Activation of sodium persulfate by magnetic carbon xerogels (CX/CoFe) for the oxidation of bisphenol A: Process variables effects, matrix effects and reaction pathways

An advanced oxidation process comprising sodium persulfate (SPS) and a novel magnetic carbon xerogel was tested for the degradation of bisphenol A (BPA), a model endocrine-disrupting compound. The catalyst, consisting of interconnected carbon microspheres with embedded iron and cobalt microparticles...

Full description

Saved in:
Bibliographic Details
Published in:Water research (Oxford) Vol. 124; pp. 97 - 107
Main Authors: Outsiou, Alexandra, Frontistis, Zacharias, Ribeiro, Rui S., Antonopoulou, Maria, Konstantinou, Ioannis K., Silva, Adrián M.T., Faria, Joaquim L., Gomes, Helder T., Mantzavinos, Dionissios
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01-11-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract An advanced oxidation process comprising sodium persulfate (SPS) and a novel magnetic carbon xerogel was tested for the degradation of bisphenol A (BPA), a model endocrine-disrupting compound. The catalyst, consisting of interconnected carbon microspheres with embedded iron and cobalt microparticles, was capable of activating persulfate to form sulfate and hydroxyl radicals at ambient conditions. The pseudo-first order degradation rate of BPA in ultrapure water (UPW) was found to increase with (i) increasing catalyst (25–75 mg/L) and SPS (31–250 mg/L) concentrations, (ii) decreasing BPA concentration (285–14,200 μg/L), and (iii) changing pH from alkaline to acidic values (9–3). Besides UPW, tests were conducted in drinking water, treated wastewater, groundwater and surface water; interestingly, the rate in UPW was always lower than in any other matrix containing several organic and inorganic constituents. The effect of natural organic matter (in the form of humic acids) and alcohols was detrimental to BPA degradation owing to the scavenging of radicals. Conversely, chlorides at concentrations greater than 50 mg/L had a positive effect due to the formation and subsequent participation of chlorine-containing radicals. Liquid chromatography time-of-flight mass spectrometry was employed to identify major transformation by-products (TBPs) of BPA degradation in the absence and presence of chlorides; in the latter case, several chlorinated TBPs were detected confirming the role of Cl-related radicals. Based on TBPs, main reaction pathways are proposed. •Bimetallic Fe and Co carbon xerogels activate persulfate to sulfate radicals.•BPA decomposition in environmental matrices is faster than in pure water.•Chloride ion promotes degradation through the formation of chloride radicals.•Catalyst/oxidant/substrate concentrations, pH and radical scavengers affect rates.•Polymerization, bimolecular radical coupling and hydroxylation reactions dominate.
AbstractList An advanced oxidation process comprising sodium persulfate (SPS) and a novel magnetic carbon xerogel was tested for the degradation of bisphenol A (BPA), a model endocrine-disrupting compound. The catalyst, consisting of interconnected carbon microspheres with embedded iron and cobalt microparticles, was capable of activating persulfate to form sulfate and hydroxyl radicals at ambient conditions. The pseudo-first order degradation rate of BPA in ultrapure water (UPW) was found to increase with (i) increasing catalyst (25–75 mg/L) and SPS (31–250 mg/L) concentrations, (ii) decreasing BPA concentration (285–14,200 μg/L), and (iii) changing pH from alkaline to acidic values (9–3). Besides UPW, tests were conducted in drinking water, treated wastewater, groundwater and surface water; interestingly, the rate in UPW was always lower than in any other matrix containing several organic and inorganic constituents. The effect of natural organic matter (in the form of humic acids) and alcohols was detrimental to BPA degradation owing to the scavenging of radicals. Conversely, chlorides at concentrations greater than 50 mg/L had a positive effect due to the formation and subsequent participation of chlorine-containing radicals. Liquid chromatography time-of-flight mass spectrometry was employed to identify major transformation by-products (TBPs) of BPA degradation in the absence and presence of chlorides; in the latter case, several chlorinated TBPs were detected confirming the role of Cl-related radicals. Based on TBPs, main reaction pathways are proposed. •Bimetallic Fe and Co carbon xerogels activate persulfate to sulfate radicals.•BPA decomposition in environmental matrices is faster than in pure water.•Chloride ion promotes degradation through the formation of chloride radicals.•Catalyst/oxidant/substrate concentrations, pH and radical scavengers affect rates.•Polymerization, bimolecular radical coupling and hydroxylation reactions dominate.
An advanced oxidation process comprising sodium persulfate (SPS) and a novel magnetic carbon xerogel was tested for the degradation of bisphenol A (BPA), a model endocrine-disrupting compound. The catalyst, consisting of interconnected carbon microspheres with embedded iron and cobalt microparticles, was capable of activating persulfate to form sulfate and hydroxyl radicals at ambient conditions. The pseudo-first order degradation rate of BPA in ultrapure water (UPW) was found to increase with (i) increasing catalyst (25-75 mg/L) and SPS (31-250 mg/L) concentrations, (ii) decreasing BPA concentration (285-14,200 μg/L), and (iii) changing pH from alkaline to acidic values (9-3). Besides UPW, tests were conducted in drinking water, treated wastewater, groundwater and surface water; interestingly, the rate in UPW was always lower than in any other matrix containing several organic and inorganic constituents. The effect of natural organic matter (in the form of humic acids) and alcohols was detrimental to BPA degradation owing to the scavenging of radicals. Conversely, chlorides at concentrations greater than 50 mg/L had a positive effect due to the formation and subsequent participation of chlorine-containing radicals. Liquid chromatography time-of-flight mass spectrometry was employed to identify major transformation by-products (TBPs) of BPA degradation in the absence and presence of chlorides; in the latter case, several chlorinated TBPs were detected confirming the role of Cl-related radicals. Based on TBPs, main reaction pathways are proposed.
Author Ribeiro, Rui S.
Gomes, Helder T.
Outsiou, Alexandra
Faria, Joaquim L.
Frontistis, Zacharias
Antonopoulou, Maria
Konstantinou, Ioannis K.
Silva, Adrián M.T.
Mantzavinos, Dionissios
Author_xml – sequence: 1
  givenname: Alexandra
  surname: Outsiou
  fullname: Outsiou, Alexandra
  organization: Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
– sequence: 2
  givenname: Zacharias
  surname: Frontistis
  fullname: Frontistis, Zacharias
  organization: Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
– sequence: 3
  givenname: Rui S.
  surname: Ribeiro
  fullname: Ribeiro, Rui S.
  organization: Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
– sequence: 4
  givenname: Maria
  surname: Antonopoulou
  fullname: Antonopoulou, Maria
  organization: Department of Environmental and Natural Resources Management, University of Patras, 2 Seferi St., GR-30100 Agrinio, Greece
– sequence: 5
  givenname: Ioannis K.
  surname: Konstantinou
  fullname: Konstantinou, Ioannis K.
  organization: Department of Chemistry, Laboratory of Industrial Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
– sequence: 6
  givenname: Adrián M.T.
  surname: Silva
  fullname: Silva, Adrián M.T.
  organization: Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
– sequence: 7
  givenname: Joaquim L.
  surname: Faria
  fullname: Faria, Joaquim L.
  organization: Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
– sequence: 8
  givenname: Helder T.
  surname: Gomes
  fullname: Gomes, Helder T.
  organization: Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
– sequence: 9
  givenname: Dionissios
  surname: Mantzavinos
  fullname: Mantzavinos, Dionissios
  email: mantzavinos@chemeng.upatras.gr
  organization: Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28750289$$D View this record in MEDLINE/PubMed
BookMark eNp9kN1qGzEQhUVJaZy0b1CKLlvIOvrbv14UjEnaQiC5aCB3YlY7imXWq0WSHfuJ-ppV6iaXhYGZgXPOMN8ZORn9iIR85GzOGa8u1_MnSAHjXDBez1kuVb0hM97UbSGUak7IjDElCy5LdUrOYlwzxoSQ7TtyKpq6ZKJpZ-T3wiS3g-T8SL2l0fduu6EThrgdLCSk3YFu4HHE5Aw1ELqs22PwjzhE-nn5cLn01_iFWh9oWiH1e9e_hnUuTisc_UAXX-ld8AZjpDsIDroBI0Vr0aR4kfNTcPuXncLY04Bg_sZMkFZPcIjvyVsLQ8QP__o5ub---rX8Udzcfv-5XNwURkmVCmE7aErZ9AKQixZaU5atrCUY2_SsApUnBZWom84KVtZtg6yDqqyk4ryUrTwn6phrgo8xoNVTcBsIB82Zfuau1_rIXT9z1yyXqrLt09E2bbsN9q-mF9BZ8O0oyNxw5zDoaByOBnsX8te69-7_F_4AvHWa0Q
CitedBy_id crossref_primary_10_1016_j_envres_2023_115365
crossref_primary_10_1007_s11814_022_1139_7
crossref_primary_10_1016_j_envpol_2022_120296
crossref_primary_10_1016_j_seppur_2018_11_019
crossref_primary_10_1016_j_cej_2022_136399
crossref_primary_10_1016_j_scitotenv_2020_144743
crossref_primary_10_1016_j_jenvman_2020_110356
crossref_primary_10_1016_S1872_5805_20_60521_2
crossref_primary_10_1039_C9NJ05863J
crossref_primary_10_1016_j_cej_2021_129297
crossref_primary_10_1016_j_cej_2018_05_195
crossref_primary_10_1016_j_cej_2022_138504
crossref_primary_10_1016_j_jece_2022_107654
crossref_primary_10_1016_j_cej_2019_02_019
crossref_primary_10_1021_acs_energyfuels_9b03334
crossref_primary_10_1016_j_chemosphere_2021_132666
crossref_primary_10_1016_j_cej_2019_123986
crossref_primary_10_1016_j_cej_2018_09_086
crossref_primary_10_1016_j_jenvman_2019_109348
crossref_primary_10_1016_j_jcis_2021_05_176
crossref_primary_10_1016_j_scitotenv_2023_167177
crossref_primary_10_3390_ijerph15112419
crossref_primary_10_1016_j_cej_2019_123620
crossref_primary_10_1021_acs_iecr_1c04459
crossref_primary_10_1016_j_jece_2020_104788
crossref_primary_10_1016_j_chemosphere_2021_131952
crossref_primary_10_1016_j_scitotenv_2022_153152
crossref_primary_10_1016_j_envpol_2019_05_157
crossref_primary_10_1016_j_jhazmat_2020_122979
crossref_primary_10_1016_j_jtice_2023_104784
crossref_primary_10_1016_j_cej_2018_02_125
crossref_primary_10_1007_s41742_021_00365_7
crossref_primary_10_3390_w12041180
crossref_primary_10_3390_w16121754
crossref_primary_10_1016_j_cej_2019_123558
crossref_primary_10_1039_D3NJ01623D
crossref_primary_10_3390_nano10010007
crossref_primary_10_1016_j_chemosphere_2021_131560
crossref_primary_10_1016_j_jhazmat_2020_123032
crossref_primary_10_1016_j_cattod_2024_114618
crossref_primary_10_3390_su122310047
crossref_primary_10_1002_celc_201800971
crossref_primary_10_1007_s10971_022_05834_9
crossref_primary_10_1016_j_seppur_2021_118971
crossref_primary_10_1016_j_cej_2020_124610
crossref_primary_10_1016_j_chemosphere_2020_127845
crossref_primary_10_1016_j_chemosphere_2022_137159
crossref_primary_10_1016_j_ceja_2020_100062
crossref_primary_10_1016_j_cej_2019_01_080
crossref_primary_10_1016_j_cej_2021_128674
crossref_primary_10_1016_j_jenvman_2020_110820
crossref_primary_10_1016_j_cej_2021_130406
crossref_primary_10_1016_j_surfin_2022_102078
crossref_primary_10_1016_j_ultsonch_2020_105045
crossref_primary_10_2166_wst_2019_303
crossref_primary_10_1016_j_cej_2019_06_006
crossref_primary_10_1016_j_apcatb_2019_117765
crossref_primary_10_1016_j_jcis_2021_07_019
crossref_primary_10_1016_j_scitotenv_2019_135656
crossref_primary_10_1007_s13369_023_08617_8
crossref_primary_10_1016_j_chemosphere_2021_131265
crossref_primary_10_1016_j_psep_2019_11_041
crossref_primary_10_3390_w12061530
crossref_primary_10_1016_j_cej_2020_124750
crossref_primary_10_1007_s11356_018_2637_3
crossref_primary_10_1007_s11356_019_04604_5
crossref_primary_10_1007_s40831_023_00758_2
crossref_primary_10_1016_j_chemosphere_2020_128197
crossref_primary_10_1016_j_jece_2023_111851
crossref_primary_10_1016_j_scitotenv_2021_144953
crossref_primary_10_1080_01919512_2019_1704218
crossref_primary_10_1016_j_cej_2018_09_203
crossref_primary_10_1016_j_cej_2021_130093
crossref_primary_10_1016_j_cej_2021_134048
crossref_primary_10_1016_j_chemosphere_2023_139659
crossref_primary_10_1039_D0CY01827A
crossref_primary_10_1007_s11356_021_13939_x
crossref_primary_10_1016_j_cej_2019_122780
crossref_primary_10_1016_j_cej_2019_122141
crossref_primary_10_1016_j_jece_2023_110603
crossref_primary_10_1016_j_jenvman_2022_114855
crossref_primary_10_1016_j_scitotenv_2019_07_278
crossref_primary_10_1016_j_jece_2018_04_049
crossref_primary_10_1016_j_jece_2021_106276
crossref_primary_10_1016_j_cej_2019_05_154
crossref_primary_10_1007_s10562_022_04143_8
crossref_primary_10_1139_cjc_2019_0485
crossref_primary_10_1016_j_seppur_2021_118773
crossref_primary_10_1016_j_cej_2020_127800
crossref_primary_10_1016_j_jwpe_2023_104722
crossref_primary_10_1002_jctb_6080
crossref_primary_10_1016_j_apsusc_2020_147887
crossref_primary_10_1016_j_chemosphere_2019_01_036
crossref_primary_10_1371_journal_pone_0214024
crossref_primary_10_1016_j_cej_2021_129162
crossref_primary_10_1016_j_jenvman_2022_114622
crossref_primary_10_3390_catal9121062
crossref_primary_10_1016_j_watres_2020_115862
crossref_primary_10_1021_acs_est_1c04238
crossref_primary_10_1016_j_cej_2020_127242
Cites_doi 10.1016/j.reprotox.2007.07.010
10.1021/es011177b
10.1016/j.apcatb.2016.01.033
10.1021/es050634b
10.1039/C5RA02023A
10.1016/j.cej.2015.06.061
10.1016/j.chemosphere.2004.03.001
10.1007/s11356-014-2668-3
10.1016/j.envint.2011.04.010
10.1016/j.apcatb.2016.06.021
10.1016/j.chemosphere.2010.12.027
10.1016/j.envres.2008.07.016
10.1023/A:1012280216273
10.1016/j.cej.2011.03.042
10.1007/s11356-014-3718-6
10.1016/j.chemosphere.2016.02.055
10.1021/es0481169
10.1016/j.jhazmat.2012.05.074
10.1016/j.watres.2014.10.006
10.1021/es502056d
10.1080/10643380802039303
10.1016/j.chemosphere.2011.12.011
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
DOI 10.1016/j.watres.2017.07.046
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
EndPage 107
ExternalDocumentID 10_1016_j_watres_2017_07_046
28750289
S004313541730619X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
AAHBH
AAXKI
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
.55
186
29R
6TJ
AAQXK
AAYXX
ABEFU
ABTAH
ABXDB
ACKIV
ADMUD
AFFNX
AFJKZ
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEN
SEP
SEW
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
ID FETCH-LOGICAL-c434t-2fba8538d2ae129a9c559373acf8d06a43ac4a6278bf205798e0ba65634115393
ISSN 0043-1354
IngestDate Thu Sep 26 15:28:52 EDT 2024
Sat Sep 28 08:47:56 EDT 2024
Fri Feb 23 02:26:13 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Endocrine disruptors
Fenton-like
Chloride
Operating parameters
Radicals
Intermediates
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c434t-2fba8538d2ae129a9c559373acf8d06a43ac4a6278bf205798e0ba65634115393
OpenAccessLink https://repositorio-aberto.up.pt/bitstream/10216/136080/2/231121.pdf
PMID 28750289
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_watres_2017_07_046
pubmed_primary_28750289
elsevier_sciencedirect_doi_10_1016_j_watres_2017_07_046
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lin, Liang, Chen (bib11) 2011; 82
Ribeiro, Silva, Figueiredo, Faria, Gomes (bib19) 2016; 187
Lutze, Kerlin, Schmidt (bib13) 2015; 72
Potakis, Frontistis, Antonopoulou, Konstantinou, Mantzavinos (bib17) 2017; 195
Ribeiro, Frontistis, Mantzavinos, Venieri, Antonopoulou, Konstantinou, Silva, Faria, Gomes (bib20) 2016; 199
Gallard, Leclercq, Croué (bib8) 2004; 56
Darsinou, Frontistis, Antonopoulou, Konstantinou, Mantzavinos (bib4) 2015; 280
Zhao, Hou, Fujii, Hosomi, Li (bib25) 2014; 21
Huang, Wong, Zheng, Bouwman, Barra, Wahlstrom, Neretin, Wong (bib10) 2012; 42
Vandenberg, Hauser, Marcus, Olea, Welshons (bib23) 2007; 24
Qi, Liu, Zhao, Lin, Ma, Shi, Sun, Xiao (bib18) 2015; 22
Dewil, Mantzavinos, Poulios, Rodrigo (bib5) 2017; 195
Oehlmann, Oetken, Schulte-Oehlmann (bib16) 2008; 108
Bautista-Toledo, Ferro-Garcia, Moreno-Castilla, Vegas Fernandez (bib2) 2005; 39
Vicente, Santos, Romero, Rodriguez (bib24) 2011; 170
Liu, Bruton, Doyle, Sedlak (bib12) 2014; 48
Nidheesh (bib15) 2015; 5
Sharma, Mishra, Kumar (bib21) 2016; 166
Ežerskis, Jusys (bib6) 2001; 31
Tsitonaki, Petri, Crimi, Mosbaek, Siegrist, Bjerg (bib22) 2010; 40
Fang, Dionysiou, Wang, Al-Abed, Zhou (bib7) 2012; 227–228
Hu, Aizawa, Ookubo (bib9) 2002; 36
Anipsitakis, Dionysiou, Gonzalez (bib1) 2006; 40
Bennedsen, Muff, Sogaard (bib3) 2012; 86
Matzek, Carter (bib14) 2016; 151
Matzek (10.1016/j.watres.2017.07.046_bib14) 2016; 151
