLikwZPsszXggJOG5rllrOZjg5JDVFyQpTMgvePSC-KhU3suIVF8_JbnPV2JeEpnmalFktS65UKkpezOoqNXVlZGlYZeoJEYFdeu07qeiQYnipx0zWyGTNMg1MnhAZOKtDrTBYN9t2S67ViW65ZvqOsCfkY__P7sbeS9SgUvd68rsgSA2Qi-doRWOBxRp8aNi4cLCVE_LCS7j_Iq5w3oTMX_3j0w_Iw2HdvSa7m-sb-4bstNXN2055_wBsvrCZ
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carvacrol+promotes+neuroprotection+in+the+mouse+hemiparkinsonian+model&rft.jtitle=Neuroscience&rft.au=Dati%2C+L.M.&rft.au=Ulrich%2C+H.&rft.au=Real%2C+C.C.&rft.au=Feng%2C+Z.P.&rft.date=2017-07-25&rft.pub=Elsevier+Ltd&rft.issn=0306-4522&rft.eissn=1873-7544&rft.volume=356&rft.spage=176&rft.epage=181&rft_id=info:doi/10.1016%2Fj.neuroscience.2017.05.013&rft.externalDocID=S0306452217303366
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4522&client=summon