Efficiency investigation of a new-design air solar plate collector used in a humidification–dehumidification desalination process
The aim of this research is to experimentally study the efficiency of a new-design plate collector used to heat air in a new desalination humidification–dehumidification process. In fact, in such processes, the air solar collectors work at unusual experimental parameters (forced convection, elevated...
Saved in:
Published in: | Renewable energy Vol. 30; no. 9; pp. 1309 - 1327 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Elsevier Ltd
01-07-2005
Elsevier Science |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of this research is to experimentally study the efficiency of a new-design plate collector used to heat air in a new desalination humidification–dehumidification process. In fact, in such processes, the air solar collectors work at unusual experimental parameters (forced convection, elevated air humidity, high solar irradiation…). At these stressed experimental conditions, few published works are available in literature. Furthermore, the comparison of the efficiency of collectors running with normal air humidity content (about 10–20
g
kg
−1) and air of elevated humidity (20–50
g
kg
−1) were not yet published as our knowledge. In the present investigation, a new air solar plate collector was designed and developed for its use in a desalination process. Moreover, a characterization of such collector was performed under different experimental conditions. The effect of different parameters, namely: the solar radiation, the wind velocity, the ambient temperature, the air mass flow rate, the inlet air humidity and temperature, on the collector efficiency was also investigated. The collector was optimized for its use in a new solar desalination process. In fact, the air solar collector was designed in order to lower its economic cost making them applicable for water desalination. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0960-1481 1879-0682 |
DOI: | 10.1016/j.renene.2004.09.019 |