Ipsilateral Motor Pathways and Transcallosal Inhibition During Lower Limb Movement After Stroke

Background Stroke rehabilitation may be improved with a better understanding of the contribution of ipsilateral motor pathways to the paretic limb and alterations in transcallosal inhibition. Few studies have evaluated these factors during dynamic, bilateral lower limb movements, and it is unclear w...

Full description

Saved in:
Bibliographic Details
Published in:Neurorehabilitation and neural repair Vol. 35; no. 4; pp. 367 - 378
Main Authors: Cleland, Brice T., Madhavan, Sangeetha
Format: Journal Article
Language:English
Published: Los Angeles, CA SAGE Publications 01-04-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background Stroke rehabilitation may be improved with a better understanding of the contribution of ipsilateral motor pathways to the paretic limb and alterations in transcallosal inhibition. Few studies have evaluated these factors during dynamic, bilateral lower limb movements, and it is unclear whether they relate to functional outcomes. Objective Determine if lower limb ipsilateral excitability and transcallosal inhibition after stroke depend on target limb, task, or number of limbs involved, and whether these factors are related to clinical measures. Methods In 29 individuals with stroke, ipsilateral and contralateral responses to transcranial magnetic stimulation were measured in the paretic and nonparetic tibialis anterior during dynamic (unilateral or bilateral ankle dorsiflexion/plantarflexion) and isometric (unilateral dorsiflexion) conditions. Relative ipsilateral excitability and transcallosal inhibition were assessed. Fugl-Meyer, ankle movement accuracy, and walking characteristics were assessed. Results Relative ipsilateral excitability was greater during dynamic than isometric conditions in the paretic limb (P ≤ .02) and greater in the paretic than the nonparetic limb during dynamic conditions (P ≤ .004). Transcallosal inhibition was greater in the ipsilesional than contralesional hemisphere (P = .002) and during dynamic than isometric conditions (P = .03). Greater ipsilesional transcallosal inhibition was correlated with better ankle movement accuracy (R2 = 0.18, P = .04). Greater contralateral excitability to the nonparetic limb was correlated with improved walking symmetry (R2 = 0.19, P = .03). Conclusions Ipsilateral pathways have increased excitability to the paretic limb, particularly during dynamic tasks. Transcallosal inhibition is greater in the ipsilesional than contralesional hemisphere and during dynamic than isometric tasks. Ipsilateral pathways and transcallosal inhibition may influence walking asymmetry and ankle movement accuracy.
AbstractList Stroke rehabilitation may be improved with a better understanding of the contribution of ipsilateral motor pathways to the paretic limb and alterations in transcallosal inhibition. Few studies have evaluated these factors during dynamic, bilateral lower limb movements, and it is unclear whether they relate to functional outcomes. Determine if lower limb ipsilateral excitability and transcallosal inhibition after stroke depend on target limb, task, or number of limbs involved, and whether these factors are related to clinical measures. In 29 individuals with stroke, ipsilateral and contralateral responses to transcranial magnetic stimulation were measured in the paretic and nonparetic tibialis anterior during dynamic (unilateral or bilateral ankle dorsiflexion/plantarflexion) and isometric (unilateral dorsiflexion) conditions. Relative ipsilateral excitability and transcallosal inhibition were assessed. Fugl-Meyer, ankle movement accuracy, and walking characteristics were assessed. Relative ipsilateral excitability was greater during dynamic than isometric conditions in the paretic limb ( ≤ .02) and greater in the paretic than the nonparetic limb during dynamic conditions ( ≤ .004). Transcallosal inhibition was greater in the ipsilesional than contralesional hemisphere ( = .002) and during dynamic than isometric conditions ( = .03). Greater ipsilesional transcallosal inhibition was correlated with better ankle movement accuracy ( = 0.18, = .04). Greater contralateral excitability to the nonparetic limb was correlated with improved walking symmetry ( = 0.19, = .03). Ipsilateral pathways have increased excitability to the paretic limb, particularly during dynamic tasks. Transcallosal inhibition is greater in the ipsilesional than contralesional hemisphere and during dynamic than isometric tasks. Ipsilateral pathways and transcallosal inhibition may influence walking asymmetry and ankle movement accuracy.
Background Stroke rehabilitation may be improved with a better understanding of the contribution of ipsilateral motor pathways to the paretic limb and alterations in transcallosal inhibition. Few studies have evaluated these factors during dynamic, bilateral lower limb movements, and it is unclear whether they relate to functional outcomes. Objective Determine if lower limb ipsilateral excitability and transcallosal inhibition after stroke depend on target limb, task, or number of limbs involved, and whether these factors are related to clinical measures. Methods In 29 individuals with stroke, ipsilateral and contralateral responses to transcranial magnetic stimulation were measured in the paretic and nonparetic tibialis anterior during dynamic (unilateral or bilateral ankle dorsiflexion/plantarflexion) and isometric (unilateral dorsiflexion) conditions. Relative ipsilateral excitability and transcallosal inhibition were assessed. Fugl-Meyer, ankle movement accuracy, and walking characteristics were assessed. Results Relative ipsilateral excitability was greater during dynamic than isometric conditions in the paretic limb (P ≤ .02) and greater in the paretic than the nonparetic limb during dynamic conditions (P ≤ .004). Transcallosal inhibition was greater in the ipsilesional than contralesional hemisphere (P = .002) and during dynamic than isometric conditions (P = .03). Greater ipsilesional transcallosal inhibition was correlated with better ankle movement accuracy (R2 = 0.18, P = .04). Greater contralateral excitability to the nonparetic limb was correlated with improved walking symmetry (R2 = 0.19, P = .03). Conclusions Ipsilateral pathways have increased excitability to the paretic limb, particularly during dynamic tasks. Transcallosal inhibition is greater in the ipsilesional than contralesional hemisphere and during dynamic than isometric tasks. Ipsilateral pathways and transcallosal inhibition may influence walking asymmetry and ankle movement accuracy.
BACKGROUNDStroke rehabilitation may be improved with a better understanding of the contribution of ipsilateral motor pathways to the paretic limb and alterations in transcallosal inhibition. Few studies have evaluated these factors during dynamic, bilateral lower limb movements, and it is unclear whether they relate to functional outcomes. OBJECTIVEDetermine if lower limb ipsilateral excitability and transcallosal inhibition after stroke depend on target limb, task, or number of limbs involved, and whether these factors are related to clinical measures. METHODSIn 29 individuals with stroke, ipsilateral and contralateral responses to transcranial magnetic stimulation were measured in the paretic and nonparetic tibialis anterior during dynamic (unilateral or bilateral ankle dorsiflexion/plantarflexion) and isometric (unilateral dorsiflexion) conditions. Relative ipsilateral excitability and transcallosal inhibition were assessed. Fugl-Meyer, ankle movement accuracy, and walking characteristics were assessed. RESULTSRelative ipsilateral excitability was greater during dynamic than isometric conditions in the paretic limb (P ≤ .02) and greater in the paretic than the nonparetic limb during dynamic conditions (P ≤ .004). Transcallosal inhibition was greater in the ipsilesional than contralesional hemisphere (P = .002) and during dynamic than isometric conditions (P = .03). Greater ipsilesional transcallosal inhibition was correlated with better ankle movement accuracy (R2 = 0.18, P = .04). Greater contralateral excitability to the nonparetic limb was correlated with improved walking symmetry (R2 = 0.19, P = .03). CONCLUSIONSIpsilateral pathways have increased excitability to the paretic limb, particularly during dynamic tasks. Transcallosal inhibition is greater in the ipsilesional than contralesional hemisphere and during dynamic than isometric tasks. Ipsilateral pathways and transcallosal inhibition may influence walking asymmetry and ankle movement accuracy.
Author Madhavan, Sangeetha
Cleland, Brice T.
Author_xml – sequence: 1
  givenname: Brice T.
  orcidid: 0000-0001-8227-6876
  surname: Cleland
  fullname: Cleland, Brice T.
– sequence: 2
  givenname: Sangeetha
  surname: Madhavan
  fullname: Madhavan, Sangeetha
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33703951$$D View this record in MEDLINE/PubMed
BookMark eNp1kUlvFDEQhS0URBa4c0I-cungfbkgRQmQkQaBRDhb7rY949BtD3Z3ovx7PJoQARInl1Tvfa6qdwqOUk4egNcYnWMs5TvMGddCUYK11ojpZ-AEc046oRg72teMd_v-MTit9RYhQpVGL8AxpRJRzfEJMKtdjaOdfbEj_JznXOBXO2_v7UOFNjl4U2yqgx3HXJtglbaxj3PMCV4tJaYNXOd7X-A6Tn1z3_nJpxlehIaD3-aSf_iX4HmwY_WvHt8z8P3jh5vL62795dPq8mLdDYyyuZNaBi16SiRHzonQB0cJ97oPUiOnfK-Z04QEjRVxg5bUDYr2TBCugtVC0DPw_sDdLf3k3dDmaBuZXYmTLQ8m22j-7qS4NZt8ZxQSSiDVAG8fASX_XHydzRTr4MfRJp-XaghHiErBMWlSdJAOJddafHj6BiOzz8X8m0uzvPlzvCfD7yCaoDsIqt14c5uXktq5_g_8BQlAmN8
CitedBy_id crossref_primary_10_1016_j_gaitpost_2022_10_013
crossref_primary_10_3390_brainsci12081055
crossref_primary_10_1111_ejn_15753
crossref_primary_10_3389_fnhum_2022_896367
Cites_doi 10.1093/brain/awg145
10.1038/nrneurol.2014.162
10.2340/165019771995175182
10.1007/s12975-017-0551-5
10.1016/j.brainres.2014.07.021
10.1097/00001756-199607290-00012
10.1093/brain/118.2.429
10.1155/2016/4071620
10.1016/j.clinph.2014.12.018
10.1016/j.clinph.2007.10.014
10.1016/j.brs.2009.06.005
10.3389/fnhum.2016.00681
10.1097/01.WNP.0000150975.83249.71
10.1098/rspb.1965.0016
10.1191/0269215503cr662oa
10.1007/BF00231167
10.1007/s002210050878
10.1111/j.1460-9568.2010.07172.x
10.3389/fnhum.2013.00184
10.1093/brain/awx384
10.1016/j.neuroimage.2011.01.014
10.1016/j.clinph.2015.02.001
10.1007/s00221-014-4183-7
10.1016/j.clinph.2014.01.034
10.1111/ene.12949
10.1016/j.neuroimage.2008.03.048
10.1002/ana.25452
10.1177/1545968308315997
10.1016/j.apmr.2013.12.023
10.2340/1650197771331
10.1177/1073858405283392
10.1007/s002210050749
10.1007/s00221-010-2511-0
10.1080/096382899297684
10.1155/2012/627816
10.3389/fnhum.2016.00049
10.1161/01.STR.32.6.1304
10.1093/brain/120.9.1579
10.1016/j.brs.2017.03.008
10.1016/j.clinph.2012.04.026
10.1053/apmr.2002.33984
10.1016/j.neuroimage.2005.06.033
10.1002/ana.10848
10.1007/s00422-004-0539-6
10.1002/ana.21228
10.1113/JP278779
10.1097/00001756-200307180-00009
10.1016/j.brs.2015.06.015
10.1016/S0022-510X(96)00222-5
10.1016/S0003-9993(95)80038-7
10.1113/jphysiol.1992.sp019243
10.1111/j.1460-9568.2010.07364.x
10.1111/j.1468-1331.2008.02168.x
10.1016/j.neulet.2016.05.041
10.1111/j.1469-7793.1999.0895p.x
10.1016/j.brs.2017.01.006
10.2522/ptj.20130175
ContentType Journal Article
Copyright The Author(s) 2021
Copyright_xml – notice: The Author(s) 2021
DBID NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1177/1545968321999049
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1552-6844
EndPage 378
ExternalDocumentID 10_1177_1545968321999049
33703951
10.1177_1545968321999049
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Center for Medical Rehabilitation Research
  grantid: F32HD102214
  funderid: https://doi.org/10.13039/100006937
– fundername: National Center for Medical Rehabilitation Research
  grantid: R01HD075777
  funderid: https://doi.org/10.13039/100006937
– fundername: NICHD NIH HHS
  grantid: F32 HD102214
– fundername: NICHD NIH HHS
  grantid: R01 HD075777
GroupedDBID ---
-MK
-TM
.2E
.2J
.2N
.GJ
01A
0R~
123
1~K
29N
31R
31U
31X
31Z
39C
4.4
53G
54M
5RE
5VS
AABMB
AABOD
AACMV
AACTG
AADTT
AADUE
AAEWN
AAGMC
AAJPV
AAKGS
AAQDB
AARDL
AARIX
AATAA
AATBZ
AAUAS
AAWTL
ABAFQ
ABAWP
ABCCA
ABEIX
ABFWQ
ABHQH
ABIVO
ABJIS
ABKRH
ABLUO
ABNCE
ABPNF
ABQXT
ABRHV
ABVFX
ACARO
ACDSZ
ACDXX
ACFEJ
ACGFS
ACGZU
ACJTF
ACLFY
ACLZU
ACOFE
ACOXC
ACROE
ACSBE
ACSIQ
ACTQU
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADRRZ
ADZZY
AECGH
AEDTQ
AEKYL
AENEX
AEPTA
AEQLS
AERKM
AESZF
AEUHG
AEUIJ
AEWDL
AEWHI
AEXNY
AFEET
AFKRG
AFMOU
AFQAA
AFUIA
AGKLV
AGNHF
AGWFA
AHHFK
AIOMO
AJMMQ
AJUZI
AJXAJ
ALJHS
ALMA_UNASSIGNED_HOLDINGS
ALTZF
AMCVQ
ANDLU
ARTOV
AUTPY
AUVAJ
AYAKG
AZFZN
B3H
B8M
B8R
B8Z
B94
BBRGL
BDDNI
BKIIM
BKSCU
BPACV
BSEHC
BWJAD
BYIEH
C45
CAG
CDWPY
CFDXU
COF
CS3
DB0
DC-
DD0
DF0
DI~
DO-
DOPDO
DU5
DV7
DV9
EBS
EJD
EMOBN
F5P
FEDTE
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
HF~
HVGLF
HZ~
IAO
IEA
IGS
IHR
INH
INR
J8X
JCYGO
K.F
M4V
N9A
O9-
OVD
P.9
P.B
P2P
Q7L
Q7U
Q83
ROL
S01
SCNPE
SDB
SFC
SFK
SFT
SGO
SGR
SGV
SGZ
SHG
SNB
SPJ
SPP
SPQ
SPV
SQCSI
STM
TEORI
ZONMY
ZPPRI
ZRKOI
ZSSAH
ACJER
AGWNL
ALKWR
H13
NPM
AAYXX
ADVBO
CITATION
7X8
5PM
ID FETCH-LOGICAL-c434t-797f96b32750dd6fbfd325e9bf790d8eb94d922f9182dc973dc83b46258fa9663
IEDL.DBID ARPSY
ISSN 1545-9683
IngestDate Tue Sep 17 21:02:03 EDT 2024
Sat Oct 26 00:03:16 EDT 2024
Fri Nov 22 02:15:15 EST 2024
Wed Oct 16 00:44:35 EDT 2024
Tue Jul 16 20:42:54 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords neural pathways
stroke
lower extremity
neuroplasticity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-797f96b32750dd6fbfd325e9bf790d8eb94d922f9182dc973dc83b46258fa9663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8227-6876
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8068608
PMID 33703951
PQID 2500376512
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8068608
proquest_miscellaneous_2500376512
crossref_primary_10_1177_1545968321999049
pubmed_primary_33703951
sage_journals_10_1177_1545968321999049
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
– name: United States
PublicationTitle Neurorehabilitation and neural repair
PublicationTitleAlternate Neurorehabil Neural Repair
PublicationYear 2021
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Sriraman, Oishi, Madhavan 2014; 1581
Ejaz, Xu, Branscheidt 2018; 141
Madhavan, Stinear 2010; 3
Ferbert, Priori, Rothwell, Day, Colebatch, Marsden 1992; 453
Katz, Miledi 1965; 161
Jørgensen, Nakayama, Raaschou, Olsen 1995; 76
Jayaram, Stagg, Esser, Kischka, Stinear, Johansen-Berg 2012; 123
Madhavan, Weber, Stinear 2011; 209
Rehme, Eickhoff, Wang, Fink, Grefkes 2011; 55
Wiegel, Kurz, Leukel 2020; 598
Plow, Sankarasubramanian, Cunningham 2016; 2016
Jankowska, Edgley 2006; 12
Mayo, Wood-Dauphinee, Ahmed 1999; 21
Madhavan, Rogers, Stinear 2010; 32
Mang, Borich, Brodie 2015; 126
Ludemann-Podubecka, Bosl, Nowak 2016; 23
English, Manns, Tucak, Bernhardt 2014; 94
Fugl-Meyer, Jaasko, Leyman, Olsson, Steglind 1975; 7
Desrosiers, Malouin, Bourbonnais, Richards, Rochette, Bravo 2003; 17
Chen, Cros, Curra 2008; 119
Benecke, Meyer, Freund 1991; 83
Takechi, Matsunaga, Nakanishi 2014; 125
Thickbroom, Phillips, Morris, Byrnes, Sacco, Mastaglia 1999; 126
Netz, Lammers, Homberg 1997; 120
Stinear, Petoe, Byblow 2015; 8
Ziemann, Ishii, Borgheresi 1999; 518
Duque, Hummel, Celnik, Murase, Mazzocchio, Cohen 2005; 28
Boddington, Reynolds 2017; 10
Chen, Lozano, Ashby 1999; 128
Keisker, Hepp-Reymond, Blickenstorfer, Kollias 2010; 31
Daffertshofer, Peper, Beek 2005; 92
Alagona, Delvaux, Gerard 2001; 32
Xu, Branscheidt, Schambra 2019; 85
Meyer, Roricht, Grafin von Einsiedel, Kruggel, Weindl 1995; 118
Boroojerdi, Diefenbach, Ferbert 1996; 144
Dickstein 2008; 22
Di Pino, Pellegrino, Assenza 2014; 10
van Kuijk, Pasman, Geurts, Hendricks 2005; 22
Caramia, Iani, Bernardi 1996; 7
Rossini, Burke, Chen 2015; 126
Ward, Brown, Thompson, Frackowiak 2003; 126
Fleming, Newham 2017; 10
Bradnam, Stinear, Byblow 2013; 7
Turnbull, Charteris, Wall 1995; 27
Grefkes, Eickhoff, Nowak, Dafotakis, Fink 2008; 41
Davidson, Bolic, Tremblay 2016; 10
Mayo, Wood-Dauphinee, Cote, Durcan, Carlton 2002; 83
Alawieh, Tomlinson, Adkins, Kautz, Feng 2017; 8
Grefkes, Nowak, Eickhoff 2008; 63
Dimyan, Perez, Auh, Tarula, Wilson, Cohen 2014; 95
Bestmann, Krakauer 2015; 233
Beaule, Tremblay, Theoret 2012; 2012
Kim, Jang, Chang, Byun, Son, Ahn 2003; 14
Murase, Duque, Mazzocchio, Cohen 2004; 55
Misawa, Kuwabara, Matsuda, Honma, Ono, Hattori 2008; 15
McDonnell, Stinear 2017; 10
Sivaramakrishnan, Tahara-Eckl, Madhavan 2016; 627
bibr56-1545968321999049
bibr48-1545968321999049
bibr22-1545968321999049
bibr9-1545968321999049
bibr14-1545968321999049
bibr57-1545968321999049
bibr55-1545968321999049
bibr31-1545968321999049
bibr12-1545968321999049
bibr38-1545968321999049
bibr21-1545968321999049
bibr39-1545968321999049
bibr13-1545968321999049
bibr47-1545968321999049
bibr8-1545968321999049
bibr30-1545968321999049
bibr24-1545968321999049
bibr29-1545968321999049
bibr11-1545968321999049
bibr37-1545968321999049
bibr40-1545968321999049
bibr3-1545968321999049
bibr53-1545968321999049
bibr16-1545968321999049
bibr6-1545968321999049
bibr1-1545968321999049
bibr50-1545968321999049
bibr19-1545968321999049
bibr32-1545968321999049
bibr45-1545968321999049
bibr43-1545968321999049
bibr5-1545968321999049
bibr51-1545968321999049
bibr35-1545968321999049
bibr27-1545968321999049
bibr18-1545968321999049
bibr42-1545968321999049
bibr44-1545968321999049
bibr17-1545968321999049
bibr25-1545968321999049
bibr52-1545968321999049
bibr4-1545968321999049
bibr26-1545968321999049
bibr34-1545968321999049
bibr7-1545968321999049
bibr54-1545968321999049
bibr46-1545968321999049
bibr33-1545968321999049
bibr36-1545968321999049
bibr49-1545968321999049
bibr10-1545968321999049
bibr20-1545968321999049
bibr23-1545968321999049
Turnbull GI (bibr2-1545968321999049) 1995; 27
bibr28-1545968321999049
bibr41-1545968321999049
bibr15-1545968321999049
References_xml – volume: 32
  start-page: 1304
  year: 2001
  end-page: 1309
  article-title: Ipsilateral motor responses to focal transcranial magnetic stimulation in healthy subjects and acute-stroke patients
  publication-title: Stroke
  contributor:
    fullname: Gerard
– volume: 10
  start-page: 214
  year: 2017
  end-page: 222
  article-title: Targeting interhemispheric inhibition with neuromodulation to enhance stroke rehabilitation
  publication-title: Brain Stimul
  contributor:
    fullname: Reynolds
– volume: 126
  start-page: 1959
  year: 2015
  end-page: 1971
  article-title: Diffusion imaging and transcranial magnetic stimulation assessment of transcallosal pathways in chronic stroke
  publication-title: Clin Neurophysiol
  contributor:
    fullname: Brodie
– volume: 161
  start-page: 483
  year: 1965
  end-page: 495
  article-title: The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction
  publication-title: Proc R Soc Lond B Biol Sci
  contributor:
    fullname: Miledi
– volume: 22
  start-page: 10
  year: 2005
  end-page: 24
  article-title: How salient is the silent period? The role of the silent period in the prognosis of upper extremity motor recovery after severe stroke
  publication-title: J Clin Neurophysiol
  contributor:
    fullname: Hendricks
– volume: 22
  start-page: 649
  year: 2008
  end-page: 660
  article-title: Rehabilitation of gait speed after stroke: a critical review of intervention approaches
  publication-title: Neurorehabil Neural Repair
  contributor:
    fullname: Dickstein
– volume: 63
  start-page: 236
  year: 2008
  end-page: 246
  article-title: Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging
  publication-title: Ann Neurol
  contributor:
    fullname: Eickhoff
– volume: 126
  start-page: 1071
  year: 2015
  end-page: 1107
  article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee
  publication-title: Clin Neurophysiol
  contributor:
    fullname: Chen
– volume: 120
  start-page: 1579
  year: 1997
  end-page: 1586
  article-title: Reorganization of motor output in the non-affected hemisphere after stroke
  publication-title: Brain
  contributor:
    fullname: Homberg
– volume: 85
  start-page: 502
  year: 2019
  end-page: 513
  article-title: Rethinking interhemispheric imbalance as a target for stroke neurorehabilitation
  publication-title: Ann Neurol
  contributor:
    fullname: Schambra
– volume: 7
  start-page: 184
  year: 2013
  article-title: Ipsilateral motor pathways after stroke: implications for non-invasive brain stimulation
  publication-title: Front Hum Neurosci
  contributor:
    fullname: Byblow
– volume: 92
  start-page: 101
  year: 2005
  end-page: 109
  article-title: Stabilization of bimanual coordination due to active interhemispheric inhibition: a dynamical account
  publication-title: Biol Cybern
  contributor:
    fullname: Beek
– volume: 144
  start-page: 160
  year: 1996
  end-page: 170
  article-title: Transcallosal inhibition in cortical and subcortical cerebral vascular lesions
  publication-title: J Neurol Sci
  contributor:
    fullname: Ferbert
– volume: 55
  start-page: 1147
  year: 2011
  end-page: 1158
  article-title: Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke
  publication-title: Neuroimage
  contributor:
    fullname: Grefkes
– volume: 3
  start-page: 42
  year: 2010
  article-title: Focal and bi-directional modulation of lower limb motor cortex using anodal transcranial direct current stimulation
  publication-title: Brain Stimul
  contributor:
    fullname: Stinear
– volume: 7
  start-page: 13
  year: 1975
  end-page: 31
  article-title: The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance
  publication-title: Scand J Rehabil Med
  contributor:
    fullname: Steglind
– volume: 233
  start-page: 679
  year: 2015
  end-page: 689
  article-title: The uses and interpretations of the motor-evoked potential for understanding behaviour
  publication-title: Exp Brain Res
  contributor:
    fullname: Krakauer
– volume: 83
  start-page: 419
  year: 1991
  end-page: 426
  article-title: Reorganisation of descending motor pathways in patients after hemispherectomy and severe hemispheric lesions demonstrated by magnetic brain stimulation
  publication-title: Exp Brain Res
  contributor:
    fullname: Freund
– volume: 598
  start-page: 1235
  year: 2020
  end-page: 1251
  article-title: Evidence that distinct human primary motor cortex circuits control discrete and rhythmic movements
  publication-title: J Physiol
  contributor:
    fullname: Leukel
– volume: 10
  start-page: 597
  year: 2014
  end-page: 608
  article-title: Modulation of brain plasticity in stroke: a novel model for neurorehabilitation
  publication-title: Nat Rev Neurol
  contributor:
    fullname: Assenza
– volume: 76
  start-page: 27
  year: 1995
  end-page: 32
  article-title: Recovery of walking function in stroke patients: the Copenhagen Stroke Study
  publication-title: Arch Phys Med Rehabil
  contributor:
    fullname: Olsen
– volume: 21
  start-page: 258
  year: 1999
  end-page: 268
  article-title: Disablement following stroke
  publication-title: Disabil Rehabil
  contributor:
    fullname: Ahmed
– volume: 627
  start-page: 30
  year: 2016
  end-page: 35
  article-title: Spatial localization and distribution of the TMS-related “hotspot” of the tibialis anterior muscle representation in the healthy and post-stroke motor cortex
  publication-title: Neurosci Lett
  contributor:
    fullname: Madhavan
– volume: 10
  start-page: 49
  year: 2016
  article-title: Predicting modulation in corticomotor excitability and in transcallosal inhibition in response to anodal transcranial direct current stimulation
  publication-title: Front Hum Neurosci
  contributor:
    fullname: Tremblay
– volume: 123
  start-page: 2422
  year: 2012
  end-page: 2428
  article-title: Relationships between functional and structural corticospinal tract integrity and walking post stroke
  publication-title: Clin Neurophysiol
  contributor:
    fullname: Johansen-Berg
– volume: 17
  start-page: 666
  year: 2003
  end-page: 673
  article-title: Arm and leg impairments and disabilities after stroke rehabilitation: relation to handicap
  publication-title: Clin Rehabil
  contributor:
    fullname: Bravo
– volume: 12
  start-page: 67
  year: 2006
  end-page: 79
  article-title: How can corticospinal tract neurons contribute to ipsilateral movements? A question with implications for recovery of motor functions
  publication-title: Neuroscientist
  contributor:
    fullname: Edgley
– volume: 28
  start-page: 940
  year: 2005
  end-page: 946
  article-title: Transcallosal inhibition in chronic subcortical stroke
  publication-title: Neuroimage
  contributor:
    fullname: Cohen
– volume: 118
  start-page: 429
  year: 1995
  end-page: 440
  article-title: Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum
  publication-title: Brain
  contributor:
    fullname: Weindl
– volume: 2012
  start-page: 627816
  year: 2012
  article-title: Interhemispheric control of unilateral movement
  publication-title: Neural Plast
  contributor:
    fullname: Theoret
– volume: 8
  start-page: 529
  year: 2017
  end-page: 540
  article-title: Preclinical and clinical evidence on ipsilateral corticospinal projections: implication for motor recovery
  publication-title: Transl Stroke Res
  contributor:
    fullname: Feng
– volume: 14
  start-page: 1329
  year: 2003
  end-page: 1332
  article-title: Bilateral primary sensori-motor cortex activation of post-stroke mirror movements: an fMRI study
  publication-title: Neuroreport
  contributor:
    fullname: Ahn
– volume: 32
  start-page: 1032
  year: 2010
  end-page: 1039
  article-title: A paradox: after stroke, the non-lesioned lower limb motor cortex may be maladaptive
  publication-title: Eur J Neurosci
  contributor:
    fullname: Stinear
– volume: 41
  start-page: 1382
  year: 2008
  end-page: 1394
  article-title: Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM
  publication-title: Neuroimage
  contributor:
    fullname: Fink
– volume: 8
  start-page: 1183
  year: 2015
  end-page: 1190
  article-title: Primary motor cortex excitability during recovery after stroke: implications for neuromodulation
  publication-title: Brain Stimul
  contributor:
    fullname: Byblow
– volume: 95
  start-page: 849
  year: 2014
  end-page: 856
  article-title: Nonparetic arm force does not overinhibit the paretic arm in chronic poststroke hemiparesis
  publication-title: Arch Phys Med Rehabil
  contributor:
    fullname: Cohen
– volume: 1581
  start-page: 23
  year: 2014
  end-page: 29
  article-title: Timing-dependent priming effects of tDCS on ankle motor skill learning
  publication-title: Brain Res
  contributor:
    fullname: Madhavan
– volume: 7
  start-page: 1756
  year: 1996
  end-page: 1760
  article-title: Cerebral plasticity after stroke as revealed by ipsilateral responses to magnetic stimulation
  publication-title: Neuroreport
  contributor:
    fullname: Bernardi
– volume: 55
  start-page: 400
  year: 2004
  end-page: 409
  article-title: Influence of interhemispheric interactions on motor function in chronic stroke
  publication-title: Ann Neurol
  contributor:
    fullname: Cohen
– volume: 2016
  start-page: 4071620
  year: 2016
  article-title: Models to tailor brain stimulation therapies in stroke
  publication-title: Neural Plast
  contributor:
    fullname: Cunningham
– volume: 15
  start-page: 706
  year: 2008
  end-page: 711
  article-title: The ipsilateral cortico-spinal tract is activated after hemiparetic stroke
  publication-title: Eur J Neurol
  contributor:
    fullname: Hattori
– volume: 94
  start-page: 185
  year: 2014
  end-page: 196
  article-title: Physical activity and sedentary behaviors in people with stroke living in the community: a systematic review
  publication-title: Phys Ther
  contributor:
    fullname: Bernhardt
– volume: 83
  start-page: 1035
  year: 2002
  end-page: 1042
  article-title: Activity, participation, and quality of life 6 months poststroke
  publication-title: Arch Phys Med Rehabil
  contributor:
    fullname: Carlton
– volume: 209
  start-page: 9
  year: 2011
  end-page: 17
  article-title: Non-invasive brain stimulation enhances fine motor control of the hemiparetic ankle: implications for rehabilitation
  publication-title: Exp Brain Res
  contributor:
    fullname: Stinear
– volume: 10
  start-page: 681
  year: 2017
  article-title: Reliability of transcallosal inhibition in healthy adults
  publication-title: Front Hum Neurosci
  contributor:
    fullname: Newham
– volume: 31
  start-page: 1483
  year: 2010
  end-page: 1491
  article-title: Differential representation of dynamic and static power grip force in the sensorimotor network
  publication-title: Eur J Neurosci
  contributor:
    fullname: Kollias
– volume: 126
  start-page: 1430
  year: 2003
  end-page: 1448
  article-title: Neural correlates of outcome after stroke: a cross-sectional fMRI study
  publication-title: Brain
  contributor:
    fullname: Frackowiak
– volume: 119
  start-page: 504
  year: 2008
  end-page: 532
  article-title: The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee
  publication-title: Clin Neurophysiol
  contributor:
    fullname: Curra
– volume: 128
  start-page: 539
  year: 1999
  end-page: 542
  article-title: Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings
  publication-title: Exp Brain Res
  contributor:
    fullname: Ashby
– volume: 23
  start-page: 823
  year: 2016
  end-page: 830
  article-title: Inhibition of the contralesional dorsal premotor cortex improves motor function of the affected hand following stroke
  publication-title: Eur J Neurol
  contributor:
    fullname: Nowak
– volume: 518
  start-page: 895
  year: 1999
  end-page: 906
  article-title: Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles
  publication-title: J Physiol
  contributor:
    fullname: Borgheresi
– volume: 10
  start-page: 721
  year: 2017
  end-page: 734
  article-title: TMS measures of motor cortex function after stroke: a meta-analysis
  publication-title: Brain Stimul
  contributor:
    fullname: Stinear
– volume: 141
  start-page: 837
  year: 2018
  end-page: 847
  article-title: Evidence for a subcortical origin of mirror movements after stroke: a longitudinal study
  publication-title: Brain
  contributor:
    fullname: Branscheidt
– volume: 126
  start-page: 431
  year: 1999
  end-page: 438
  article-title: Differences in functional magnetic resonance imaging of sensorimotor cortex during static and dynamic finger flexion
  publication-title: Exp Brain Res
  contributor:
    fullname: Mastaglia
– volume: 453
  start-page: 525
  year: 1992
  end-page: 546
  article-title: Interhemispheric inhibition of the human motor cortex
  publication-title: J Physiol
  contributor:
    fullname: Marsden
– volume: 125
  start-page: 2055
  year: 2014
  end-page: 2069
  article-title: Longitudinal changes of motor cortical excitability and transcallosal inhibition after subcortical stroke
  publication-title: Clin Neurophysiol
  contributor:
    fullname: Nakanishi
– volume: 27
  start-page: 175
  year: 1995
  end-page: 182
  article-title: A comparison of the range of walking speeds between normal and hemiplegic subjects
  publication-title: Scand J Rehabil Med
  contributor:
    fullname: Wall
– ident: bibr10-1545968321999049
  doi: 10.1093/brain/awg145
– ident: bibr55-1545968321999049
  doi: 10.1038/nrneurol.2014.162
– volume: 27
  start-page: 175
  year: 1995
  ident: bibr2-1545968321999049
  publication-title: Scand J Rehabil Med
  doi: 10.2340/165019771995175182
  contributor:
    fullname: Turnbull GI
– ident: bibr9-1545968321999049
  doi: 10.1007/s12975-017-0551-5
– ident: bibr31-1545968321999049
  doi: 10.1016/j.brainres.2014.07.021
– ident: bibr12-1545968321999049
  doi: 10.1097/00001756-199607290-00012
– ident: bibr33-1545968321999049
  doi: 10.1093/brain/118.2.429
– ident: bibr56-1545968321999049
  doi: 10.1155/2016/4071620
– ident: bibr52-1545968321999049
  doi: 10.1016/j.clinph.2014.12.018
– ident: bibr53-1545968321999049
  doi: 10.1016/j.clinph.2007.10.014
– ident: bibr29-1545968321999049
  doi: 10.1016/j.brs.2009.06.005
– ident: bibr34-1545968321999049
  doi: 10.3389/fnhum.2016.00681
– ident: bibr54-1545968321999049
  doi: 10.1097/01.WNP.0000150975.83249.71
– ident: bibr41-1545968321999049
  doi: 10.1098/rspb.1965.0016
– ident: bibr5-1545968321999049
  doi: 10.1191/0269215503cr662oa
– ident: bibr38-1545968321999049
  doi: 10.1007/BF00231167
– ident: bibr36-1545968321999049
  doi: 10.1007/s002210050878
– ident: bibr45-1545968321999049
  doi: 10.1111/j.1460-9568.2010.07172.x
– ident: bibr8-1545968321999049
  doi: 10.3389/fnhum.2013.00184
– ident: bibr43-1545968321999049
  doi: 10.1093/brain/awx384
– ident: bibr17-1545968321999049
  doi: 10.1016/j.neuroimage.2011.01.014
– ident: bibr27-1545968321999049
  doi: 10.1016/j.clinph.2015.02.001
– ident: bibr57-1545968321999049
  doi: 10.1007/s00221-014-4183-7
– ident: bibr19-1545968321999049
  doi: 10.1016/j.clinph.2014.01.034
– ident: bibr24-1545968321999049
  doi: 10.1111/ene.12949
– ident: bibr15-1545968321999049
  doi: 10.1016/j.neuroimage.2008.03.048
– ident: bibr21-1545968321999049
  doi: 10.1002/ana.25452
– ident: bibr7-1545968321999049
  doi: 10.1177/1545968308315997
– ident: bibr25-1545968321999049
  doi: 10.1016/j.apmr.2013.12.023
– ident: bibr32-1545968321999049
  doi: 10.2340/1650197771331
– ident: bibr39-1545968321999049
  doi: 10.1177/1073858405283392
– ident: bibr46-1545968321999049
  doi: 10.1007/s002210050749
– ident: bibr30-1545968321999049
  doi: 10.1007/s00221-010-2511-0
– ident: bibr3-1545968321999049
  doi: 10.1080/096382899297684
– ident: bibr50-1545968321999049
  doi: 10.1155/2012/627816
– ident: bibr35-1545968321999049
  doi: 10.3389/fnhum.2016.00049
– ident: bibr13-1545968321999049
  doi: 10.1161/01.STR.32.6.1304
– ident: bibr11-1545968321999049
  doi: 10.1093/brain/120.9.1579
– ident: bibr23-1545968321999049
  doi: 10.1016/j.brs.2017.03.008
– ident: bibr37-1545968321999049
  doi: 10.1016/j.clinph.2012.04.026
– ident: bibr6-1545968321999049
  doi: 10.1053/apmr.2002.33984
– ident: bibr20-1545968321999049
  doi: 10.1016/j.neuroimage.2005.06.033
– ident: bibr16-1545968321999049
  doi: 10.1002/ana.10848
– ident: bibr51-1545968321999049
  doi: 10.1007/s00422-004-0539-6
– ident: bibr18-1545968321999049
  doi: 10.1002/ana.21228
– ident: bibr44-1545968321999049
  doi: 10.1113/JP278779
– ident: bibr42-1545968321999049
  doi: 10.1097/00001756-200307180-00009
– ident: bibr22-1545968321999049
  doi: 10.1016/j.brs.2015.06.015
– ident: bibr47-1545968321999049
  doi: 10.1016/S0022-510X(96)00222-5
– ident: bibr1-1545968321999049
  doi: 10.1016/S0003-9993(95)80038-7
– ident: bibr48-1545968321999049
  doi: 10.1113/jphysiol.1992.sp019243
– ident: bibr28-1545968321999049
  doi: 10.1111/j.1460-9568.2010.07364.x
– ident: bibr14-1545968321999049
  doi: 10.1111/j.1468-1331.2008.02168.x
– ident: bibr26-1545968321999049
  doi: 10.1016/j.neulet.2016.05.041
– ident: bibr40-1545968321999049
  doi: 10.1111/j.1469-7793.1999.0895p.x
– ident: bibr49-1545968321999049
  doi: 10.1016/j.brs.2017.01.006
– ident: bibr4-1545968321999049
  doi: 10.2522/ptj.20130175
SSID ssj0023890
Score 2.3900752
Snippet Background Stroke rehabilitation may be improved with a better understanding of the contribution of ipsilateral motor pathways to the paretic limb and...
Stroke rehabilitation may be improved with a better understanding of the contribution of ipsilateral motor pathways to the paretic limb and alterations in...
BACKGROUNDStroke rehabilitation may be improved with a better understanding of the contribution of ipsilateral motor pathways to the paretic limb and...
SourceID pubmedcentral
proquest
crossref
pubmed
sage
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 367
Title Ipsilateral Motor Pathways and Transcallosal Inhibition During Lower Limb Movement After Stroke
URI https://journals.sagepub.com/doi/full/10.1177/1545968321999049
https://www.ncbi.nlm.nih.gov/pubmed/33703951
https://search.proquest.com/docview/2500376512
https://pubmed.ncbi.nlm.nih.gov/PMC8068608
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV3dT9swED8NkBAv-2CDBbbJSNOkPXi0tZvET6jiQyABQiuTtqfIX1EraIpIIsR_vzs3KXTVpD3tNXFsx77z_c73BfDZS5l7lPzco3Dksm8M10ZJ7pxF-GG7WnUpOPl0mFz-TI-OKU1O0cbCNCtYfiO3KpxROKyJu-k2er8xMu6T3FcxFdlBfIMY96CuJtnstrstqkFPyDxdT8iybckf8pG30W0rsEaJ85Aj1gbfr4a_5ioaiu8QQon9cxrgybC5NOaiIFtCp8tOls88xYLwOnn1v3_7NbxsYC4bzOjyDbzwxSasXzSG_LeQnd2V41tN4c-37GKKij-7Qiz6oB9LpgvHggi15BRQYoOzYjQ2wbeMHYWwSnZOxd3Y-Xhi8OuQ8rxiAyp3zobV_fTGv4MfJ8fXh6e8qfXArRSy4olKchUbQenmnYtzkzvR63tl8kR1XOqRfpzq9XKF-pCzKhHOpsJI1N7SXKPKJrZgtZgW_j2w2Phc9xEoeqtkxxqd9J2ORYLASKbOuQi-thuX3c1SemTdJuv5nyscwV67sxnyHRlTdOGndZkhdOzg4Yx4KYLt2U7PexMCz1GErhEkCzQwb0A5vRffFONRyO2dUshOJ43gC1FC1tLFXye4868Nd2GjR-44wenoA6xW97X_CCulqz81TPAbf6IdGw
link.rule.ids 230,315,782,786,887,27926,27933,27934,44981,45369
linkProvider SAGE Publications
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6oA_XF-6VeI4jgQ2Vb0kseh1M23EScgj6VpEnZUDuxG-K_9yTrqnMIgs89CWm-JOc7nBvAsWYs0aj5XY3K0WWelK6QnLlKxUg_4orgFZOc3OgE1w9h_cKUySlafeU7mJ2ZsCpckX2si9tt8sRR5XPf9NdBaoP0dhZKzKM-HuhS7fam81hYW6iJbTYkyrtmwJePcmqOSZ00RTSn4yW_BX1ZPXS5_I8_WIGlnHyS2ui0rMKMTtdgvp2719char5mvWdhkpKfSbuP5ji5QYb4Lj4yIlJFrGKLjas-Q4Fm2u1JG_FF6jbZkbRMyzXS6r1IHG0LkQ9IzTQhJ53BW_9Jb8D95cXdecPNOzC4MaNs4AY8SLgvqSkCr5SfyETRqqe5TAJeVqFGVBWvVhOOVoqKeUBVHFLJ0KYKE4GGFN2EubSf6m0gvtSJ8JC-6ZizcixF4Cnh0wDpCguVUg6cjjGIXkeFNqJKXov85445cDQGKcLbYFwcItX9YRYhoSvjk4ksxoGtEWjFbJTi64aE0oFgAs5CwFTanvyS9rq24nZoEmnKoQMnBtRoDPGvC9z5q-AhLDTu2q2o1by-2oXFqgmYsWFBezA3eBvqfZjN1PAgP9ufDMf09Q
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSyMxEB_8ALmX89Q7b_XOiyAH97DaNunu5sGHcrVYrFKuCvq0JJsEi7otbov43zuTbuv1iiDc805CNr8k8xvmC-DACuEsav7QonIMRV3rUGkpQmMypB9ZVckqJSef9uKL66R5QmVyjqe5MOUOFocUVoUr8o813e6hcUelj_GI1L6MqMcO0hukuMuwKoRM8F6uNv50ezcziwu1sc-IRPmQBrz6KRfmmNdLC2RzMWbyr8Avr4ta6__5F5_gY0lCWWNyajZgyeabsHZeutm3IG0Pi_69ouTke3Y-QLOcdZEpPqnngqncMK_gMnLZFyjQzm_72kd-saZPemQdar3GOv0HjaN9QfIRa1AzctYbPQ7u7Ge4ap1c_j4Ny04MYSa4GIWxjJ2MNKdi8MZETjvDa3UrtYtlxSQW0TWyVnMSrRWTyZibLOFaoG2VOIUGFf8CK_kgt1-BRdo6VUcaZzMpKplWcd2oiMdIW0RijAng1xSHdDgpuJFWy5rk_-5YAPtToFK8FeTqULkdjIsUiV0Fn05kMwFsT4CbzcY5vnJILAOI5yCdCVDF7fkvef_WV95OKKGmkgTwk4BNpzC_ucCd9wr-gLVus5V22hdnu_ChRnEzPjroG6yMHsf2OywXZrxXHu8XKFT3cg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ipsilateral+Motor+Pathways+and+Transcallosal+Inhibition+During+Lower+Limb+Movement+After+Stroke&rft.jtitle=Neurorehabilitation+and+neural+repair&rft.au=Cleland%2C+Brice+T&rft.au=Madhavan%2C+Sangeetha&rft.date=2021-04-01&rft.eissn=1552-6844&rft.volume=35&rft.issue=4&rft.spage=367&rft.epage=378&rft_id=info:doi/10.1177%2F1545968321999049&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-9683&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-9683&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-9683&client=summon