Generation of vacancies in high-speed plastic deformation
In a recent experiment, crystalline metals were subjected to high-speed plastic deformation, and subsequently a number of vacancy clusters were observed without any trace of dislocations. In an effort to explain this result, in the present study fluid-like behavior of solid in ultra-high-speed defor...
Saved in:
Published in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 350; no. 1; pp. 216 - 219 |
---|---|
Main Author: | |
Format: | Journal Article Conference Proceeding |
Language: | English |
Published: |
Amsterdam
Elsevier B.V
15-06-2003
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In a recent experiment, crystalline metals were subjected to high-speed plastic deformation, and subsequently a number of vacancy clusters were observed without any trace of dislocations. In an effort to explain this result, in the present study fluid-like behavior of solid in ultra-high-speed deformation is considered, and the possibility of spontaneous generation of vacancies analogous to cavitation in high-speed fluid flow is discussed. Similar to a large velocity gradient that induces turbulence in a high-speed fluid flow, large shear stress induced in a solid material during the course of high-speed deformation may generate vacancies instead of dislocations, if the dislocations cannot follow the deformation speed. In this paper, similarities between dislocation in solid and vortex in a fluid discussed, along with similarities between vacancy in a solid and cavitation in fluid, and a mechanism of vacancy production under high-speed plastic deformation of crystalline materials is proposed. |
---|---|
Bibliography: | SourceType-Scholarly Journals-2 ObjectType-Feature-2 ObjectType-Conference Paper-1 content type line 23 SourceType-Conference Papers & Proceedings-1 ObjectType-Article-3 |
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/S0921-5093(02)00690-1 |