Dewil (10.1016/j.watres.2017.07.046_bib5) 2017; 195
Nidheesh (10.1016/j.watres.2017.07.046_bib15) 2015; 5
Lin (10.1016/j.watres.2017.07.046_bib11) 2011; 82
Fang (10.1016/j.watres.2017.07.046_bib7) 2012; 227–228
Gallard (10.1016/j.watres.2017.07.046_bib8) 2004; 56
Ribeiro (10.1016/j.watres.2017.07.046_bib19) 2016; 187
Qi (10.1016/j.watres.2017.07.046_bib18) 2015; 22
Vicente (10.1016/j.watres.2017.07.046_bib24) 2011; 170
Hu (10.1016/j.watres.2017.07.046_bib9) 2002; 36
Ežerskis (10.1016/j.watres.2017.07.046_bib6) 2001; 31
Lutze (10.1016/j.watres.2017.07.046_bib13) 2015; 72
Huang (10.1016/j.watres.2017.07.046_bib10) 2012; 42
Bautista-Toledo (10.1016/j.watres.2017.07.046_bib2) 2005; 39
Liu (10.1016/j.watres.2017.07.046_bib12) 2014; 48
Oehlmann (10.1016/j.watres.2017.07.046_bib16) 2008; 108
Tsitonaki (10.1016/j.watres.2017.07.046_bib22) 2010; 40
Anipsitakis (10.1016/j.watres.2017.07.046_bib1) 2006; 40
Zhao (10.1016/j.watres.2017.07.046_bib25) 2014; 21
Ribeiro (10.1016/j.watres.2017.07.046_bib20) 2016; 199
Sharma (10.1016/j.watres.2017.07.046_bib21) 2016; 166
Bennedsen (10.1016/j.watres.2017.07.046_bib3) 2012; 86
Vandenberg (10.1016/j.watres.2017.07.046_bib23) 2007; 24
Darsinou (10.1016/j.watres.2017.07.046_bib4) 2015; 280
Potakis (10.1016/j.watres.2017.07.046_bib17) 2017; 195
References_xml – volume: 195
  start-page: 93
  year: 2017
  end-page: 99
  ident: bib5
  article-title: New perspectives for advanced oxidation processes
  publication-title: J. Environ. Manag.
  contributor:
    fullname: Rodrigo
– volume: 227–228
  start-page: 394
  year: 2012
  end-page: 401
  ident: bib7
  article-title: Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics
  publication-title: J. Hazard. Mater.
  contributor:
    fullname: Zhou
– volume: 5
  start-page: 40552
  year: 2015
  end-page: 40577
  ident: bib15
  article-title: Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review
  publication-title: RSC Adv.
  contributor:
    fullname: Nidheesh
– volume: 187
  start-page: 428
  year: 2016
  end-page: 460
  ident: bib19
  article-title: Catalytic wet peroxide oxidation: a route towards the application of hybrid magnetic carbon nanocomposites for the degradation of organic pollutants. A review
  publication-title: Appl. Catal. B Environ.
  contributor:
    fullname: Gomes
– volume: 199
  start-page: 170
  year: 2016
  end-page: 186
  ident: bib20
  article-title: Magnetic carbon xerogels for the catalytic wet peroxide oxidation of sulfamethoxazole in environmentally relevant water matrices
  publication-title: Appl. Catal. B Environ.
  contributor:
    fullname: Gomes
– volume: 31
  start-page: 1117
  year: 2001
  end-page: 1124
  ident: bib6
  article-title: Electropolymerization of chlorinated phenols on a Pt electrode in alkaline solution Part I: a cyclic voltammetry study
  publication-title: J. Appl. Electrochem.
  contributor:
    fullname: Jusys
– volume: 40
  start-page: 1000
  year: 2006
  end-page: 1007
  ident: bib1
  article-title: Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Gonzalez
– volume: 195
  start-page: 125
  year: 2017
  end-page: 132
  ident: bib17
  article-title: Oxidation of bisphenol A in water by heat-activated persulfate
  publication-title: J. Environ. Manag.
  contributor:
    fullname: Mantzavinos
– volume: 21
  start-page: 7457
  year: 2014
  end-page: 7465
  ident: bib25
  article-title: Degradation of 1,4-dioxane in water with heat- and Fe
  publication-title: Environ. Sci. Pollut. Res.
  contributor:
    fullname: Li
– volume: 36
  start-page: 1980
  year: 2002
  end-page: 1987
  ident: bib9
  article-title: Products of aqueous chlorination of BPA and the estrogenic activity
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Ookubo
– volume: 24
  start-page: 139
  year: 2007
  end-page: 177
  ident: bib23
  article-title: Human exposure to bisphenol A (BPA)
  publication-title: Reprod. Toxicol.
  contributor:
    fullname: Welshons
– volume: 280
  start-page: 623
  year: 2015
  end-page: 633
  ident: bib4
  article-title: Sono-activated persulfate oxidation of bisphenol A: kinetics, pathways and the controversial role of temperature
  publication-title: Chem. Eng. J.
  contributor:
    fullname: Mantzavinos
– volume: 48
  start-page: 10330
  year: 2014
  end-page: 10336
  ident: bib12
  article-title: In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Sedlak
– volume: 40
  start-page: 55
  year: 2010
  end-page: 91
  ident: bib22
  article-title: In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review
  publication-title: Crit. Rev. Environ. Sci. Technol.
  contributor:
    fullname: Bjerg
– volume: 151
  start-page: 178
  year: 2016
  end-page: 188
  ident: bib14
  article-title: Activated persulfate for organic chemical degradation: a review
  publication-title: Chemosphere
  contributor:
    fullname: Carter
– volume: 72
  start-page: 349
  year: 2015
  end-page: 360
  ident: bib13
  article-title: Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate
  publication-title: Water Res.
  contributor:
    fullname: Schmidt
– volume: 170
  start-page: 127
  year: 2011
  end-page: 135
  ident: bib24
  article-title: Kinetic study of diuron oxidation and mineralization by persulphate: effects of temperature, oxidant concentration and iron dosage method
  publication-title: Chem. Eng. J.
  contributor:
    fullname: Rodriguez
– volume: 39
  start-page: 6246
  year: 2005
  end-page: 6250
  ident: bib2
  article-title: Bisphenol A removal from water by activated carbon. Effects of carbon characteristics and solution chemistry
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Vegas Fernandez
– volume: 42
  start-page: 91
  year: 2012
  end-page: 99
  ident: bib10
  article-title: Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts
  publication-title: Environ. Int.
  contributor:
    fullname: Wong
– volume: 82
  start-page: 1168
  year: 2011
  end-page: 1172
  ident: bib11
  article-title: Feasibility study of ultraviolet activated persulfate oxidation of phenol
  publication-title: Chemosphere
  contributor:
    fullname: Chen
– volume: 108
  start-page: 140
  year: 2008
  end-page: 149
  ident: bib16
  article-title: A critical evaluation of the environmental risk assessment for plasticizers in the freshwater environment in Europe, with special emphasis on bisphenol A and endocrine disruption
  publication-title: Environ. Res.
  contributor:
    fullname: Schulte-Oehlmann
– volume: 166
  start-page: 12
  year: 2016
  end-page: 22
  ident: bib21
  article-title: Mechanistic study of photo-oxidation of bisphenol A (BPA) with hydrogen peroxide (H
  publication-title: J. Environ. Manag.
  contributor:
    fullname: Kumar
– volume: 22
  start-page: 4670
  year: 2015
  end-page: 4679
  ident: bib18
  article-title: Degradation and dechlorination of pentachlorophenol by microwave-activated persulfate
  publication-title: Environ. Sci. Pollut. Res.
  contributor:
    fullname: Xiao
– volume: 86
  start-page: 1092
  year: 2012
  end-page: 1097
  ident: bib3
  article-title: Influence of chloride and carbonates on the reactivity of activated persulfate
  publication-title: Chemosphere
  contributor:
    fullname: Sogaard
– volume: 56
  start-page: 465
  year: 2004
  end-page: 473
  ident: bib8
  article-title: Chlorination of bisphenol A: kinetics and by-products formation
  publication-title: Chemosphere
  contributor:
    fullname: Croué
– volume: 24
  start-page: 139
  issue: 2
  year: 2007
  ident: 10.1016/j.watres.2017.07.046_bib23
  article-title: Human exposure to bisphenol A (BPA)
  publication-title: Reprod. Toxicol.
  doi: 10.1016/j.reprotox.2007.07.010
  contributor:
    fullname: Vandenberg
– volume: 36
  start-page: 1980
  issue: 9
  year: 2002
  ident: 10.1016/j.watres.2017.07.046_bib9
  article-title: Products of aqueous chlorination of BPA and the estrogenic activity
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es011177b
  contributor:
    fullname: Hu
– volume: 187
  start-page: 428
  year: 2016
  ident: 10.1016/j.watres.2017.07.046_bib19
  article-title: Catalytic wet peroxide oxidation: a route towards the application of hybrid magnetic carbon nanocomposites for the degradation of organic pollutants. A review
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.01.033
  contributor:
    fullname: Ribeiro
– volume: 40
  start-page: 1000
  issue: 3
  year: 2006
  ident: 10.1016/j.watres.2017.07.046_bib1
  article-title: Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es050634b
  contributor:
    fullname: Anipsitakis
– volume: 5
  start-page: 40552
  year: 2015
  ident: 10.1016/j.watres.2017.07.046_bib15
  article-title: Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review
  publication-title: RSC Adv.
  doi: 10.1039/C5RA02023A
  contributor:
    fullname: Nidheesh
– volume: 166
  start-page: 12
  year: 2016
  ident: 10.1016/j.watres.2017.07.046_bib21
  article-title: Mechanistic study of photo-oxidation of bisphenol A (BPA) with hydrogen peroxide (H2O2) and sodium persulfate (SPS)
  publication-title: J. Environ. Manag.
  contributor:
    fullname: Sharma
– volume: 280
  start-page: 623
  year: 2015
  ident: 10.1016/j.watres.2017.07.046_bib4
  article-title: Sono-activated persulfate oxidation of bisphenol A: kinetics, pathways and the controversial role of temperature
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.06.061
  contributor:
    fullname: Darsinou
– volume: 56
  start-page: 465
  issue: 5
  year: 2004
  ident: 10.1016/j.watres.2017.07.046_bib8
  article-title: Chlorination of bisphenol A: kinetics and by-products formation
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2004.03.001
  contributor:
    fullname: Gallard
– volume: 21
  start-page: 7457
  issue: 12
  year: 2014
  ident: 10.1016/j.watres.2017.07.046_bib25
  article-title: Degradation of 1,4-dioxane in water with heat- and Fe2+-activated persulfate oxidation
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-2668-3
  contributor:
    fullname: Zhao
– volume: 42
  start-page: 91
  year: 2012
  ident: 10.1016/j.watres.2017.07.046_bib10
  article-title: Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2011.04.010
  contributor:
    fullname: Huang
– volume: 195
  start-page: 93
  year: 2017
  ident: 10.1016/j.watres.2017.07.046_bib5
  article-title: New perspectives for advanced oxidation processes
  publication-title: J. Environ. Manag.
  contributor:
    fullname: Dewil
– volume: 199
  start-page: 170
  year: 2016
  ident: 10.1016/j.watres.2017.07.046_bib20
  article-title: Magnetic carbon xerogels for the catalytic wet peroxide oxidation of sulfamethoxazole in environmentally relevant water matrices
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.06.021
  contributor:
    fullname: Ribeiro
– volume: 82
  start-page: 1168
  issue: 8
  year: 2011
  ident: 10.1016/j.watres.2017.07.046_bib11
  article-title: Feasibility study of ultraviolet activated persulfate oxidation of phenol
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.12.027
  contributor:
    fullname: Lin
– volume: 108
  start-page: 140
  issue: 2
  year: 2008
  ident: 10.1016/j.watres.2017.07.046_bib16
  article-title: A critical evaluation of the environmental risk assessment for plasticizers in the freshwater environment in Europe, with special emphasis on bisphenol A and endocrine disruption
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2008.07.016
  contributor:
    fullname: Oehlmann
– volume: 31
  start-page: 1117
  issue: 10
  year: 2001
  ident: 10.1016/j.watres.2017.07.046_bib6
  article-title: Electropolymerization of chlorinated phenols on a Pt electrode in alkaline solution Part I: a cyclic voltammetry study
  publication-title: J. Appl. Electrochem.
  doi: 10.1023/A:1012280216273
  contributor:
    fullname: Ežerskis
– volume: 170
  start-page: 127
  issue: 1
  year: 2011
  ident: 10.1016/j.watres.2017.07.046_bib24
  article-title: Kinetic study of diuron oxidation and mineralization by persulphate: effects of temperature, oxidant concentration and iron dosage method
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.03.042
  contributor:
    fullname: Vicente
– volume: 22
  start-page: 4670
  issue: 6
  year: 2015
  ident: 10.1016/j.watres.2017.07.046_bib18
  article-title: Degradation and dechlorination of pentachlorophenol by microwave-activated persulfate
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-3718-6
  contributor:
    fullname: Qi
– volume: 151
  start-page: 178
  year: 2016
  ident: 10.1016/j.watres.2017.07.046_bib14
  article-title: Activated persulfate for organic chemical degradation: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.02.055
  contributor:
    fullname: Matzek
– volume: 39
  start-page: 6246
  issue: 16
  year: 2005
  ident: 10.1016/j.watres.2017.07.046_bib2
  article-title: Bisphenol A removal from water by activated carbon. Effects of carbon characteristics and solution chemistry
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0481169
  contributor:
    fullname: Bautista-Toledo
– volume: 227–228
  start-page: 394
  year: 2012
  ident: 10.1016/j.watres.2017.07.046_bib7
  article-title: Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.05.074
  contributor:
    fullname: Fang
– volume: 72
  start-page: 349
  year: 2015
  ident: 10.1016/j.watres.2017.07.046_bib13
  article-title: Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.10.006
  contributor:
    fullname: Lutze
– volume: 195
  start-page: 125
  year: 2017
  ident: 10.1016/j.watres.2017.07.046_bib17
  article-title: Oxidation of bisphenol A in water by heat-activated persulfate
  publication-title: J. Environ. Manag.
  contributor:
    fullname: Potakis
– volume: 48
  start-page: 10330
  issue: 17
  year: 2014
  ident: 10.1016/j.watres.2017.07.046_bib12
  article-title: In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es502056d
  contributor:
    fullname: Liu
– volume: 40
  start-page: 55
  issue: 1
  year: 2010
  ident: 10.1016/j.watres.2017.07.046_bib22
  article-title: In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643380802039303
  contributor:
    fullname: Tsitonaki
– volume: 86
  start-page: 1092
  issue: 11
  year: 2012
  ident: 10.1016/j.watres.2017.07.046_bib3
  article-title: Influence of chloride and carbonates on the reactivity of activated persulfate
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.12.011
  contributor:
    fullname: Bennedsen
SSID ssj0002239
Score 2.5939653
Snippet An advanced oxidation process comprising sodium persulfate (SPS) and a novel magnetic carbon xerogel was tested for the degradation of bisphenol A (BPA), a...
SourceID crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 97
SubjectTerms Benzhydryl Compounds - chemistry
Carbon
Chloride
Endocrine disruptors
Fenton-like
Intermediates
Operating parameters
Oxidation-Reduction
Phenols - chemistry
Radicals
Sodium Compounds
Sulfates
Water Pollutants, Chemical - chemistry
Title Activation of sodium persulfate by magnetic carbon xerogels (CX/CoFe) for the oxidation of bisphenol A: Process variables effects, matrix effects and reaction pathways
URI https://dx.doi.org/10.1016/j.watres.2017.07.046
https://www.ncbi.nlm.nih.gov/pubmed/28750289
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2l7QUOiG_aApoDB1BxiO3FH9yikqggwYEUEXGx1va6uGriKo5p-ov4m8x4P2zooYCEFFmOE6-tzMvO2_Wbt4w9wxyYpVHgOphspMPjPHfS_HXmxFnu8SjjPJY0NXA0Cz_Oo7cTPhkMzIqn3bH_Gmk8hrGmytm_iLZtFA_gPsYctxh13P5R3MeZWbCMeGBd5WWzIHPiujkrkFcS3VyIkyXVLpItdYrf28hVdYI5sn2iOyfH3GpKZk1Wglhtytw2mZY16cIqDC1NJ-hKg4PvOOimMqzaSEQoeAtaAGBjRSOtll3q1clpLeQLcVn36fEXQZ6N2oDoW2uFulHq-242uFmTbrdXnLOymWVKbgzUabUX_yqopKwUnZq_TGWp6no-NeXBbNjNgSADrs6r5kw1_EEo8bWdD8Ec6_4yH2ILdTpVVNvxkxOrr_yqh1L19VFID5eU0adNBh7vdedKOqyJgV6e90rOUdMfp8MLQdU9pBYMWz9Y_pvFd0saZnQndCMudq04eJ1vsR0P-0jsonfG7ybz95ZGIG-LjTyCTjB1n6048eq1ruFVPdJ0fJvd0qMdGCuY3mEDubzLbvY8MO-xHx1goSpAARY6wEJ6CQawoAALBrDw_HD-isD6AhAlgFAFC1VqzEIVxm9AAxUsUEHD8iUomJr3gJgCA1MwML3PPk8nx4dHjl49xMm4z9eOV6QCuWiUe0IiqRVxhoNnP_RFVkT5KBAc97gIvDBKC49KsiM5SgUOb5DXIQ2I_Qdse1kt5SMGgrtxEVDqwg-RHyMncMNQhJnIMwxjuMsc89sn58okJjHqydNExSqhWCUjfPFgl4UmQIkmuorAJoipa858qOJpr-NFyPm9KN775zb32Y3uf_SYba9XjXzCtuq8eaox-RMgIdpf
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activation+of+sodium+persulfate+by+magnetic+carbon+xerogels+%28CX%2FCoFe%29+for+the+oxidation+of+bisphenol+A%3A+Process+variables+effects%2C+matrix+effects+and+reaction+pathways&rft.jtitle=Water+research+%28Oxford%29&rft.au=Outsiou%2C+Alexandra&rft.au=Frontistis%2C+Zacharias&rft.au=Ribeiro%2C+Rui+S.&rft.au=Antonopoulou%2C+Maria&rft.date=2017-11-01&rft.pub=Elsevier+Ltd&rft.issn=0043-1354&rft.eissn=1879-2448&rft.volume=124&rft.spage=97&rft.epage=107&rft_id=info:doi/10.1016%2Fj.watres.2017.07.046&rft.externalDocID=S004313541730619X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon