Tortuosity of mesoporous alumina catalyst supports: Influence of the pore network organization

Inverse liquid chromatography experiments were performed on five mesoporous alumina catalyst supports with similar porosity and different pore size distributions. By varying the size of the molecular tracer, it was shown that the diffusion regime in our conditions is molecular diffusion. Hindered di...

Full description

Saved in:
Bibliographic Details
Published in:Microporous and mesoporous materials Vol. 248; pp. 91 - 98
Main Authors: Kolitcheff, Svetan, Jolimaitre, Elsa, Hugon, Antoine, Verstraete, Jan, Carrette, Pierre-Louis, Tayakout-Fayolle, Mélaz
Format: Journal Article
Language:English
Published: Elsevier Inc 01-08-2017
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Inverse liquid chromatography experiments were performed on five mesoporous alumina catalyst supports with similar porosity and different pore size distributions. By varying the size of the molecular tracer, it was shown that the diffusion regime in our conditions is molecular diffusion. Hindered diffusion was not observed even for squalane, a C30 molecule. Using the slope of the Van Deemter equation, the tortuosity of each alumina support was determined. The results are in disagreement with literature correlations: although all alumina supports had similar total porosities, the measured tortuosity values are really different and much higher than those predicted by these theoretical models. This discrepancy has been resolved by assuming a two–level pore network organization, whose characteristics can be entirely estimated from a classical nitrogen adsorption isotherm. This simple methodology allows to evaluate the mass transfer in mesoporous alumina supports knowing their textural properties, which is an important issue for the design and optimization of numerous catalytic processes. [Display omitted] •Diffusion properties of several alumina catalyst supports having the same porosity but different textural properties.•Tortuosities of alumina catalyst supports estimated from Inverse Liquid Chromatography experiments differ.•Different levels of the porous organization in the alumina catalyst support.•Decomposition of BJH pore size distribution in order to obtain porous volumes of hierarchical levels.
AbstractList Inverse liquid chromatography experiments were performed on five mesoporous alumina catalyst supports with similar porosity and different pore size distributions. By varying the size of the molecular tracer, it was shown that the diffusion regime in our conditions is molecular diffusion. Hindered diffusion was not observed even for squalane, a C 30 molecule. Using the slope of the Van Deemter equation, the tortuosity of each alumina support was determined. The results are in disagreement with literature correlations: although all alumina supports had similar total porosities, the measured tortuosity values are really different and much higher than those predicted by these theoretical models. This discrepancy has been resolved by assuming a two–level pore network organization, whose characteristics can be entirely estimated from a classical nitrogen adsorption isotherm. This simple methodology allows to evaluate the mass transfer in mesoporous alumina supports knowing their textural properties, which is an important issue for the design and optimization of numerous catalytic processes.
Inverse liquid chromatography experiments were performed on five mesoporous alumina catalyst supports with similar porosity and different pore size distributions. By varying the size of the molecular tracer, it was shown that the diffusion regime in our conditions is molecular diffusion. Hindered diffusion was not observed even for squalane, a C30 molecule. Using the slope of the Van Deemter equation, the tortuosity of each alumina support was determined. The results are in disagreement with literature correlations: although all alumina supports had similar total porosities, the measured tortuosity values are really different and much higher than those predicted by these theoretical models. This discrepancy has been resolved by assuming a two–level pore network organization, whose characteristics can be entirely estimated from a classical nitrogen adsorption isotherm. This simple methodology allows to evaluate the mass transfer in mesoporous alumina supports knowing their textural properties, which is an important issue for the design and optimization of numerous catalytic processes. [Display omitted] •Diffusion properties of several alumina catalyst supports having the same porosity but different textural properties.•Tortuosities of alumina catalyst supports estimated from Inverse Liquid Chromatography experiments differ.•Different levels of the porous organization in the alumina catalyst support.•Decomposition of BJH pore size distribution in order to obtain porous volumes of hierarchical levels.
