Flower‐Like Superstructures: Structural Features, Applications and Future Perspectives
Mimicking natural objects such as flowers, is an objective of scientists not only because of their attractive appearance, but also to understand the natural phenomena that underpin real world applications such as drug delivery, enzymatic reactions, electronics, and catalysis, to name few. This artic...
Saved in:
Published in: | Chemical record Vol. 21; no. 2; pp. 257 - 283 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Wiley Subscription Services, Inc
01-02-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Mimicking natural objects such as flowers, is an objective of scientists not only because of their attractive appearance, but also to understand the natural phenomena that underpin real world applications such as drug delivery, enzymatic reactions, electronics, and catalysis, to name few. This article reviews the types, preparation methods, and structural features of flower‐like structures along with their key applications in various fields. We discuss the various types of flower‐like structures composed of inorganic, organic‐inorganic hybrid, inorganic‐protein, inorganic‐enzyme and organic compositions. We also discuss recent development in flower‐like structures prepared by self‐assembly approaches. Finally, we conclude our review with the future prospects of flower‐like micro‐structures in key fields, being biomedicine, sensing and catalysis.
In this review, we described general approaches towards supramolecular self‐assembly of organic, metal‐organic, metal‐protein, metal‐enzyme hybrid materials for the formation of flower‐like superstructures. These flowers shown to be high surface‐to‐volume ration and further used for various applications such as catalysis, drug delivery to name few. We give brief overview in the mimicking natural flowers via artificial‐way by controlling various stimulus is discussed. |
---|---|
AbstractList | Mimicking natural objects such as flowers, is an objective of scientists not only because of their attractive appearance, but also to understand the natural phenomena that underpin real world applications such as drug delivery, enzymatic reactions, electronics, and catalysis, to name few. This article reviews the types, preparation methods, and structural features of flower‐like structures along with their key applications in various fields. We discuss the various types of flower‐like structures composed of inorganic, organic‐inorganic hybrid, inorganic‐protein, inorganic‐enzyme and organic compositions. We also discuss recent development in flower‐like structures prepared by self‐assembly approaches. Finally, we conclude our review with the future prospects of flower‐like micro‐structures in key fields, being biomedicine, sensing and catalysis. Mimicking natural objects such as flowers, is an objective of scientists not only because of their attractive appearance, but also to understand the natural phenomena that underpin real world applications such as drug delivery, enzymatic reactions, electronics, and catalysis, to name few. This article reviews the types, preparation methods, and structural features of flower‐like structures along with their key applications in various fields. We discuss the various types of flower‐like structures composed of inorganic, organic‐inorganic hybrid, inorganic‐protein, inorganic‐enzyme and organic compositions. We also discuss recent development in flower‐like structures prepared by self‐assembly approaches. Finally, we conclude our review with the future prospects of flower‐like micro‐structures in key fields, being biomedicine, sensing and catalysis. In this review, we described general approaches towards supramolecular self‐assembly of organic, metal‐organic, metal‐protein, metal‐enzyme hybrid materials for the formation of flower‐like superstructures. These flowers shown to be high surface‐to‐volume ration and further used for various applications such as catalysis, drug delivery to name few. We give brief overview in the mimicking natural flowers via artificial‐way by controlling various stimulus is discussed. Abstract Mimicking natural objects such as flowers, is an objective of scientists not only because of their attractive appearance, but also to understand the natural phenomena that underpin real world applications such as drug delivery, enzymatic reactions, electronics, and catalysis, to name few. This article reviews the types, preparation methods, and structural features of flower‐like structures along with their key applications in various fields. We discuss the various types of flower‐like structures composed of inorganic, organic‐inorganic hybrid, inorganic‐protein, inorganic‐enzyme and organic compositions. We also discuss recent development in flower‐like structures prepared by self‐assembly approaches. Finally, we conclude our review with the future prospects of flower‐like micro‐structures in key fields, being biomedicine, sensing and catalysis. |
Author | Bhosale, Sheshanath V. Jadhav, Ratan W. Al Kobaisi, Mohammad Jones, Lathe A. |
Author_xml | – sequence: 1 givenname: Sheshanath V. surname: Bhosale fullname: Bhosale, Sheshanath V. email: svbhosale@unigoa.ac.in organization: Goa University – sequence: 2 givenname: Mohammad surname: Al Kobaisi fullname: Al Kobaisi, Mohammad organization: RMIT University – sequence: 3 givenname: Ratan W. surname: Jadhav fullname: Jadhav, Ratan W. organization: Goa University – sequence: 4 givenname: Lathe A. surname: Jones fullname: Jones, Lathe A. organization: RMIT University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33215848$$D View this record in MEDLINE/PubMed |
BookMark | eNp90E1LwzAYB_AgE_eiR69S8OLBzry1TbyN4VQYKG6Ct5KlT6Gza2vSOnbzI_gZ_SRmL07w4CHkIfnlT_h3UasoC0DolOA-wZhe1dr0KaYYY0LlAeqQgAofh5K0NnPkCyllG3WtnTtCeBQdoTZjlASCiw56GeXlEszXx-c4ewVv0lRgbG0aXTcG7LU32c0q90agNoeX3qCq8kyrOisL66ki8UbN-sZ7dG8r0HX2DvYYHaYqt3Cy23voeXQzHd7544fb--Fg7GvOAukLwYGmaSIJDwnwBEsdJgwCkSpNQ0WESCWlXPEZ1SKUqRZRhIV0iygmIs566GKbW5nyrQFbx4vMashzVUDZ2JjykGEpGSeOnv-h87IxhfudUxIHhDAunfK3SpvSWgNpXJlsocwqJjheVx67yuN95c6f7VKb2QKSvf7p2IFoC5ZZDqv_0-Lp8Ok3-hvtm46p |
CitedBy_id | crossref_primary_10_20517_microstructures_2023_89 crossref_primary_10_1007_s13204_023_02871_w crossref_primary_10_1016_j_apsusc_2021_150245 crossref_primary_10_1016_j_jiec_2022_11_048 crossref_primary_10_1002_smsc_202200043 crossref_primary_10_1063_5_0071142 crossref_primary_10_1007_s13204_022_02746_6 crossref_primary_10_2109_jcersj2_21157 crossref_primary_10_1007_s12274_022_4470_8 crossref_primary_10_1016_j_mtadv_2024_100477 crossref_primary_10_1016_j_colsurfb_2021_112149 |
Cites_doi | 10.1039/D0CE00024H 10.1126/sciadv.aaw6264 10.1002/chem.200400451 10.1016/j.electacta.2019.134614 10.1002/slct.201701967 10.1246/bcsj.20190014 10.1021/cg901170j 10.1016/j.matlet.2006.11.105 10.1002/celc.201701074 10.1016/j.apsusc.2010.11.030 10.1039/C0CS00042F 10.1021/acs.chemrev.5b00263 10.1038/s41598-020-59699-5 10.1039/C6CC09858D 10.1039/C5CC00351B 10.1038/s41598-017-17538-0 10.1021/nn800442q 10.1016/j.synthmet.2008.04.015 10.1039/D0DT00778A 10.1038/s41598-017-15599-9 10.1021/am503787h 10.1021/acsami.5b01654 10.1038/ncomms4108 10.1021/acsami.5b10158 10.1039/c3ra23358h 10.1021/acscatal.8b04064 10.1039/C7RA06592B 10.1016/j.chemosphere.2017.05.012 10.1016/j.matchemphys.2007.05.017 10.1002/cssc.201701647 10.1039/c0jm00110d 10.1002/adma.200701537 10.1016/j.cej.2019.04.174 10.1002/ejic.200600553 10.1016/j.jhazmat.2019.120947 10.1021/acs.jpcc.6b03537 10.1155/2017/4150648 10.1016/j.mseb.2008.09.017 10.1038/srep22412 10.1080/21691401.2018.1428812 10.2478/s11532-009-0071-6 10.1039/c3ce40385h 10.1038/nnano.2012.80 10.1038/srep42898 10.1016/j.electacta.2020.136138 10.1016/j.talanta.2020.121323 10.1039/c3cc42504e 10.1002/adma.201101295 10.1039/c2jm14623a 10.1016/j.ijbiomac.2016.06.071 10.1016/j.optmat.2015.02.014 10.1039/C9PY01625B 10.1016/j.ceramint.2014.04.013 10.1039/C9CC02285F 10.1021/acssuschemeng.7b03870 10.1021/acs.chemrev.6b00160 10.1038/srep14609 10.1016/j.arabjc.2019.06.003 10.1039/C9CC05872A 10.1016/j.carbpol.2017.12.029 10.1021/acsomega.8b02577 10.1016/j.electacta.2016.05.006 10.1016/j.reactfunctpolym.2016.02.010 10.1002/adma.201306055 10.1016/j.ceramint.2013.10.140 10.1186/s12951-015-0118-0 10.1038/s41598-017-09477-7 10.1002/jctb.5275 10.1007/s11051-017-3905-8 10.1002/ejic.201100936 10.1016/j.apsusc.2012.02.034 10.1007/s10562-019-02880-x 10.1016/j.colsurfb.2015.04.033 10.1039/c2nr12053d 10.1039/C0CE00083C 10.1039/C6RA04664A 10.1039/b400445k 10.1002/chem.201000332 10.1016/j.apcatb.2018.05.060 10.1016/j.mattod.2015.08.021 10.1038/s41598-018-37463-0 10.1016/j.apsusc.2017.01.042 10.1039/C5CC00040H 10.1038/s41598-019-57044-z 10.1039/C9NJ01291E 10.1016/j.jallcom.2013.08.184 10.1016/j.ceramint.2020.01.167 10.1007/s00604-020-4151-9 10.1039/D0CE00371A 10.1021/acsnano.6b01003 10.1002/smll.201600273 |
ContentType | Journal Article |
Copyright | 2020 The Chemical Society of Japan & Wiley‐VCH GmbH 2020 The Chemical Society of Japan & Wiley-VCH GmbH. 2021 The Chemical Society of Japan & Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 The Chemical Society of Japan & Wiley‐VCH GmbH – notice: 2020 The Chemical Society of Japan & Wiley-VCH GmbH. – notice: 2021 The Chemical Society of Japan & Wiley‐VCH GmbH |
DBID | NPM AAYXX CITATION 7QO 7T7 8FD C1K FR3 P64 7X8 |
DOI | 10.1002/tcr.202000129 |
DatabaseName | PubMed CrossRef Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database PubMed CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1528-0691 |
EndPage | 283 |
ExternalDocumentID | 10_1002_tcr_202000129 33215848 TCR202000129 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: University Grant Commission – fundername: S.V.B. – fundername: Council of Scientific & Industrial Research funderid: 02(0357)/19/EMR-II – fundername: Faculty Research Program, New Delhi, India – fundername: Council of Scientific & Industrial Research grantid: 02(0357)/19/EMR-II |
GroupedDBID | --- .3N .Y3 05W 0R~ 10A 123 1OC 29B 31~ 33P 3WU 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5VS 66C 702 7PT 8-1 8UM A00 AAESR AAHHS AANLZ AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BROTX BRXPI BY8 CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD F5P FEDTE G-S G.N GODZA HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LAW LC2 LC3 LEEKS LH- LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MSFUL MSSTM MXFUL MXSTM MY~ N9A O9- OIG P2W P4D Q11 QB0 QRW R.K RAD ROL RX1 SUPJJ V2E W99 WBKPD WOHZO WQJ WXSBR WYJ WYUIH XG1 XV2 ZZTAW ~IA NPM AAYXX CITATION 7QO 7T7 8FD AAMNL C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c4359-884e2ffd91461e4d09c6d3e58fac26a188f9224a4b2c869fc8770897081a38743 |
IEDL.DBID | 33P |
ISSN | 1527-8999 |
IngestDate | Fri Oct 25 22:30:32 EDT 2024 Tue Nov 19 05:10:33 EST 2024 Thu Sep 12 19:14:50 EDT 2024 Sat Sep 28 08:29:16 EDT 2024 Sat Aug 24 01:04:41 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | artificial flowers self-assembly electron microscopy Flower-like assembly organic-metal hybrid materials |
Language | English |
License | 2020 The Chemical Society of Japan & Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4359-884e2ffd91461e4d09c6d3e58fac26a188f9224a4b2c869fc8770897081a38743 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
PMID | 33215848 |
PQID | 2490511349 |
PQPubID | 1006501 |
PageCount | 27 |
ParticipantIDs | proquest_miscellaneous_2463099341 proquest_journals_2490511349 crossref_primary_10_1002_tcr_202000129 pubmed_primary_33215848 wiley_primary_10_1002_tcr_202000129_TCR202000129 |
PublicationCentury | 2000 |
PublicationDate | February 2021 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Chemical record |
PublicationTitleAlternate | Chem Rec |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2010; 10 2010; 16 2013; 3 2012; 2012 2019; 92 2017; 2 2007; 106 2019; 55 2004; 28 2014; 26 2016; 101 2011; 13 2020; 13 2020; 11 2020; 10 2008; 2 2019; 320 2018; 46 2015; 130 2018; 6 2010; 20 2018; 3 2013; 15 2014; 5 2018; 5 2015; 43 2020; 49 2006; 2006 2020; 46 2007; 61 2011; 23 2016; 116 2008; 158 2008; 20 2012; 258 2014; 6 2008; 153 2012; 22 2020; 219 2017; 402 2015; 13 2011; 257 2019; 9 2015; 5 2018; 184 2016; 19 2019; 5 2013; 49 2017; 2017 2015; 51 2016; 207 2020; 187 2011; 40 2020; 381 2016; 10 2019; 149 2007 2020; 343 2016; 92 2014; 40 2015; 7 2016; 120 2016; 12 2004; 10 2016; 6 2017; 53 2017; 92 2015; 115 2018; 237 2019; 43 2020 2017; 182 2009; 7 2017; 19 2020; 22 2014; 583 2019; 372 2012; 7 2012; 4 2016; 8 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_91_1 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_78_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_80_1 e_1_2_10_82_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 Wagalgave S. M. (e_1_2_10_93_1) 2020 e_1_2_10_22_1 e_1_2_10_43_1 Nakanishi T. (e_1_2_10_68_1) 2007 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_92_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_77_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 7 start-page: 794 year: 2009 end-page: 802 publication-title: Open Chem. – volume: 46 start-page: 11372 year: 2020 end-page: 11378 publication-title: Ceram. Int. – volume: 5 start-page: 494 year: 2018 end-page: 500 publication-title: ChemElectroChem – volume: 149 start-page: 2984 year: 2019 end-page: 2993 publication-title: Catal. Lett. – volume: 219 year: 2020 publication-title: Talanta – volume: 20 start-page: 443 year: 2008 end-page: 446 publication-title: Adv. Mater. – volume: 6 start-page: 3546 year: 2018 end-page: 3555 publication-title: ACS Sustainable Chem. Eng. – volume: 16 start-page: 7309 year: 2010 end-page: 7318 publication-title: Chemistry – volume: 13 start-page: 367 year: 2011 end-page: 370 publication-title: CrystEngComm – volume: 2006 start-page: 4787 year: 2006 end-page: 4792 publication-title: Eur. J. Inorg. Chem. – volume: 153 start-page: 25 year: 2008 end-page: 30 publication-title: Mater. Sci. Eng. B – volume: 22 start-page: 2849 year: 2020 end-page: 2858 publication-title: CrystEngComm – volume: 92 start-page: 2594 year: 2017 end-page: 2605 publication-title: J. Chem. Technol. Biotechnol. – volume: 115 start-page: 11718 year: 2015 end-page: 11940 publication-title: Chem. Rev. – volume: 207 start-page: 293 year: 2016 end-page: 300 publication-title: Electrochim. Acta – volume: 10 start-page: 8271 year: 2016 end-page: 8280 publication-title: ACS Nano – volume: 43 start-page: 14756 year: 2019 end-page: 14762 publication-title: New J. Chem. – volume: 15 start-page: 5314 year: 2013 end-page: 5325 publication-title: CrystEngComm – year: 2020 publication-title: New J. Chem. – volume: 101 start-page: 75 year: 2016 end-page: 81 publication-title: React. Funct. Polym. – volume: 106 start-page: 63 year: 2007 end-page: 69 publication-title: Mater. Chem. Phys. – volume: 258 start-page: 5455 year: 2012 end-page: 5461 publication-title: Appl. Surf. Sci. – volume: 583 start-page: 510 year: 2014 end-page: 515 publication-title: J. Alloys Compd. – start-page: 3 year: 2007 end-page: 2023 publication-title: Small – volume: 116 start-page: 11685 year: 2016 end-page: 11796 publication-title: Chem. Rev. – volume: 19 start-page: 202 year: 2017 publication-title: J. Nanopart. Res. – volume: 320 year: 2019 publication-title: Electrochim. Acta – volume: 10 start-page: 154 year: 2020 publication-title: Sci. Rep. – volume: 184 start-page: 9 year: 2018 end-page: 19 publication-title: Carbohydr. Polym. – volume: 372 start-page: 390 year: 2019 end-page: 398 publication-title: Chem. Eng. J. – volume: 92 start-page: 1047 year: 2019 end-page: 1052 publication-title: Bull. Chem. Soc. Jpn. – volume: 40 start-page: 11813 year: 2014 end-page: 11817 publication-title: Ceram. Int. – volume: 158 start-page: 712 year: 2008 end-page: 716 publication-title: Synth. Met. – volume: 55 start-page: 6385 year: 2019 end-page: 6388 publication-title: Chem. Commun. – volume: 51 start-page: 4386 year: 2015 end-page: 4389 publication-title: Chem. Commun. – volume: 182 start-page: 122 year: 2017 end-page: 128 publication-title: Chemosphere – volume: 13 start-page: 54 year: 2015 publication-title: J. Nanobiotechnol. – volume: 13 start-page: 4035 year: 2020 end-page: 4042 publication-title: Arab. J. Chem. – volume: 49 start-page: 5722 year: 2020 end-page: 5729 publication-title: Dalton Trans. – volume: 7 start-page: 42898 year: 2017 publication-title: Sci. Rep. – volume: 9 start-page: 1228 year: 2019 publication-title: Sci. Rep. – volume: 6 start-page: 22412 year: 2016 publication-title: Sci. Rep. – volume: 28 start-page: 1038 year: 2004 end-page: 1042 publication-title: New J. Chem. – volume: 3 start-page: 7472 year: 2013 end-page: 7478 publication-title: RSC Adv. – volume: 10 start-page: 2903 year: 2020 publication-title: Sci. Rep. – volume: 2 start-page: 2473 year: 2008 end-page: 2480 publication-title: ACS Nano – volume: 7 start-page: 43474 year: 2017 end-page: 43482 publication-title: RSC Adv. – volume: 7 start-page: 17335 year: 2017 publication-title: Sci. Rep. – volume: 187 start-page: 162 year: 2020 publication-title: Mikrochim. Acta – volume: 2 start-page: 10118 year: 2017 end-page: 10122 publication-title: ChemistrySelect – volume: 20 start-page: 6734 year: 2010 end-page: 6740 publication-title: J. Mater. Chem. – volume: 61 start-page: 3507 year: 2007 end-page: 3510 publication-title: Mater. Lett. – volume: 402 start-page: 154 year: 2017 end-page: 160 publication-title: Appl. Surf. Sci. – volume: 7 start-page: 11585 year: 2017 publication-title: Sci. Rep. – volume: 6 start-page: 14522 year: 2014 end-page: 14532 publication-title: ACS Appl. Mater. Interfaces – volume: 22 start-page: 3115 year: 2020 end-page: 3121 publication-title: CrystEngComm – volume: 43 start-page: 10 year: 2015 end-page: 17 publication-title: Opt. Mater. – volume: 53 start-page: 4581 year: 2017 end-page: 4584 publication-title: Chem. Commun. – volume: 2017 start-page: 1 year: 2017 end-page: 10 publication-title: Adv. Mater. Sci. Eng. – volume: 3 start-page: 17724 year: 2018 end-page: 17731 publication-title: ACS Omega – volume: 237 start-page: 1 year: 2018 end-page: 8 publication-title: Appl. Catal. B – volume: 49 start-page: 6093 year: 2013 end-page: 6095 publication-title: Chem. Commun. – volume: 5 start-page: 14609 year: 2015 publication-title: Sci. Rep. – volume: 51 start-page: 5998 year: 2015 end-page: 6001 publication-title: Chem. Commun. – volume: 7 start-page: 9776 year: 2015 end-page: 9783 publication-title: ACS Appl. Mater. Interfaces – volume: 40 start-page: 291 year: 2011 end-page: 305 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 428 year: 2012 end-page: 432 publication-title: Nat. Nanotechnol. – volume: 6 start-page: 46278 year: 2016 end-page: 46281 publication-title: RSC Adv. – volume: 8 start-page: 2562 year: 2016 end-page: 2572 publication-title: ACS Appl. Mater. Interfaces – volume: 2012 start-page: 954 year: 2012 end-page: 960 publication-title: Eur. J. Inorg. Chem. – volume: 40 start-page: 5507 year: 2014 end-page: 5514 publication-title: Ceram. Int. – volume: 12 start-page: 3094 year: 2016 end-page: 3100 publication-title: Small – volume: 381 year: 2020 publication-title: J. Hazard. Mater. – volume: 343 year: 2020 publication-title: Electrochim. Acta – volume: 22 start-page: 5550 year: 2012 end-page: 5559 publication-title: J. Mater. Chem. – volume: 46 start-page: 413 year: 2018 end-page: 422 publication-title: Artif. Cells, Nanomed., Biotechnol. – volume: 92 start-page: 660 year: 2016 end-page: 669 publication-title: Int. J. Biol. Macromol. – volume: 23 start-page: 3542 year: 2011 end-page: 3547 publication-title: Adv. Mater. – volume: 11 start-page: 61 year: 2020 end-page: 67 publication-title: Polym. Chem. – volume: 257 start-page: 3388 year: 2011 end-page: 3391 publication-title: Appl. Surf. Sci. – volume: 7 start-page: 16501 year: 2017 publication-title: Sci. Rep. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 4 start-page: 2281 year: 2012 end-page: 2287 publication-title: Nanoscale – volume: 55 start-page: 11599 year: 2019 end-page: 11602 publication-title: Chem. Commun. – volume: 120 start-page: 17348 year: 2016 end-page: 17356 publication-title: J. Phys. Chem. C – volume: 26 start-page: 4481 year: 2014 end-page: 4485 publication-title: Adv. Mater. – volume: 10 start-page: 790 year: 2010 end-page: 797 publication-title: Cryst. Growth Des. – volume: 19 start-page: 12 year: 2016 end-page: 18 publication-title: Mater. Today – volume: 130 start-page: 299 year: 2015 end-page: 304 publication-title: Colloids Surf. B – volume: 10 start-page: 6163 year: 2004 end-page: 6171 publication-title: Chem. Eur. J. – volume: 9 start-page: 2558 year: 2019 end-page: 2567 publication-title: ACS Catal. – volume: 5 start-page: 3108 year: 2014 publication-title: Nat. Commun. – ident: e_1_2_10_41_1 doi: 10.1039/D0CE00024H – ident: e_1_2_10_66_1 doi: 10.1126/sciadv.aaw6264 – ident: e_1_2_10_8_1 doi: 10.1002/chem.200400451 – ident: e_1_2_10_38_1 doi: 10.1016/j.electacta.2019.134614 – ident: e_1_2_10_82_1 doi: 10.1002/slct.201701967 – year: 2020 ident: e_1_2_10_93_1 publication-title: New J. Chem. contributor: fullname: Wagalgave S. M. – ident: e_1_2_10_25_1 doi: 10.1246/bcsj.20190014 – ident: e_1_2_10_89_1 doi: 10.1021/cg901170j – ident: e_1_2_10_17_1 doi: 10.1016/j.matlet.2006.11.105 – ident: e_1_2_10_51_1 doi: 10.1002/celc.201701074 – ident: e_1_2_10_39_1 doi: 10.1016/j.apsusc.2010.11.030 – ident: e_1_2_10_2_1 doi: 10.1039/C0CS00042F – ident: e_1_2_10_84_1 doi: 10.1021/acs.chemrev.5b00263 – ident: e_1_2_10_67_1 doi: 10.1038/s41598-020-59699-5 – ident: e_1_2_10_65_1 doi: 10.1039/C6CC09858D – ident: e_1_2_10_30_1 doi: 10.1039/C5CC00351B – ident: e_1_2_10_78_1 doi: 10.1038/s41598-017-17538-0 – ident: e_1_2_10_28_1 doi: 10.1021/nn800442q – ident: e_1_2_10_87_1 doi: 10.1016/j.synthmet.2008.04.015 – ident: e_1_2_10_20_1 doi: 10.1039/D0DT00778A – ident: e_1_2_10_83_1 doi: 10.1038/s41598-017-15599-9 – ident: e_1_2_10_6_1 doi: 10.1021/am503787h – ident: e_1_2_10_33_1 doi: 10.1021/acsami.5b01654 – ident: e_1_2_10_76_1 doi: 10.1038/ncomms4108 – ident: e_1_2_10_18_1 doi: 10.1021/acsami.5b10158 – ident: e_1_2_10_77_1 doi: 10.1039/c3ra23358h – ident: e_1_2_10_34_1 doi: 10.1021/acscatal.8b04064 – ident: e_1_2_10_19_1 doi: 10.1039/C7RA06592B – ident: e_1_2_10_62_1 doi: 10.1016/j.chemosphere.2017.05.012 – ident: e_1_2_10_11_1 doi: 10.1016/j.matchemphys.2007.05.017 – ident: e_1_2_10_24_1 doi: 10.1002/cssc.201701647 – ident: e_1_2_10_70_1 doi: 10.1039/c0jm00110d – ident: e_1_2_10_69_1 doi: 10.1002/adma.200701537 – ident: e_1_2_10_32_1 doi: 10.1016/j.cej.2019.04.174 – ident: e_1_2_10_9_1 doi: 10.1002/ejic.200600553 – ident: e_1_2_10_54_1 doi: 10.1016/j.jhazmat.2019.120947 – ident: e_1_2_10_60_1 doi: 10.1021/acs.jpcc.6b03537 – ident: e_1_2_10_79_1 doi: 10.1155/2017/4150648 – ident: e_1_2_10_21_1 doi: 10.1016/j.mseb.2008.09.017 – ident: e_1_2_10_49_1 doi: 10.1038/srep22412 – ident: e_1_2_10_3_1 doi: 10.1080/21691401.2018.1428812 – ident: e_1_2_10_22_1 doi: 10.2478/s11532-009-0071-6 – ident: e_1_2_10_73_1 doi: 10.1039/c3ce40385h – ident: e_1_2_10_55_1 doi: 10.1038/nnano.2012.80 – ident: e_1_2_10_85_1 doi: 10.1038/srep42898 – ident: e_1_2_10_40_1 doi: 10.1016/j.electacta.2020.136138 – ident: e_1_2_10_42_1 doi: 10.1016/j.talanta.2020.121323 – ident: e_1_2_10_72_1 doi: 10.1039/c3cc42504e – ident: e_1_2_10_74_1 doi: 10.1002/adma.201101295 – ident: e_1_2_10_75_1 doi: 10.1039/c2jm14623a – ident: e_1_2_10_59_1 doi: 10.1016/j.ijbiomac.2016.06.071 – ident: e_1_2_10_45_1 doi: 10.1016/j.optmat.2015.02.014 – ident: e_1_2_10_91_1 doi: 10.1039/C9PY01625B – ident: e_1_2_10_16_1 doi: 10.1016/j.ceramint.2014.04.013 – ident: e_1_2_10_64_1 doi: 10.1039/C9CC02285F – start-page: 3 year: 2007 ident: e_1_2_10_68_1 publication-title: Small contributor: fullname: Nakanishi T. – ident: e_1_2_10_88_1 doi: 10.1021/acssuschemeng.7b03870 – ident: e_1_2_10_80_1 doi: 10.1021/acs.chemrev.6b00160 – ident: e_1_2_10_81_1 doi: 10.1038/srep14609 – ident: e_1_2_10_14_1 doi: 10.1016/j.arabjc.2019.06.003 – ident: e_1_2_10_48_1 doi: 10.1039/C9CC05872A – ident: e_1_2_10_53_1 doi: 10.1016/j.carbpol.2017.12.029 – ident: e_1_2_10_43_1 doi: 10.1021/acsomega.8b02577 – ident: e_1_2_10_46_1 doi: 10.1016/j.electacta.2016.05.006 – ident: e_1_2_10_90_1 doi: 10.1016/j.reactfunctpolym.2016.02.010 – ident: e_1_2_10_27_1 doi: 10.1002/adma.201306055 – ident: e_1_2_10_10_1 doi: 10.1016/j.ceramint.2013.10.140 – ident: e_1_2_10_4_1 doi: 10.1186/s12951-015-0118-0 – ident: e_1_2_10_47_1 doi: 10.1038/s41598-017-09477-7 – ident: e_1_2_10_63_1 doi: 10.1002/jctb.5275 – ident: e_1_2_10_37_1 doi: 10.1007/s11051-017-3905-8 – ident: e_1_2_10_23_1 doi: 10.1002/ejic.201100936 – ident: e_1_2_10_12_1 doi: 10.1016/j.apsusc.2012.02.034 – ident: e_1_2_10_52_1 doi: 10.1007/s10562-019-02880-x – ident: e_1_2_10_57_1 doi: 10.1016/j.colsurfb.2015.04.033 – ident: e_1_2_10_29_1 doi: 10.1039/c2nr12053d – ident: e_1_2_10_13_1 doi: 10.1039/C0CE00083C – ident: e_1_2_10_58_1 doi: 10.1039/C6RA04664A – ident: e_1_2_10_86_1 doi: 10.1039/b400445k – ident: e_1_2_10_71_1 doi: 10.1002/chem.201000332 – ident: e_1_2_10_35_1 doi: 10.1016/j.apcatb.2018.05.060 – ident: e_1_2_10_1_1 doi: 10.1016/j.mattod.2015.08.021 – ident: e_1_2_10_36_1 doi: 10.1038/s41598-018-37463-0 – ident: e_1_2_10_5_1 doi: 10.1016/j.apsusc.2017.01.042 – ident: e_1_2_10_56_1 doi: 10.1039/C5CC00040H – ident: e_1_2_10_50_1 doi: 10.1038/s41598-019-57044-z – ident: e_1_2_10_44_1 doi: 10.1039/C9NJ01291E – ident: e_1_2_10_15_1 doi: 10.1016/j.jallcom.2013.08.184 – ident: e_1_2_10_26_1 doi: 10.1016/j.ceramint.2020.01.167 – ident: e_1_2_10_92_1 doi: 10.1007/s00604-020-4151-9 – ident: e_1_2_10_31_1 doi: 10.1039/D0CE00371A – ident: e_1_2_10_61_1 doi: 10.1021/acsnano.6b01003 – ident: e_1_2_10_7_1 doi: 10.1002/smll.201600273 |
SSID | ssj0011477 |
Score | 2.3950756 |
SecondaryResourceType | review_article |
Snippet | Mimicking natural objects such as flowers, is an objective of scientists not only because of their attractive appearance, but also to understand the natural... Abstract Mimicking natural objects such as flowers, is an objective of scientists not only because of their attractive appearance, but also to understand the... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 257 |
SubjectTerms | artificial flowers Catalysis Drug delivery electron microscopy Flower-like assembly Flowers Mimicry organic-metal hybrid materials self-assembly Superstructures |
Title | Flower‐Like Superstructures: Structural Features, Applications and Future Perspectives |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202000129 https://www.ncbi.nlm.nih.gov/pubmed/33215848 https://www.proquest.com/docview/2490511349 https://search.proquest.com/docview/2463099341 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60F734fkSrRBBPBtPdPHa9SKkNPYgUW6G3sMluQJS0EHL3J_gb_SXObh61CIJ4SMhrk2UmO_PNPr4BuFQ0UyrTOcLQ3zieCBNH02bhjgVChVIQk-twNAkfZ-x-qGly7pq1MBU_RNvhpluGsde6gYukuFmShqKhwvCOVF0paIMxUjBLOOi4HUXoeSbzos7c6mBcwWuOTSx_s1J61Sf9AJqruNU4nmj731Xega0ac9r96ifZhTWV78HGoEn1tg-z6E0nS_t8_3h4eVX2pFxoUKiJZUuMxm_tSX2ML9GQUV-8tvvfhr5tkUs7MvQk9ni5fLM4gOdoOB2MnDrlgpMibuIOY54iWSa5TvetPOnyNJBU-SwTKQlEj7GMo_aEl5CUBTxLWRi6jOPWE5QhGjmETj7P1THYXkqShDIpU4wg_UwIN-RCMJn4whW-pBZcNUKPFxWzRlxxKJMYBRW3grKg26gkrhtYEWPUiOZEcytacNHeRrHp8Q6Rq3mpnwkoAmD00xYcVapsv0QpYh3mMQtco7HfqxBPB0_tycnfi5zCJtFzYcxs7y50UGvqDNYLWZ6bP_YLQDLqhw |
link.rule.ids | 315,782,786,1408,27935,27936,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFL1oXdSN70e0agRxZTDNTJMZd6VaKlYRW6G7MMlMQJS0ULL3E_xGv8R7kzS1CIK4SMhrJsPceZw7j3MAzgxLjElIIwz7G4erIHKINgtPwlcm0MrLtQ57g-BhJK5viCan2sVf8ENUA25UM_L2mio4DUhfzllDsaVC_84rxlKWYYX7XJJ4A2OP1TxCk-fai6Td6qBnIUuWTYzgciH4Yq_0A2ouIte86-mu_z_RG7BWwk67XZSTTVgy6RbUOzO1t20Ydd9IL-3z_aP_8mrsQTYhXEjcshk65Ff2oLzGSAg10sMLu_1t9ttWqba7OUOJ_TjfwTndgefuzbDTc0rVBSdG6CQdIbjxkkRLUvw2XLsy9jUzLZGo2PNVU4hEogEVj7xY-DKJRRC4QuLRVEwgINmFWjpOzT7YPPaiiAmtY3QiW4lSbiCVEjpqKVe1NLPgfJbr4aQg1wgLGmUvxIwKq4yyoDGzSVjWsWmIjiO2KESvaMFp9RqzjaY8VGrGGX3jM8TA2FVbsFfYsvoTYwh3BBcWuLnJfk9COOw8VTcHfw9yAvXe8L4f9m8f7g5h1aOlMfni7wbU0ILmCJanOjvOi-8XDE3uqA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60gvrifcQzgvhkMM3m2PgipW2oKKXYCn0Lm-wuiBILpe_-BH-jv8SZXFoEQXxIyLWbZWZ355s9vgE4V0wrpSlGGNobyxVBYhFtFp64L1QghZPHOuwNg_6Yd7pEk3NT7YUp-CHqATdqGXl_TQ18IvXVF2kodlTo3jnFUMoiLLkExWkPBxvU0whNNw-9SKFbLXQswpJkEzO4mks-b5R-IM154Jpbnmj932XegLUSdJqtopZswoLKtmClXcV624Zx9ELR0j7e3u-fnpU5nE0IFRKz7Azd8WtzWF5jJoQZ6eGl2fo2922KTJpRzk9iDr72b0534DHqjto9q4y5YKUInEKLc1c5WsuQ4n0rV9ph6kumPK5F6viiybkOUX3CTZyU-6FOeRDYPMSjKRhHOLILjew1U_tguqmTJIxLmaIL6Wkh7CAUgsvEE7bwJDPgohJ6PCmoNeKCRNmJUVBxLSgDjiqVxGULm8boNmJ_QuSKBpzVr1FsNOEhMvU6o298hggYDbUBe4Uq6z8xhmCHu9wAO9fY70WIR-2H-ubg70lOYXnQieL72_7dIaw6tC4mX_l9BA1UoDqGxamcneSV9xNFe-1X |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flower%E2%80%90Like+Superstructures%3A+Structural+Features%2C+Applications+and+Future+Perspectives&rft.jtitle=Chemical+record&rft.au=Bhosale%2C+Sheshanath+V.&rft.au=Al+Kobaisi%2C+Mohammad&rft.au=Jadhav%2C+Ratan+W.&rft.au=Jones%2C+Lathe+A.&rft.date=2021-02-01&rft.issn=1527-8999&rft.eissn=1528-0691&rft.volume=21&rft.issue=2&rft.spage=257&rft.epage=283&rft_id=info:doi/10.1002%2Ftcr.202000129&rft.externalDBID=10.1002%252Ftcr.202000129&rft.externalDocID=TCR202000129 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon |