Morphology and electrical properties of polymethylmethacrylate/poly(styrene-co-acrylonitrile)/multi-walled carbon nanotube nanocomposites
Nanocomposites of blends of polymethylmethacrylate (PMMA) and poly(styrene‐co‐acrylonitrile) (SAN) with multi‐walled carbon nanotubes (MWCNTs) were prepared by melt mixing in a twin‐screw extruder. The dispersion state of MWCNTs in the matrix polymers was investigated using transmission electron mic...
Saved in:
Published in: | Journal of applied polymer science Vol. 121; no. 2; pp. 743 - 749 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
15-07-2011
Wiley Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nanocomposites of blends of polymethylmethacrylate (PMMA) and poly(styrene‐co‐acrylonitrile) (SAN) with multi‐walled carbon nanotubes (MWCNTs) were prepared by melt mixing in a twin‐screw extruder. The dispersion state of MWCNTs in the matrix polymers was investigated using transmission electron microscopy. Interestingly enough, in most of the nanocomposites, the MWCNTs were observed to be mainly located at SAN domains, regardless of the SAN compositions in the PMMA/SAN blend and of the processing method. One possible reason for this morphology may be the π–π interactions between MWCNTs and the phenyl ring of SAN. The shift in G‐band peak observed in the Raman spectroscopy may be the indirect evidence proving these interactions. The percolation threshold for electrical conductivity of PMMA/SAN/MWCNT nanocomposites was observed to be around 1.5 wt %. Nanocomposites with PMMA‐rich composition showed higher electrical conductivity than SAN‐rich nanocomposites at a fixed MWCNT loading. The dielectric constant measurement also showed composition‐dependent behavior. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 |
---|---|
Bibliography: | ArticleID:APP33819 istex:3A031757B69AA50D2DE7E110288B4C0E058DFF70 ark:/67375/WNG-RR9M13L1-C ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-8995 1097-4628 1097-4628 |
DOI: | 10.1002/app.33819 |