Direct Comparison of Prefrontal Cortex Regions Engaged by Working and Long-Term Memory Tasks

Neuroimaging studies have suggested the involvement of ventrolateral, dorsolateral, and frontopolar prefrontal cortex (PFC) regions in both working (WM) and long-term memory (LTM). The current study used functional magnetic resonance imaging (fMRI) to directly compare whether these PFC regions show...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Vol. 14; no. 1; pp. 48 - 59
Main Authors: Braver, Todd S., Barch, Deanna M., Kelley, William M., Buckner, Randy L., Cohen, Neal J., Miezin, Francis M., Snyder, Abraham Z., Ollinger, John M., Akbudak, Erbil, Conturo, Thomas E., Petersen, Steven E.
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01-07-2001
Elsevier Limited
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neuroimaging studies have suggested the involvement of ventrolateral, dorsolateral, and frontopolar prefrontal cortex (PFC) regions in both working (WM) and long-term memory (LTM). The current study used functional magnetic resonance imaging (fMRI) to directly compare whether these PFC regions show selective activation associated with one memory domain. In a within-subjects design, subjects performed the n-back WM task (two-back condition) as well as LTM encoding (intentional memorization) and retrieval (yes–no recognition) tasks. Additionally, each task was performed with two different types of stimulus materials (familiar words, unfamiliar faces) in order to determine the influence of material-type vs task-type. A bilateral region of dorsolateral PFC (DL-PFC; BA 46/9) was found to be selectively activated during the two-back condition, consistent with a hypothesized role for this region in active maintenance and/or manipulation of information in WM. Left frontopolar PFC (FP-PFC) was also found to be selectively engaged during the two-back. Although FP-PFC activity has been previously associated with retrieval from LTM, no frontopolar regions were found to be selectively engaged by retrieval. Finally, lateralized ventrolateral PFC (VL-PFC) regions were found to be selectively engaged by material-type, but uninfluenced by task-type. These results highlight the importance of examining PFC activity across multiple memory domains, both for functionally differentiating PFC regions (e.g., task-selectivity vs material-selectivity in DL-PFC and VL-PFC) and for testing the applicability of memory domain-specific theories (e.g., FP-PFC in LTM retrieval).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1053-8119
1095-9572
DOI:10.1006/nimg.2001.0791