Relationship between skin temperature and muscle activation during incremental cycle exercise

While different studies showed that better fitness level adds to the efficiency of the thermoregulatory system, the relationship between muscular effort and skin temperature is still unknown. Therefore, the present study assessed the relationship between neuromuscular activation and skin temperature...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal biology Vol. 48; pp. 28 - 35
Main Authors: Priego Quesada, Jose I., Carpes, Felipe P., Bini, Rodrigo R., Salvador Palmer, Rosario, Pérez-Soriano, Pedro, Cibrián Ortiz de Anda, Rosa Mª
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01-02-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:While different studies showed that better fitness level adds to the efficiency of the thermoregulatory system, the relationship between muscular effort and skin temperature is still unknown. Therefore, the present study assessed the relationship between neuromuscular activation and skin temperature during cycle exercise. Ten physically active participants performed an incremental workload cycling test to exhaustion while neuromuscular activations were recorded (via surface electromyography – EMG) from rectus femoris, vastus lateralis, biceps femoris and gastrocnemius medialis. Thermographic images were recorded before, immediately after and 10min after finishing the cycling test, at four body regions of interest corresponding to the muscles where neuromuscular activations were monitored. Frequency band analysis was conducted to assess spectral properties of EMG signals in order to infer on priority in recruitment of motor units. Significant inverse relationship between changes in skin temperature and changes in overall neuromuscular activation for vastus lateralis was observed (r<−0.5 and p<0.04). Significant positive relationship was observed between skin temperature and low frequency components of neuromuscular activation from vastus lateralis (r>0.7 and p<0.01). Participants with larger overall activation and reduced low frequency component for vastus lateralis activation presented a better adaptive response of their thermoregulatory system by showing fewer changes in skin temperature after incremental cycling test. •Skin temperature over knee extensors increases after cycling.•Vastus lateralis overall activation was inversely related with skin temperature.•Vastus lateralis low frequency activation was related with skin temperature.•Better EMG activation reflected lower increases in VL skin temperature after cycling.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0306-4565
1879-0992
DOI:10.1016/j.jtherbio.2014.12.005