Author Kolitcheff, Svetan
Jolimaitre, Elsa
Carrette, Pierre-Louis
Tayakout-Fayolle, Mélaz
Hugon, Antoine
Verstraete, Jan
Author_xml – sequence: 1
  givenname: Svetan
  surname: Kolitcheff
  fullname: Kolitcheff, Svetan
  organization: IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360, Solaize, France
– sequence: 2
  givenname: Elsa
  surname: Jolimaitre
  fullname: Jolimaitre, Elsa
  organization: IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360, Solaize, France
– sequence: 3
  givenname: Antoine
  surname: Hugon
  fullname: Hugon, Antoine
  organization: IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360, Solaize, France
– sequence: 4
  givenname: Jan
  surname: Verstraete
  fullname: Verstraete, Jan
  organization: IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360, Solaize, France
– sequence: 5
  givenname: Pierre-Louis
  surname: Carrette
  fullname: Carrette, Pierre-Louis
  organization: IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360, Solaize, France
– sequence: 6
  givenname: Mélaz
  surname: Tayakout-Fayolle
  fullname: Tayakout-Fayolle, Mélaz
  email: melaz.tayakout-fayolle@univ-lyon1.fr
  organization: Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100, Villeurbanne, France
BackLink https://ifp.hal.science/hal-01581729$$DView record in HAL
BookMark eNqFkE9PwzAMxSM0JLbBZyBXDi12_5fbNAGbNInLuBJlrcsyumZK0qHx6Uk1tCsnW_Z7z_Jvwkad7oixe4QQAbPHXbhXldF7sjqMAPMQkhAQrtgYizwOYijjke_jIg-wQLxhE2t34IUY4Zh9rLVxvbbKnbhu-JBy0Eb3lsu236tO8ko62Z6s47Y_-JWzT3zZNW1PXUWDxW2J-znxjty3Nl9cm0_ZqR_plO5u2XUjW0t3f3XK3l-e1_NFsHp7Xc5nq6BK4tQFCSEU0MRpgkhJs0mphLzK05g2WR1FlMsUU0hSqjMJpaQyqkosYYMZeQQRxFP2cM7dylYcjNpLcxJaKrGYrcQwA0wLzKPyiF6bn7WemrWGmosBQQxIxU5ckIoBqYDEBwxXZmcn-VeOioywlRo41MpQ5USt1b8Zv3uMhu8
CitedBy_id crossref_primary_10_1016_j_micromeso_2019_109776
crossref_primary_10_1002_cjce_24396
crossref_primary_10_1016_j_cej_2021_129854
crossref_primary_10_1016_j_cej_2020_127218
crossref_primary_10_1016_j_fuel_2018_04_084
crossref_primary_10_1149_1945_7111_ac9a7f
crossref_primary_10_1021_acs_iecr_0c05305
crossref_primary_10_1039_C8CY00831K
crossref_primary_10_1016_j_ijhydene_2023_10_308
crossref_primary_10_1007_s11356_020_08272_8
crossref_primary_10_1017_S1431927620024782
crossref_primary_10_1039_D0ME00036A
crossref_primary_10_1016_j_mset_2019_02_005
crossref_primary_10_1021_acs_iecr_3c00443
crossref_primary_10_1103_PhysRevMaterials_8_063403
crossref_primary_10_1016_j_apcatb_2019_118494
crossref_primary_10_1029_2023WR037031
crossref_primary_10_1016_j_fuel_2020_120099
crossref_primary_10_1002_cmtd_202200025
crossref_primary_10_1002_kin_21144
crossref_primary_10_1016_j_ijhydene_2022_03_152
crossref_primary_10_1021_acs_jpcc_4c00323
crossref_primary_10_1061__ASCE_EY_1943_7897_0000827
crossref_primary_10_1016_j_earscirev_2020_103439
crossref_primary_10_1016_j_ces_2024_120005
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123070
crossref_primary_10_1007_s10562_021_03791_6
crossref_primary_10_1088_1361_6463_ac2f12
crossref_primary_10_1021_acs_iecr_1c04934
crossref_primary_10_1016_j_jcat_2022_12_013
crossref_primary_10_1016_j_oceram_2021_100108
crossref_primary_10_1021_acs_iecr_0c00841
crossref_primary_10_1016_j_cej_2021_128595
crossref_primary_10_1093_jge_gxae039
crossref_primary_10_1016_j_apcatb_2018_07_015
crossref_primary_10_1016_j_colsurfa_2020_125175
crossref_primary_10_1016_j_micromeso_2020_110640
Cites_doi 10.1016/0009-2509(62)87015-8
10.1002/cjce.5450600213
10.1016/0009-2509(87)80141-0
10.1002/aic.690040322
10.1016/j.ces.2007.03.041
10.1021/jp710664h
10.1063/1.1729783
10.1063/1.464604
10.1016/j.micromeso.2016.04.027
10.1002/aic.690190526
10.1016/0032-5910(93)02789-D
10.1021/jp990828b
10.1021/ac902858b
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.micromeso.2017.04.010
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3093
EndPage 98
ExternalDocumentID oai_HAL_hal_01581729v1
10_1016_j_micromeso_2017_04_010
S1387181117302500
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSM
SSZ
T5K
XPP
ZMT
~02
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c435t-4e1080f35411e4fb5e907c753eb6d22e7a515045ed6a09ae92c9190b16e016203
ISSN 1387-1811
IngestDate Tue Oct 15 15:34:08 EDT 2024
Thu Sep 26 16:00:47 EDT 2024
Fri Feb 23 02:23:47 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Pore network
Internal diffusional limitations
Inverse liquid chromatography
Tortuosity
Pore size distribution
Alumina support
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c435t-4e1080f35411e4fb5e907c753eb6d22e7a515045ed6a09ae92c9190b16e016203
ORCID 0000-0002-0667-3535
0000-0003-0962-1658
OpenAccessLink https://ifp.hal.science/hal-01581729
PageCount 8
ParticipantIDs hal_primary_oai_HAL_hal_01581729v1
crossref_primary_10_1016_j_micromeso_2017_04_010
elsevier_sciencedirect_doi_10_1016_j_micromeso_2017_04_010
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Microporous and mesoporous materials
PublicationYear 2017
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References K. Soukup, M. Procházka, 2015, 43, 841–846.
Wakao, Smith (bib8) 1962; 17
Akanni, Evans (bib13) 1987; 42
Ruthven (bib3) 1984
Shen, Chen (bib7) 2007; 62
Kärger, Ruthven, Theodorou (bib10) 2012
Forman, Trujillo, Ziegler, Bradley, Wang, Prabhakar, Vasenkov (bib2) 2016; 229
Tomadakis, Sotirchos (bib16) 1993; 98
U. Tallarek, F. J. Vergeldt, H. Van As, 1999, 7654–7664.
Chiche, Digne, Revel, Chaneac, Jolivet (bib6) 2008; 112
Hayduk, Minhas (bib11) 1982
Nolan, Kavanagh (bib12) 1994; 78
Weissberg (bib15) 1963; 34
Wernert, Bouchet, Denoyel (bib5) 2010; 82
Haynes, Sarma (bib9) 1973; 19
Petersen (bib14) 1958; 4
Wernert (10.1016/j.micromeso.2017.04.010_bib5) 2010; 82
Ruthven (10.1016/j.micromeso.2017.04.010_bib3) 1984
Kärger (10.1016/j.micromeso.2017.04.010_bib10) 2012
10.1016/j.micromeso.2017.04.010_bib4
10.1016/j.micromeso.2017.04.010_bib1
Forman (10.1016/j.micromeso.2017.04.010_bib2) 2016; 229
Hayduk (10.1016/j.micromeso.2017.04.010_bib11) 1982
Akanni (10.1016/j.micromeso.2017.04.010_bib13) 1987; 42
Shen (10.1016/j.micromeso.2017.04.010_bib7) 2007; 62
Haynes (10.1016/j.micromeso.2017.04.010_bib9) 1973; 19
Nolan (10.1016/j.micromeso.2017.04.010_bib12) 1994; 78
Tomadakis (10.1016/j.micromeso.2017.04.010_bib16) 1993; 98
Weissberg (10.1016/j.micromeso.2017.04.010_bib15) 1963; 34
Chiche (10.1016/j.micromeso.2017.04.010_bib6) 2008; 112
Wakao (10.1016/j.micromeso.2017.04.010_bib8) 1962; 17
Petersen (10.1016/j.micromeso.2017.04.010_bib14) 1958; 4
References_xml – year: 1984
  ident: bib3
  article-title: Principles of Adsorption and Adsorption Processes
  contributor:
    fullname: Ruthven
– year: 2012
  ident: bib10
  article-title: Diffusion in Nanoporous Materials, WILEY-VCH, Weinheim
  contributor:
    fullname: Theodorou
– volume: 62
  start-page: 3748
  year: 2007
  end-page: 3755
  ident: bib7
  publication-title: Chem. Eng. Sci.
  contributor:
    fullname: Chen
– start-page: 295
  year: 1982
  end-page: 299
  ident: bib11
  publication-title: Can. J. Chem. Eng.
  contributor:
    fullname: Minhas
– volume: 34
  start-page: 2636
  year: 1963
  end-page: 2639
  ident: bib15
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Weissberg
– volume: 82
  start-page: 2668
  year: 2010
  end-page: 2679
  ident: bib5
  publication-title: Anal. Chem.
  contributor:
    fullname: Denoyel
– volume: 229
  start-page: 117
  year: 2016
  end-page: 123
  ident: bib2
  publication-title: Microporous Mesoporous Mater.
  contributor:
    fullname: Vasenkov
– volume: 112
  start-page: 8524
  year: 2008
  end-page: 8533
  ident: bib6
  publication-title: J. Phys. Chem. C
  contributor:
    fullname: Jolivet
– volume: 78
  start-page: 231
  year: 1994
  end-page: 238
  ident: bib12
  publication-title: Powder Technol.
  contributor:
    fullname: Kavanagh
– volume: 17
  start-page: 825
  year: 1962
  end-page: 834
  ident: bib8
  publication-title: Chem. Eng. Sci.
  contributor:
    fullname: Smith
– volume: 42
  start-page: 1945
  year: 1987
  end-page: 1954
  ident: bib13
  publication-title: Chem. Eng. Sci.
  contributor:
    fullname: Evans
– volume: 4
  start-page: 343
  year: 1958
  end-page: 345
  ident: bib14
  publication-title: Am. Inst. Chem. Eng. J.
  contributor:
    fullname: Petersen
– volume: 19
  start-page: 1043
  year: 1973
  end-page: 1046
  ident: bib9
  publication-title: Am. Inst. Chem. Eng.
  contributor:
    fullname: Sarma
– volume: 98
  start-page: 616
  year: 1993
  end-page: 626
  ident: bib16
  publication-title: J. Chem. Phys.
  contributor:
    fullname: Sotirchos
– year: 1984
  ident: 10.1016/j.micromeso.2017.04.010_bib3
  contributor:
    fullname: Ruthven
– volume: 17
  start-page: 825
  year: 1962
  ident: 10.1016/j.micromeso.2017.04.010_bib8
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(62)87015-8
  contributor:
    fullname: Wakao
– start-page: 295
  year: 1982
  ident: 10.1016/j.micromeso.2017.04.010_bib11
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.5450600213
  contributor:
    fullname: Hayduk
– volume: 42
  start-page: 1945
  year: 1987
  ident: 10.1016/j.micromeso.2017.04.010_bib13
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(87)80141-0
  contributor:
    fullname: Akanni
– volume: 4
  start-page: 343
  year: 1958
  ident: 10.1016/j.micromeso.2017.04.010_bib14
  publication-title: Am. Inst. Chem. Eng. J.
  doi: 10.1002/aic.690040322
  contributor:
    fullname: Petersen
– ident: 10.1016/j.micromeso.2017.04.010_bib4
– volume: 62
  start-page: 3748
  year: 2007
  ident: 10.1016/j.micromeso.2017.04.010_bib7
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2007.03.041
  contributor:
    fullname: Shen
– year: 2012
  ident: 10.1016/j.micromeso.2017.04.010_bib10
  contributor:
    fullname: Kärger
– volume: 112
  start-page: 8524
  year: 2008
  ident: 10.1016/j.micromeso.2017.04.010_bib6
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp710664h
  contributor:
    fullname: Chiche
– volume: 34
  start-page: 2636
  year: 1963
  ident: 10.1016/j.micromeso.2017.04.010_bib15
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1729783
  contributor:
    fullname: Weissberg
– volume: 98
  start-page: 616
  year: 1993
  ident: 10.1016/j.micromeso.2017.04.010_bib16
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464604
  contributor:
    fullname: Tomadakis
– volume: 229
  start-page: 117
  year: 2016
  ident: 10.1016/j.micromeso.2017.04.010_bib2
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2016.04.027
  contributor:
    fullname: Forman
– volume: 19
  start-page: 1043
  year: 1973
  ident: 10.1016/j.micromeso.2017.04.010_bib9
  publication-title: Am. Inst. Chem. Eng.
  doi: 10.1002/aic.690190526
  contributor:
    fullname: Haynes
– volume: 78
  start-page: 231
  year: 1994
  ident: 10.1016/j.micromeso.2017.04.010_bib12
  publication-title: Powder Technol.
  doi: 10.1016/0032-5910(93)02789-D
  contributor:
    fullname: Nolan
– ident: 10.1016/j.micromeso.2017.04.010_bib1
  doi: 10.1021/jp990828b
– volume: 82
  start-page: 2668
  year: 2010
  ident: 10.1016/j.micromeso.2017.04.010_bib5
  publication-title: Anal. Chem.
  doi: 10.1021/ac902858b
  contributor:
    fullname: Wernert
SSID ssj0017121
Score 2.4416037
Snippet Inverse liquid chromatography experiments were performed on five mesoporous alumina catalyst supports with similar porosity and different pore size...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 91
SubjectTerms Alumina support
Catalysis
Chemical Sciences
Internal diffusional limitations
Inverse liquid chromatography
Material chemistry
Pore network
Pore size distribution
Tortuosity
Title Tortuosity of mesoporous alumina catalyst supports: Influence of the pore network organization
URI https://dx.doi.org/10.1016/j.micromeso.2017.04.010
https://ifp.hal.science/hal-01581729
Volume 248
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXa7QUeJj7FNkAW4q0Kit00H3urtqCtQrx0SHsicmMHNq3JtKSTxq_nOLaTVIAAIV6iymni5N4T-_jm5F5C3hZFjomGS0_GeegFgWIepiGGxz0IZCFWAEkbulhGHy_ikzRIRyNXQaxv-6-eRht8rb-c_QtvdydFA37D59jC69j-md_BpzeVU1qsVV2BYWudq8AwdFmKSRuwua-bSb25ad8X6KDAmatV4jQD2KMmpdGI29JP33onuhJQWs3nTl_KYW8gwuZuuxFdC-2AEJMFcnmnmh6XC-xbi8vGxMPT61r0aPtSuSQH1UACoMN8za1Qprjfwp7KRi8wIzrtnA2puc9qtlSfTCf8BfUw_1OmLY6mnn5tOxy6ucnSaQffhA2mcVPb-ocJwsQqrt6tW7kjrKLVfVGb7dbKa7ezby_1tehLYRgKQRf9MdnlGNMwpO7Oz9KLRffKKmL2Iz977Vtiwp929ysqNP7qgvotyTl_RPbs6oTODawek5Eqn5CHg5yVT8nnHmC0KmjvcmoBRh3AqAPYEe3gpQ8BvKiGF7XwokN4PSOf3qfnx6eeLdLh5WDajYenG4uOYjoLGFNBsZqpxI9yLILVKpScq0iAMWPdoGQofJ0JnucJSOiKhQqm4f70Odkpq1K9IHTGI8FlqFcIeiHsCxGDMBehlLLgSSD3ie_sld2YXCyZEyleZZ2JM23izA8ymHifHDm7ZpZSGqqYARC_P_gNPNF1pROxn84_ZLoNJDoG9U_u2MG_9HBIHvQPxUuy09xu1CsyruXmtYXXd5ePrrU
link.rule.ids 230,315,782,786,887,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tortuosity+of+mesoporous+alumina+catalyst+supports%3A+Influence+of+the+pore+network+organization&rft.jtitle=Microporous+and+mesoporous+materials&rft.au=Kolitcheff%2C+Svetan&rft.au=Jolimaitre%2C+Elsa&rft.au=Hugon%2C+Antoine&rft.au=Verstraete%2C+Jan&rft.date=2017-08-01&rft.pub=Elsevier+Inc&rft.issn=1387-1811&rft.eissn=1873-3093&rft.volume=248&rft.spage=91&rft.epage=98&rft_id=info:doi/10.1016%2Fj.micromeso.2017.04.010&rft.externalDocID=S1387181117302500
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-1811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-1811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-1811&client=summon