Flower‐Like Superstructures: Structural Features, Applications and Future Perspectives

Mimicking natural objects such as flowers, is an objective of scientists not only because of their attractive appearance, but also to understand the natural phenomena that underpin real world applications such as drug delivery, enzymatic reactions, electronics, and catalysis, to name few. This artic...

Full description

Saved in:
Bibliographic Details
Published in:Chemical record Vol. 21; no. 2; pp. 257 - 283
Main Authors: Bhosale, Sheshanath V., Al Kobaisi, Mohammad, Jadhav, Ratan W., Jones, Lathe A.
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01-02-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Mimicking natural objects such as flowers, is an objective of scientists not only because of their attractive appearance, but also to understand the natural phenomena that underpin real world applications such as drug delivery, enzymatic reactions, electronics, and catalysis, to name few. This article reviews the types, preparation methods, and structural features of flower‐like structures along with their key applications in various fields. We discuss the various types of flower‐like structures composed of inorganic, organic‐inorganic hybrid, inorganic‐protein, inorganic‐enzyme and organic compositions. We also discuss recent development in flower‐like structures prepared by self‐assembly approaches. Finally, we conclude our review with the future prospects of flower‐like micro‐structures in key fields, being biomedicine, sensing and catalysis. In this review, we described general approaches towards supramolecular self‐assembly of organic, metal‐organic, metal‐protein, metal‐enzyme hybrid materials for the formation of flower‐like superstructures. These flowers shown to be high surface‐to‐volume ration and further used for various applications such as catalysis, drug delivery to name few. We give brief overview in the mimicking natural flowers via artificial‐way by controlling various stimulus is discussed.
AbstractList Mimicking natural objects such as flowers, is an objective of scientists not only because of their attractive appearance, but also to understand the natural phenomena that underpin real world applications such as drug delivery, enzymatic reactions, electronics, and catalysis, to name few. This article reviews the types, preparation methods, and structural features of flower‐like structures along with their key applications in various fields. We discuss the various types of flower‐like structures composed of inorganic, organic‐inorganic hybrid, inorganic‐protein, inorganic‐enzyme and organic compositions. We also discuss recent development in flower‐like structures prepared by self‐assembly approaches. Finally, we conclude our review with the future prospects of flower‐like micro‐structures in key fields, being biomedicine, sensing and catalysis.
Mimicking natural objects such as flowers, is an objective of scientists not only because of their attractive appearance, but also to understand the natural phenomena that underpin real world applications such as drug delivery, enzymatic reactions, electronics, and catalysis, to name few. This article reviews the types, preparation methods, and structural features of flower‐like structures along with their key applications in various fields. We discuss the various types of flower‐like structures composed of inorganic, organic‐inorganic hybrid, inorganic‐protein, inorganic‐enzyme and organic compositions. We also discuss recent development in flower‐like structures prepared by self‐assembly approaches. Finally, we conclude our review with the future prospects of flower‐like micro‐structures in key fields, being biomedicine, sensing and catalysis. In this review, we described general approaches towards supramolecular self‐assembly of organic, metal‐organic, metal‐protein, metal‐enzyme hybrid materials for the formation of flower‐like superstructures. These flowers shown to be high surface‐to‐volume ration and further used for various applications such as catalysis, drug delivery to name few. We give brief overview in the mimicking natural flowers via artificial‐way by controlling various stimulus is discussed.
Abstract Mimicking natural objects such as flowers, is an objective of scientists not only because of their attractive appearance, but also to understand the natural phenomena that underpin real world applications such as drug delivery, enzymatic reactions, electronics, and catalysis, to name few. This article reviews the types, preparation methods, and structural features of flower‐like structures along with their key applications in various fields. We discuss the various types of flower‐like structures composed of inorganic, organic‐inorganic hybrid, inorganic‐protein, inorganic‐enzyme and organic compositions. We also discuss recent development in flower‐like structures prepared by self‐assembly approaches. Finally, we conclude our review with the future prospects of flower‐like micro‐structures in key fields, being biomedicine, sensing and catalysis.
Author Bhosale, Sheshanath V.
Jadhav, Ratan W.
Al Kobaisi, Mohammad
Jones, Lathe A.
Author_xml – sequence: 1
  givenname: Sheshanath V.
  surname: Bhosale
  fullname: Bhosale, Sheshanath V.
  email: svbhosale@unigoa.ac.in
  organization: Goa University
– sequence: 2
  givenname: Mohammad
  surname: Al Kobaisi
  fullname: Al Kobaisi, Mohammad
  organization: RMIT University
– sequence: 3
  givenname: Ratan W.
  surname: Jadhav
  fullname: Jadhav, Ratan W.
  organization: Goa University
– sequence: 4
  givenname: Lathe A.
  surname: Jones
  fullname: Jones, Lathe A.
  organization: RMIT University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33215848$$D View this record in MEDLINE/PubMed
BookMark eNp90E1LwzAYB_AgE_eiR69S8OLBzry1TbyN4VQYKG6Ct5KlT6Gza2vSOnbzI_gZ_SRmL07w4CHkIfnlT_h3UasoC0DolOA-wZhe1dr0KaYYY0LlAeqQgAofh5K0NnPkCyllG3WtnTtCeBQdoTZjlASCiw56GeXlEszXx-c4ewVv0lRgbG0aXTcG7LU32c0q90agNoeX3qCq8kyrOisL66ki8UbN-sZ7dG8r0HX2DvYYHaYqt3Cy23voeXQzHd7544fb--Fg7GvOAukLwYGmaSIJDwnwBEsdJgwCkSpNQ0WESCWlXPEZ1SKUqRZRhIV0iygmIs566GKbW5nyrQFbx4vMashzVUDZ2JjykGEpGSeOnv-h87IxhfudUxIHhDAunfK3SpvSWgNpXJlsocwqJjheVx67yuN95c6f7VKb2QKSvf7p2IFoC5ZZDqv_0-Lp8Ok3-hvtm46p
CitedBy_id crossref_primary_10_20517_microstructures_2023_89
crossref_primary_10_1007_s13204_023_02871_w
crossref_primary_10_1016_j_apsusc_2021_150245
crossref_primary_10_1016_j_jiec_2022_11_048
crossref_primary_10_1002_smsc_202200043
crossref_primary_10_1063_5_0071142
crossref_primary_10_1007_s13204_022_02746_6
crossref_primary_10_2109_jcersj2_21157
crossref_primary_10_1007_s12274_022_4470_8
crossref_primary_10_1016_j_mtadv_2024_100477
crossref_primary_10_1016_j_colsurfb_2021_112149
Cites_doi 10.1039/D0CE00024H
10.1126/sciadv.aaw6264
10.1002/chem.200400451
10.1016/j.electacta.2019.134614
10.1002/slct.201701967
10.1246/bcsj.20190014
10.1021/cg901170j
10.1016/j.matlet.2006.11.105
10.1002/celc.201701074
10.1016/j.apsusc.2010.11.030
10.1039/C0CS00042F
10.1021/acs.chemrev.5b00263
10.1038/s41598-020-59699-5
10.1039/C6CC09858D
10.1039/C5CC00351B
10.1038/s41598-017-17538-0
10.1021/nn800442q
10.1016/j.synthmet.2008.04.015
10.1039/D0DT00778A
10.1038/s41598-017-15599-9
10.1021/am503787h
10.1021/acsami.5b01654
10.1038/ncomms4108
10.1021/acsami.5b10158
10.1039/c3ra23358h
10.1021/acscatal.8b04064
10.1039/C7RA06592B
10.1016/j.chemosphere.2017.05.012
10.1016/j.matchemphys.2007.05.017
10.1002/cssc.201701647
10.1039/c0jm00110d
10.1002/adma.200701537
10.1016/j.cej.2019.04.174
10.1002/ejic.200600553
10.1016/j.jhazmat.2019.120947
10.1021/acs.jpcc.6b03537
10.1155/2017/4150648
10.1016/j.mseb.2008.09.017
10.1038/srep22412
10.1080/21691401.2018.1428812
10.2478/s11532-009-0071-6
10.1039/c3ce40385h
10.1038/nnano.2012.80
10.1038/srep42898
10.1016/j.electacta.2020.136138
10.1016/j.talanta.2020.121323
10.1039/c3cc42504e
10.1002/adma.201101295
10.1039/c2jm14623a
10.1016/j.ijbiomac.2016.06.071
10.1016/j.optmat.2015.02.014
10.1039/C9PY01625B
10.1016/j.ceramint.2014.04.013
10.1039/C9CC02285F
10.1021/acssuschemeng.7b03870
10.1021/acs.chemrev.6b00160
10.1038/srep14609
10.1016/j.arabjc.2019.06.003
10.1039/C9CC05872A
10.1016/j.carbpol.2017.12.029
10.1021/acsomega.8b02577
10.1016/j.electacta.2016.05.006
10.1016/j.reactfunctpolym.2016.02.010
10.1002/adma.201306055
10.1016/j.ceramint.2013.10.140
10.1186/s12951-015-0118-0
10.1038/s41598-017-09477-7
10.1002/jctb.5275
10.1007/s11051-017-3905-8
10.1002/ejic.201100936
10.1016/j.apsusc.2012.02.034
10.1007/s10562-019-02880-x
10.1016/j.colsurfb.2015.04.033
10.1039/c2nr12053d
10.1039/C0CE00083C
10.1039/C6RA04664A
10.1039/b400445k
10.1002/chem.201000332
10.1016/j.apcatb.2018.05.060
10.1016/j.mattod.2015.08.021
10.1038/s41598-018-37463-0
10.1016/j.apsusc.2017.01.042
10.1039/C5CC00040H
10.1038/s41598-019-57044-z
10.1039/C9NJ01291E
10.1016/j.jallcom.2013.08.184
10.1016/j.ceramint.2020.01.167
10.1007/s00604-020-4151-9
10.1039/D0CE00371A
10.1021/acsnano.6b01003
10.1002/smll.201600273
ContentType Journal Article
Copyright 2020 The Chemical Society of Japan & Wiley‐VCH GmbH
2020 The Chemical Society of Japan & Wiley-VCH GmbH.
2021 The Chemical Society of Japan & Wiley‐VCH GmbH
Copyright_xml – notice: 2020 The Chemical Society of Japan & Wiley‐VCH GmbH
– notice: 2020 The Chemical Society of Japan & Wiley-VCH GmbH.
– notice: 2021 The Chemical Society of Japan & Wiley‐VCH GmbH
DBID NPM
AAYXX
CITATION
7QO
7T7
8FD
C1K
FR3
P64
7X8
DOI 10.1002/tcr.202000129
DatabaseName PubMed
CrossRef
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
PubMed

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1528-0691
EndPage 283
ExternalDocumentID 10_1002_tcr_202000129
33215848
TCR202000129
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: University Grant Commission
– fundername: S.V.B.
– fundername: Council of Scientific & Industrial Research
  funderid: 02(0357)/19/EMR-II
– fundername: Faculty Research Program, New Delhi, India
– fundername: Council of Scientific & Industrial Research
  grantid: 02(0357)/19/EMR-II
GroupedDBID ---
.3N
.Y3
05W
0R~
10A
123
1OC
29B
31~
33P
3WU
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5VS
66C
702
7PT
8-1
8UM
A00
AAESR
AAHHS
AANLZ
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BROTX
BRXPI
BY8
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F5P
FEDTE
G-S
G.N
GODZA
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
LATKE
LAW
LC2
LC3
LEEKS
LH-
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MSFUL
MSSTM
MXFUL
MXSTM
MY~
N9A
O9-
OIG
P2W
P4D
Q11
QB0
QRW
R.K
RAD
ROL
RX1
SUPJJ
V2E
W99
WBKPD
WOHZO
WQJ
WXSBR
WYJ
WYUIH
XG1
XV2
ZZTAW
~IA
NPM
AAYXX
CITATION
7QO
7T7
8FD
AAMNL
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c4359-884e2ffd91461e4d09c6d3e58fac26a188f9224a4b2c869fc8770897081a38743
IEDL.DBID 33P
ISSN 1527-8999
IngestDate Fri Oct 25 22:30:32 EDT 2024
Tue Nov 19 05:10:33 EST 2024
Thu Sep 12 19:14:50 EDT 2024
Sat Sep 28 08:29:16 EDT 2024
Sat Aug 24 01:04:41 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords artificial flowers
self-assembly
electron microscopy
Flower-like assembly
organic-metal hybrid materials
Language English
License 2020 The Chemical Society of Japan & Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4359-884e2ffd91461e4d09c6d3e58fac26a188f9224a4b2c869fc8770897081a38743
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
PMID 33215848
PQID 2490511349
PQPubID 1006501
PageCount 27
ParticipantIDs proquest_miscellaneous_2463099341
proquest_journals_2490511349
crossref_primary_10_1002_tcr_202000129
pubmed_primary_33215848
wiley_primary_10_1002_tcr_202000129_TCR202000129
PublicationCentury 2000
PublicationDate February 2021
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Chemical record
PublicationTitleAlternate Chem Rec
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2010; 10
2010; 16
2013; 3
2012; 2012
2019; 92
2017; 2
2007; 106
2019; 55
2004; 28
2014; 26
2016; 101
2011; 13
2020; 13
2020; 11
2020; 10
2008; 2
2019; 320
2018; 46
2015; 130
2018; 6
2010; 20
2018; 3
2013; 15
2014; 5
2018; 5
2015; 43
2020; 49
2006; 2006
2020; 46
2007; 61
2011; 23
2016; 116
2008; 158
2008; 20
2012; 258
2014; 6
2008; 153
2012; 22
2020; 219
2017; 402
2015; 13
2011; 257
2019; 9
2015; 5
2018; 184
2016; 19
2019; 5
2013; 49
2017; 2017
2015; 51
2016; 207
2020; 187
2011; 40
2020; 381
2016; 10
2019; 149
2007
2020; 343
2016; 92
2014; 40
2015; 7
2016; 120
2016; 12
2004; 10
2016; 6
2017; 53
2017; 92
2015; 115
2018; 237
2019; 43
2020
2017; 182
2009; 7
2017; 19
2020; 22
2014; 583
2019; 372
2012; 7
2012; 4
2016; 8
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_91_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_80_1
e_1_2_10_82_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
Wagalgave S. M. (e_1_2_10_93_1) 2020
e_1_2_10_22_1
e_1_2_10_43_1
Nakanishi T. (e_1_2_10_68_1) 2007
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_92_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 7
  start-page: 794
  year: 2009
  end-page: 802
  publication-title: Open Chem.
– volume: 46
  start-page: 11372
  year: 2020
  end-page: 11378
  publication-title: Ceram. Int.
– volume: 5
  start-page: 494
  year: 2018
  end-page: 500
  publication-title: ChemElectroChem
– volume: 149
  start-page: 2984
  year: 2019
  end-page: 2993
  publication-title: Catal. Lett.
– volume: 219
  year: 2020
  publication-title: Talanta
– volume: 20
  start-page: 443
  year: 2008
  end-page: 446
  publication-title: Adv. Mater.
– volume: 6
  start-page: 3546
  year: 2018
  end-page: 3555
  publication-title: ACS Sustainable Chem. Eng.
– volume: 16
  start-page: 7309
  year: 2010
  end-page: 7318
  publication-title: Chemistry
– volume: 13
  start-page: 367
  year: 2011
  end-page: 370
  publication-title: CrystEngComm
– volume: 2006
  start-page: 4787
  year: 2006
  end-page: 4792
  publication-title: Eur. J. Inorg. Chem.
– volume: 153
  start-page: 25
  year: 2008
  end-page: 30
  publication-title: Mater. Sci. Eng. B
– volume: 22
  start-page: 2849
  year: 2020
  end-page: 2858
  publication-title: CrystEngComm
– volume: 92
  start-page: 2594
  year: 2017
  end-page: 2605
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 115
  start-page: 11718
  year: 2015
  end-page: 11940
  publication-title: Chem. Rev.
– volume: 207
  start-page: 293
  year: 2016
  end-page: 300
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 8271
  year: 2016
  end-page: 8280
  publication-title: ACS Nano
– volume: 43
  start-page: 14756
  year: 2019
  end-page: 14762
  publication-title: New J. Chem.
– volume: 15
  start-page: 5314
  year: 2013
  end-page: 5325
  publication-title: CrystEngComm
– year: 2020
  publication-title: New J. Chem.
– volume: 101
  start-page: 75
  year: 2016
  end-page: 81
  publication-title: React. Funct. Polym.
– volume: 106
  start-page: 63
  year: 2007
  end-page: 69
  publication-title: Mater. Chem. Phys.
– volume: 258
  start-page: 5455
  year: 2012
  end-page: 5461
  publication-title: Appl. Surf. Sci.
– volume: 583
  start-page: 510
  year: 2014
  end-page: 515
  publication-title: J. Alloys Compd.
– start-page: 3
  year: 2007
  end-page: 2023
  publication-title: Small
– volume: 116
  start-page: 11685
  year: 2016
  end-page: 11796
  publication-title: Chem. Rev.
– volume: 19
  start-page: 202
  year: 2017
  publication-title: J. Nanopart. Res.
– volume: 320
  year: 2019
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 154
  year: 2020
  publication-title: Sci. Rep.
– volume: 184
  start-page: 9
  year: 2018
  end-page: 19
  publication-title: Carbohydr. Polym.
– volume: 372
  start-page: 390
  year: 2019
  end-page: 398
  publication-title: Chem. Eng. J.
– volume: 92
  start-page: 1047
  year: 2019
  end-page: 1052
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 40
  start-page: 11813
  year: 2014
  end-page: 11817
  publication-title: Ceram. Int.
– volume: 158
  start-page: 712
  year: 2008
  end-page: 716
  publication-title: Synth. Met.
– volume: 55
  start-page: 6385
  year: 2019
  end-page: 6388
  publication-title: Chem. Commun.
– volume: 51
  start-page: 4386
  year: 2015
  end-page: 4389
  publication-title: Chem. Commun.
– volume: 182
  start-page: 122
  year: 2017
  end-page: 128
  publication-title: Chemosphere
– volume: 13
  start-page: 54
  year: 2015
  publication-title: J. Nanobiotechnol.
– volume: 13
  start-page: 4035
  year: 2020
  end-page: 4042
  publication-title: Arab. J. Chem.
– volume: 49
  start-page: 5722
  year: 2020
  end-page: 5729
  publication-title: Dalton Trans.
– volume: 7
  start-page: 42898
  year: 2017
  publication-title: Sci. Rep.
– volume: 9
  start-page: 1228
  year: 2019
  publication-title: Sci. Rep.
– volume: 6
  start-page: 22412
  year: 2016
  publication-title: Sci. Rep.
– volume: 28
  start-page: 1038
  year: 2004
  end-page: 1042
  publication-title: New J. Chem.
– volume: 3
  start-page: 7472
  year: 2013
  end-page: 7478
  publication-title: RSC Adv.
– volume: 10
  start-page: 2903
  year: 2020
  publication-title: Sci. Rep.
– volume: 2
  start-page: 2473
  year: 2008
  end-page: 2480
  publication-title: ACS Nano
– volume: 7
  start-page: 43474
  year: 2017
  end-page: 43482
  publication-title: RSC Adv.
– volume: 7
  start-page: 17335
  year: 2017
  publication-title: Sci. Rep.
– volume: 187
  start-page: 162
  year: 2020
  publication-title: Mikrochim. Acta
– volume: 2
  start-page: 10118
  year: 2017
  end-page: 10122
  publication-title: ChemistrySelect
– volume: 20
  start-page: 6734
  year: 2010
  end-page: 6740
  publication-title: J. Mater. Chem.
– volume: 61
  start-page: 3507
  year: 2007
  end-page: 3510
  publication-title: Mater. Lett.
– volume: 402
  start-page: 154
  year: 2017
  end-page: 160
  publication-title: Appl. Surf. Sci.
– volume: 7
  start-page: 11585
  year: 2017
  publication-title: Sci. Rep.
– volume: 6
  start-page: 14522
  year: 2014
  end-page: 14532
  publication-title: ACS Appl. Mater. Interfaces
– volume: 22
  start-page: 3115
  year: 2020
  end-page: 3121
  publication-title: CrystEngComm
– volume: 43
  start-page: 10
  year: 2015
  end-page: 17
  publication-title: Opt. Mater.
– volume: 53
  start-page: 4581
  year: 2017
  end-page: 4584
  publication-title: Chem. Commun.
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 10
  publication-title: Adv. Mater. Sci. Eng.
– volume: 3
  start-page: 17724
  year: 2018
  end-page: 17731
  publication-title: ACS Omega
– volume: 237
  start-page: 1
  year: 2018
  end-page: 8
  publication-title: Appl. Catal. B
– volume: 49
  start-page: 6093
  year: 2013
  end-page: 6095
  publication-title: Chem. Commun.
– volume: 5
  start-page: 14609
  year: 2015
  publication-title: Sci. Rep.
– volume: 51
  start-page: 5998
  year: 2015
  end-page: 6001
  publication-title: Chem. Commun.
– volume: 7
  start-page: 9776
  year: 2015
  end-page: 9783
  publication-title: ACS Appl. Mater. Interfaces
– volume: 40
  start-page: 291
  year: 2011
  end-page: 305
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 428
  year: 2012
  end-page: 432
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 46278
  year: 2016
  end-page: 46281
  publication-title: RSC Adv.
– volume: 8
  start-page: 2562
  year: 2016
  end-page: 2572
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2012
  start-page: 954
  year: 2012
  end-page: 960
  publication-title: Eur. J. Inorg. Chem.
– volume: 40
  start-page: 5507
  year: 2014
  end-page: 5514
  publication-title: Ceram. Int.
– volume: 12
  start-page: 3094
  year: 2016
  end-page: 3100
  publication-title: Small
– volume: 381
  year: 2020
  publication-title: J. Hazard. Mater.
– volume: 343
  year: 2020
  publication-title: Electrochim. Acta
– volume: 22
  start-page: 5550
  year: 2012
  end-page: 5559
  publication-title: J. Mater. Chem.
– volume: 46
  start-page: 413
  year: 2018
  end-page: 422
  publication-title: Artif. Cells, Nanomed., Biotechnol.
– volume: 92
  start-page: 660
  year: 2016
  end-page: 669
  publication-title: Int. J. Biol. Macromol.
– volume: 23
  start-page: 3542
  year: 2011
  end-page: 3547
  publication-title: Adv. Mater.
– volume: 11
  start-page: 61
  year: 2020
  end-page: 67
  publication-title: Polym. Chem.
– volume: 257
  start-page: 3388
  year: 2011
  end-page: 3391
  publication-title: Appl. Surf. Sci.
– volume: 7
  start-page: 16501
  year: 2017
  publication-title: Sci. Rep.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 4
  start-page: 2281
  year: 2012
  end-page: 2287
  publication-title: Nanoscale
– volume: 55
  start-page: 11599
  year: 2019
  end-page: 11602
  publication-title: Chem. Commun.
– volume: 120
  start-page: 17348
  year: 2016
  end-page: 17356
  publication-title: J. Phys. Chem. C
– volume: 26
  start-page: 4481
  year: 2014
  end-page: 4485
  publication-title: Adv. Mater.
– volume: 10
  start-page: 790
  year: 2010
  end-page: 797
  publication-title: Cryst. Growth Des.
– volume: 19
  start-page: 12
  year: 2016
  end-page: 18
  publication-title: Mater. Today
– volume: 130
  start-page: 299
  year: 2015
  end-page: 304
  publication-title: Colloids Surf. B
– volume: 10
  start-page: 6163
  year: 2004
  end-page: 6171
  publication-title: Chem. Eur. J.
– volume: 9
  start-page: 2558
  year: 2019
  end-page: 2567
  publication-title: ACS Catal.
– volume: 5
  start-page: 3108
  year: 2014
  publication-title: Nat. Commun.
– ident: e_1_2_10_41_1
  doi: 10.1039/D0CE00024H
– ident: e_1_2_10_66_1
  doi: 10.1126/sciadv.aaw6264
– ident: e_1_2_10_8_1
  doi: 10.1002/chem.200400451
– ident: e_1_2_10_38_1
  doi: 10.1016/j.electacta.2019.134614
– ident: e_1_2_10_82_1
  doi: 10.1002/slct.201701967
– year: 2020
  ident: e_1_2_10_93_1
  publication-title: New J. Chem.
  contributor:
    fullname: Wagalgave S. M.
– ident: e_1_2_10_25_1
  doi: 10.1246/bcsj.20190014
– ident: e_1_2_10_89_1
  doi: 10.1021/cg901170j
– ident: e_1_2_10_17_1
  doi: 10.1016/j.matlet.2006.11.105
– ident: e_1_2_10_51_1
  doi: 10.1002/celc.201701074
– ident: e_1_2_10_39_1
  doi: 10.1016/j.apsusc.2010.11.030
– ident: e_1_2_10_2_1
  doi: 10.1039/C0CS00042F
– ident: e_1_2_10_84_1
  doi: 10.1021/acs.chemrev.5b00263
– ident: e_1_2_10_67_1
  doi: 10.1038/s41598-020-59699-5
– ident: e_1_2_10_65_1
  doi: 10.1039/C6CC09858D
– ident: e_1_2_10_30_1
  doi: 10.1039/C5CC00351B
– ident: e_1_2_10_78_1
  doi: 10.1038/s41598-017-17538-0
– ident: e_1_2_10_28_1
  doi: 10.1021/nn800442q
– ident: e_1_2_10_87_1
  doi: 10.1016/j.synthmet.2008.04.015
– ident: e_1_2_10_20_1
  doi: 10.1039/D0DT00778A
– ident: e_1_2_10_83_1
  doi: 10.1038/s41598-017-15599-9
– ident: e_1_2_10_6_1
  doi: 10.1021/am503787h
– ident: e_1_2_10_33_1
  doi: 10.1021/acsami.5b01654
– ident: e_1_2_10_76_1
  doi: 10.1038/ncomms4108
– ident: e_1_2_10_18_1
  doi: 10.1021/acsami.5b10158
– ident: e_1_2_10_77_1
  doi: 10.1039/c3ra23358h
– ident: e_1_2_10_34_1
  doi: 10.1021/acscatal.8b04064
– ident: e_1_2_10_19_1
  doi: 10.1039/C7RA06592B
– ident: e_1_2_10_62_1
  doi: 10.1016/j.chemosphere.2017.05.012
– ident: e_1_2_10_11_1
  doi: 10.1016/j.matchemphys.2007.05.017
– ident: e_1_2_10_24_1
  doi: 10.1002/cssc.201701647
– ident: e_1_2_10_70_1
  doi: 10.1039/c0jm00110d
– ident: e_1_2_10_69_1
  doi: 10.1002/adma.200701537
– ident: e_1_2_10_32_1
  doi: 10.1016/j.cej.2019.04.174
– ident: e_1_2_10_9_1
  doi: 10.1002/ejic.200600553
– ident: e_1_2_10_54_1
  doi: 10.1016/j.jhazmat.2019.120947
– ident: e_1_2_10_60_1
  doi: 10.1021/acs.jpcc.6b03537
– ident: e_1_2_10_79_1
  doi: 10.1155/2017/4150648
– ident: e_1_2_10_21_1
  doi: 10.1016/j.mseb.2008.09.017
– ident: e_1_2_10_49_1
  doi: 10.1038/srep22412
– ident: e_1_2_10_3_1
  doi: 10.1080/21691401.2018.1428812
– ident: e_1_2_10_22_1
  doi: 10.2478/s11532-009-0071-6
– ident: e_1_2_10_73_1
  doi: 10.1039/c3ce40385h
– ident: e_1_2_10_55_1
  doi: 10.1038/nnano.2012.80
– ident: e_1_2_10_85_1
  doi: 10.1038/srep42898
– ident: e_1_2_10_40_1
  doi: 10.1016/j.electacta.2020.136138
– ident: e_1_2_10_42_1
  doi: 10.1016/j.talanta.2020.121323
– ident: e_1_2_10_72_1
  doi: 10.1039/c3cc42504e
– ident: e_1_2_10_74_1
  doi: 10.1002/adma.201101295
– ident: e_1_2_10_75_1
  doi: 10.1039/c2jm14623a
– ident: e_1_2_10_59_1
  doi: 10.1016/j.ijbiomac.2016.06.071
– ident: e_1_2_10_45_1
  doi: 10.1016/j.optmat.2015.02.014
– ident: e_1_2_10_91_1
  doi: 10.1039/C9PY01625B
– ident: e_1_2_10_16_1
  doi: 10.1016/j.ceramint.2014.04.013
– ident: e_1_2_10_64_1
  doi: 10.1039/C9CC02285F
– start-page: 3
  year: 2007
  ident: e_1_2_10_68_1
  publication-title: Small
  contributor:
    fullname: Nakanishi T.
– ident: e_1_2_10_88_1
  doi: 10.1021/acssuschemeng.7b03870
– ident: e_1_2_10_80_1
  doi: 10.1021/acs.chemrev.6b00160
– ident: e_1_2_10_81_1
  doi: 10.1038/srep14609
– ident: e_1_2_10_14_1
  doi: 10.1016/j.arabjc.2019.06.003
– ident: e_1_2_10_48_1
  doi: 10.1039/C9CC05872A
– ident: e_1_2_10_53_1
  doi: 10.1016/j.carbpol.2017.12.029
– ident: e_1_2_10_43_1
  doi: 10.1021/acsomega.8b02577
– ident: e_1_2_10_46_1
  doi: 10.1016/j.electacta.2016.05.006
– ident: e_1_2_10_90_1
  doi: 10.1016/j.reactfunctpolym.2016.02.010
– ident: e_1_2_10_27_1
  doi: 10.1002/adma.201306055
– ident: e_1_2_10_10_1
  doi: 10.1016/j.ceramint.2013.10.140
– ident: e_1_2_10_4_1
  doi: 10.1186/s12951-015-0118-0
– ident: e_1_2_10_47_1
  doi: 10.1038/s41598-017-09477-7
– ident: e_1_2_10_63_1
  doi: 10.1002/jctb.5275
– ident: e_1_2_10_37_1
  doi: 10.1007/s11051-017-3905-8
– ident: e_1_2_10_23_1
  doi: 10.1002/ejic.201100936
– ident: e_1_2_10_12_1
  doi: 10.1016/j.apsusc.2012.02.034
– ident: e_1_2_10_52_1
  doi: 10.1007/s10562-019-02880-x
– ident: e_1_2_10_57_1
  doi: 10.1016/j.colsurfb.2015.04.033
– ident: e_1_2_10_29_1
  doi: 10.1039/c2nr12053d
– ident: e_1_2_10_13_1
  doi: 10.1039/C0CE00083C
– ident: e_1_2_10_58_1
  doi: 10.1039/C6RA04664A
– ident: e_1_2_10_86_1
  doi: 10.1039/b400445k
– ident: e_1_2_10_71_1
  doi: 10.1002/chem.201000332
– ident: e_1_2_10_35_1
  doi: 10.1016/j.apcatb.2018.05.060
– ident: e_1_2_10_1_1
  doi: 10.1016/j.mattod.2015.08.021
– ident: e_1_2_10_36_1
  doi: 10.1038/s41598-018-37463-0
– ident: e_1_2_10_5_1
  doi: 10.1016/j.apsusc.2017.01.042
– ident: e_1_2_10_56_1
  doi: 10.1039/C5CC00040H
– ident: e_1_2_10_50_1
  doi: 10.1038/s41598-019-57044-z
– ident: e_1_2_10_44_1
  doi: 10.1039/C9NJ01291E
– ident: e_1_2_10_15_1
  doi: 10.1016/j.jallcom.2013.08.184
– ident: e_1_2_10_26_1
  doi: 10.1016/j.ceramint.2020.01.167
– ident: e_1_2_10_92_1
  doi: 10.1007/s00604-020-4151-9
– ident: e_1_2_10_31_1
  doi: 10.1039/D0CE00371A
– ident: e_1_2_10_61_1
  doi: 10.1021/acsnano.6b01003
– ident: e_1_2_10_7_1
  doi: 10.1002/smll.201600273
SSID ssj0011477
Score 2.3950756
SecondaryResourceType review_article
Snippet Mimicking natural objects such as flowers, is an objective of scientists not only because of their attractive appearance, but also to understand the natural...
Abstract Mimicking natural objects such as flowers, is an objective of scientists not only because of their attractive appearance, but also to understand the...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 257
SubjectTerms artificial flowers
Catalysis
Drug delivery
electron microscopy
Flower-like assembly
Flowers
Mimicry
organic-metal hybrid materials
self-assembly
Superstructures
Title Flower‐Like Superstructures: Structural Features, Applications and Future Perspectives
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202000129
https://www.ncbi.nlm.nih.gov/pubmed/33215848
https://www.proquest.com/docview/2490511349
https://search.proquest.com/docview/2463099341
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60F734fkSrRBBPBtPdPHa9SKkNPYgUW6G3sMluQJS0EHL3J_gb_SXObh61CIJ4SMhrk2UmO_PNPr4BuFQ0UyrTOcLQ3zieCBNH02bhjgVChVIQk-twNAkfZ-x-qGly7pq1MBU_RNvhpluGsde6gYukuFmShqKhwvCOVF0paIMxUjBLOOi4HUXoeSbzos7c6mBcwWuOTSx_s1J61Sf9AJqruNU4nmj731Xega0ac9r96ifZhTWV78HGoEn1tg-z6E0nS_t8_3h4eVX2pFxoUKiJZUuMxm_tSX2ML9GQUV-8tvvfhr5tkUs7MvQk9ni5fLM4gOdoOB2MnDrlgpMibuIOY54iWSa5TvetPOnyNJBU-SwTKQlEj7GMo_aEl5CUBTxLWRi6jOPWE5QhGjmETj7P1THYXkqShDIpU4wg_UwIN-RCMJn4whW-pBZcNUKPFxWzRlxxKJMYBRW3grKg26gkrhtYEWPUiOZEcytacNHeRrHp8Q6Rq3mpnwkoAmD00xYcVapsv0QpYh3mMQtco7HfqxBPB0_tycnfi5zCJtFzYcxs7y50UGvqDNYLWZ6bP_YLQDLqhw
link.rule.ids 315,782,786,1408,27935,27936,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFL1oXdSN70e0agRxZTDNTJMZd6VaKlYRW6G7MMlMQJS0ULL3E_xGv8R7kzS1CIK4SMhrJsPceZw7j3MAzgxLjElIIwz7G4erIHKINgtPwlcm0MrLtQ57g-BhJK5viCan2sVf8ENUA25UM_L2mio4DUhfzllDsaVC_84rxlKWYYX7XJJ4A2OP1TxCk-fai6Td6qBnIUuWTYzgciH4Yq_0A2ouIte86-mu_z_RG7BWwk67XZSTTVgy6RbUOzO1t20Ydd9IL-3z_aP_8mrsQTYhXEjcshk65Ff2oLzGSAg10sMLu_1t9ttWqba7OUOJ_TjfwTndgefuzbDTc0rVBSdG6CQdIbjxkkRLUvw2XLsy9jUzLZGo2PNVU4hEogEVj7xY-DKJRRC4QuLRVEwgINmFWjpOzT7YPPaiiAmtY3QiW4lSbiCVEjpqKVe1NLPgfJbr4aQg1wgLGmUvxIwKq4yyoDGzSVjWsWmIjiO2KESvaMFp9RqzjaY8VGrGGX3jM8TA2FVbsFfYsvoTYwh3BBcWuLnJfk9COOw8VTcHfw9yAvXe8L4f9m8f7g5h1aOlMfni7wbU0ILmCJanOjvOi-8XDE3uqA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60gvrifcQzgvhkMM3m2PgipW2oKKXYCn0Lm-wuiBILpe_-BH-jv8SZXFoEQXxIyLWbZWZ355s9vgE4V0wrpSlGGNobyxVBYhFtFp64L1QghZPHOuwNg_6Yd7pEk3NT7YUp-CHqATdqGXl_TQ18IvXVF2kodlTo3jnFUMoiLLkExWkPBxvU0whNNw-9SKFbLXQswpJkEzO4mks-b5R-IM154Jpbnmj932XegLUSdJqtopZswoLKtmClXcV624Zx9ELR0j7e3u-fnpU5nE0IFRKz7Azd8WtzWF5jJoQZ6eGl2fo2922KTJpRzk9iDr72b0534DHqjto9q4y5YKUInEKLc1c5WsuQ4n0rV9ph6kumPK5F6viiybkOUX3CTZyU-6FOeRDYPMSjKRhHOLILjew1U_tguqmTJIxLmaIL6Wkh7CAUgsvEE7bwJDPgohJ6PCmoNeKCRNmJUVBxLSgDjiqVxGULm8boNmJ_QuSKBpzVr1FsNOEhMvU6o298hggYDbUBe4Uq6z8xhmCHu9wAO9fY70WIR-2H-ubg70lOYXnQieL72_7dIaw6tC4mX_l9BA1UoDqGxamcneSV9xNFe-1X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flower%E2%80%90Like+Superstructures%3A+Structural+Features%2C+Applications+and+Future+Perspectives&rft.jtitle=Chemical+record&rft.au=Bhosale%2C+Sheshanath+V.&rft.au=Al+Kobaisi%2C+Mohammad&rft.au=Jadhav%2C+Ratan+W.&rft.au=Jones%2C+Lathe+A.&rft.date=2021-02-01&rft.issn=1527-8999&rft.eissn=1528-0691&rft.volume=21&rft.issue=2&rft.spage=257&rft.epage=283&rft_id=info:doi/10.1002%2Ftcr.202000129&rft.externalDBID=10.1002%252Ftcr.202000129&rft.externalDocID=TCR202000129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon