Activation of sodium persulfate by magnetic carbon xerogels (CX/CoFe) for the oxidation of bisphenol A: Process variables effects, matrix effects and reaction pathways
An advanced oxidation process comprising sodium persulfate (SPS) and a novel magnetic carbon xerogel was tested for the degradation of bisphenol A (BPA), a model endocrine-disrupting compound. The catalyst, consisting of interconnected carbon microspheres with embedded iron and cobalt microparticles...
Saved in:
Published in: | Water research (Oxford) Vol. 124; pp. 97 - 107 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Elsevier Ltd
01-11-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | An advanced oxidation process comprising sodium persulfate (SPS) and a novel magnetic carbon xerogel was tested for the degradation of bisphenol A (BPA), a model endocrine-disrupting compound. The catalyst, consisting of interconnected carbon microspheres with embedded iron and cobalt microparticles, was capable of activating persulfate to form sulfate and hydroxyl radicals at ambient conditions.
The pseudo-first order degradation rate of BPA in ultrapure water (UPW) was found to increase with (i) increasing catalyst (25–75 mg/L) and SPS (31–250 mg/L) concentrations, (ii) decreasing BPA concentration (285–14,200 μg/L), and (iii) changing pH from alkaline to acidic values (9–3).
Besides UPW, tests were conducted in drinking water, treated wastewater, groundwater and surface water; interestingly, the rate in UPW was always lower than in any other matrix containing several organic and inorganic constituents. The effect of natural organic matter (in the form of humic acids) and alcohols was detrimental to BPA degradation owing to the scavenging of radicals. Conversely, chlorides at concentrations greater than 50 mg/L had a positive effect due to the formation and subsequent participation of chlorine-containing radicals.
Liquid chromatography time-of-flight mass spectrometry was employed to identify major transformation by-products (TBPs) of BPA degradation in the absence and presence of chlorides; in the latter case, several chlorinated TBPs were detected confirming the role of Cl-related radicals. Based on TBPs, main reaction pathways are proposed.
•Bimetallic Fe and Co carbon xerogels activate persulfate to sulfate radicals.•BPA decomposition in environmental matrices is faster than in pure water.•Chloride ion promotes degradation through the formation of chloride radicals.•Catalyst/oxidant/substrate concentrations, pH and radical scavengers affect rates.•Polymerization, bimolecular radical coupling and hydroxylation reactions dominate. |
---|---|
AbstractList | An advanced oxidation process comprising sodium persulfate (SPS) and a novel magnetic carbon xerogel was tested for the degradation of bisphenol A (BPA), a model endocrine-disrupting compound. The catalyst, consisting of interconnected carbon microspheres with embedded iron and cobalt microparticles, was capable of activating persulfate to form sulfate and hydroxyl radicals at ambient conditions.
The pseudo-first order degradation rate of BPA in ultrapure water (UPW) was found to increase with (i) increasing catalyst (25–75 mg/L) and SPS (31–250 mg/L) concentrations, (ii) decreasing BPA concentration (285–14,200 μg/L), and (iii) changing pH from alkaline to acidic values (9–3).
Besides UPW, tests were conducted in drinking water, treated wastewater, groundwater and surface water; interestingly, the rate in UPW was always lower than in any other matrix containing several organic and inorganic constituents. The effect of natural organic matter (in the form of humic acids) and alcohols was detrimental to BPA degradation owing to the scavenging of radicals. Conversely, chlorides at concentrations greater than 50 mg/L had a positive effect due to the formation and subsequent participation of chlorine-containing radicals.
Liquid chromatography time-of-flight mass spectrometry was employed to identify major transformation by-products (TBPs) of BPA degradation in the absence and presence of chlorides; in the latter case, several chlorinated TBPs were detected confirming the role of Cl-related radicals. Based on TBPs, main reaction pathways are proposed.
•Bimetallic Fe and Co carbon xerogels activate persulfate to sulfate radicals.•BPA decomposition in environmental matrices is faster than in pure water.•Chloride ion promotes degradation through the formation of chloride radicals.•Catalyst/oxidant/substrate concentrations, pH and radical scavengers affect rates.•Polymerization, bimolecular radical coupling and hydroxylation reactions dominate. An advanced oxidation process comprising sodium persulfate (SPS) and a novel magnetic carbon xerogel was tested for the degradation of bisphenol A (BPA), a model endocrine-disrupting compound. The catalyst, consisting of interconnected carbon microspheres with embedded iron and cobalt microparticles, was capable of activating persulfate to form sulfate and hydroxyl radicals at ambient conditions. The pseudo-first order degradation rate of BPA in ultrapure water (UPW) was found to increase with (i) increasing catalyst (25-75 mg/L) and SPS (31-250 mg/L) concentrations, (ii) decreasing BPA concentration (285-14,200 μg/L), and (iii) changing pH from alkaline to acidic values (9-3). Besides UPW, tests were conducted in drinking water, treated wastewater, groundwater and surface water; interestingly, the rate in UPW was always lower than in any other matrix containing several organic and inorganic constituents. The effect of natural organic matter (in the form of humic acids) and alcohols was detrimental to BPA degradation owing to the scavenging of radicals. Conversely, chlorides at concentrations greater than 50 mg/L had a positive effect due to the formation and subsequent participation of chlorine-containing radicals. Liquid chromatography time-of-flight mass spectrometry was employed to identify major transformation by-products (TBPs) of BPA degradation in the absence and presence of chlorides; in the latter case, several chlorinated TBPs were detected confirming the role of Cl-related radicals. Based on TBPs, main reaction pathways are proposed. |
Author | Ribeiro, Rui S. Gomes, Helder T. Outsiou, Alexandra Faria, Joaquim L. Frontistis, Zacharias Antonopoulou, Maria Konstantinou, Ioannis K. Silva, Adrián M.T. Mantzavinos, Dionissios |
Author_xml | – sequence: 1 givenname: Alexandra surname: Outsiou fullname: Outsiou, Alexandra organization: Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece – sequence: 2 givenname: Zacharias surname: Frontistis fullname: Frontistis, Zacharias organization: Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece – sequence: 3 givenname: Rui S. surname: Ribeiro fullname: Ribeiro, Rui S. organization: Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal – sequence: 4 givenname: Maria surname: Antonopoulou fullname: Antonopoulou, Maria organization: Department of Environmental and Natural Resources Management, University of Patras, 2 Seferi St., GR-30100 Agrinio, Greece – sequence: 5 givenname: Ioannis K. surname: Konstantinou fullname: Konstantinou, Ioannis K. organization: Department of Chemistry, Laboratory of Industrial Chemistry, University of Ioannina, GR-45110 Ioannina, Greece – sequence: 6 givenname: Adrián M.T. surname: Silva fullname: Silva, Adrián M.T. organization: Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal – sequence: 7 givenname: Joaquim L. surname: Faria fullname: Faria, Joaquim L. organization: Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal – sequence: 8 givenname: Helder T. surname: Gomes fullname: Gomes, Helder T. organization: Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal – sequence: 9 givenname: Dionissios surname: Mantzavinos fullname: Mantzavinos, Dionissios email: mantzavinos@chemeng.upatras.gr organization: Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28750289$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kN1qGzEQhUVJaZy0b1CKLlvIOvrbv14UjEnaQiC5aCB3YlY7imXWq0WSHfuJ-ppV6iaXhYGZgXPOMN8ZORn9iIR85GzOGa8u1_MnSAHjXDBez1kuVb0hM97UbSGUak7IjDElCy5LdUrOYlwzxoSQ7TtyKpq6ZKJpZ-T3wiS3g-T8SL2l0fduu6EThrgdLCSk3YFu4HHE5Aw1ELqs22PwjzhE-nn5cLn01_iFWh9oWiH1e9e_hnUuTisc_UAXX-ld8AZjpDsIDroBI0Vr0aR4kfNTcPuXncLY04Bg_sZMkFZPcIjvyVsLQ8QP__o5ub---rX8Udzcfv-5XNwURkmVCmE7aErZ9AKQixZaU5atrCUY2_SsApUnBZWom84KVtZtg6yDqqyk4ryUrTwn6phrgo8xoNVTcBsIB82Zfuau1_rIXT9z1yyXqrLt09E2bbsN9q-mF9BZ8O0oyNxw5zDoaByOBnsX8te69-7_F_4AvHWa0Q |
CitedBy_id | crossref_primary_10_1016_j_envres_2023_115365 crossref_primary_10_1007_s11814_022_1139_7 crossref_primary_10_1016_j_envpol_2022_120296 crossref_primary_10_1016_j_seppur_2018_11_019 crossref_primary_10_1016_j_cej_2022_136399 crossref_primary_10_1016_j_scitotenv_2020_144743 crossref_primary_10_1016_j_jenvman_2020_110356 crossref_primary_10_1016_S1872_5805_20_60521_2 crossref_primary_10_1039_C9NJ05863J crossref_primary_10_1016_j_cej_2021_129297 crossref_primary_10_1016_j_cej_2018_05_195 crossref_primary_10_1016_j_cej_2022_138504 crossref_primary_10_1016_j_jece_2022_107654 crossref_primary_10_1016_j_cej_2019_02_019 crossref_primary_10_1021_acs_energyfuels_9b03334 crossref_primary_10_1016_j_chemosphere_2021_132666 crossref_primary_10_1016_j_cej_2019_123986 crossref_primary_10_1016_j_cej_2018_09_086 crossref_primary_10_1016_j_jenvman_2019_109348 crossref_primary_10_1016_j_jcis_2021_05_176 crossref_primary_10_1016_j_scitotenv_2023_167177 crossref_primary_10_3390_ijerph15112419 crossref_primary_10_1016_j_cej_2019_123620 crossref_primary_10_1021_acs_iecr_1c04459 crossref_primary_10_1016_j_jece_2020_104788 crossref_primary_10_1016_j_chemosphere_2021_131952 crossref_primary_10_1016_j_scitotenv_2022_153152 crossref_primary_10_1016_j_envpol_2019_05_157 crossref_primary_10_1016_j_jhazmat_2020_122979 crossref_primary_10_1016_j_jtice_2023_104784 crossref_primary_10_1016_j_cej_2018_02_125 crossref_primary_10_1007_s41742_021_00365_7 crossref_primary_10_3390_w12041180 crossref_primary_10_3390_w16121754 crossref_primary_10_1016_j_cej_2019_123558 crossref_primary_10_1039_D3NJ01623D crossref_primary_10_3390_nano10010007 crossref_primary_10_1016_j_chemosphere_2021_131560 crossref_primary_10_1016_j_jhazmat_2020_123032 crossref_primary_10_1016_j_cattod_2024_114618 crossref_primary_10_3390_su122310047 crossref_primary_10_1002_celc_201800971 crossref_primary_10_1007_s10971_022_05834_9 crossref_primary_10_1016_j_seppur_2021_118971 crossref_primary_10_1016_j_cej_2020_124610 crossref_primary_10_1016_j_chemosphere_2020_127845 crossref_primary_10_1016_j_chemosphere_2022_137159 crossref_primary_10_1016_j_ceja_2020_100062 crossref_primary_10_1016_j_cej_2019_01_080 crossref_primary_10_1016_j_cej_2021_128674 crossref_primary_10_1016_j_jenvman_2020_110820 crossref_primary_10_1016_j_cej_2021_130406 crossref_primary_10_1016_j_surfin_2022_102078 crossref_primary_10_1016_j_ultsonch_2020_105045 crossref_primary_10_2166_wst_2019_303 crossref_primary_10_1016_j_cej_2019_06_006 crossref_primary_10_1016_j_apcatb_2019_117765 crossref_primary_10_1016_j_jcis_2021_07_019 crossref_primary_10_1016_j_scitotenv_2019_135656 crossref_primary_10_1007_s13369_023_08617_8 crossref_primary_10_1016_j_chemosphere_2021_131265 crossref_primary_10_1016_j_psep_2019_11_041 crossref_primary_10_3390_w12061530 crossref_primary_10_1016_j_cej_2020_124750 crossref_primary_10_1007_s11356_018_2637_3 crossref_primary_10_1007_s11356_019_04604_5 crossref_primary_10_1007_s40831_023_00758_2 crossref_primary_10_1016_j_chemosphere_2020_128197 crossref_primary_10_1016_j_jece_2023_111851 crossref_primary_10_1016_j_scitotenv_2021_144953 crossref_primary_10_1080_01919512_2019_1704218 crossref_primary_10_1016_j_cej_2018_09_203 crossref_primary_10_1016_j_cej_2021_130093 crossref_primary_10_1016_j_cej_2021_134048 crossref_primary_10_1016_j_chemosphere_2023_139659 crossref_primary_10_1039_D0CY01827A crossref_primary_10_1007_s11356_021_13939_x crossref_primary_10_1016_j_cej_2019_122780 crossref_primary_10_1016_j_cej_2019_122141 crossref_primary_10_1016_j_jece_2023_110603 crossref_primary_10_1016_j_jenvman_2022_114855 crossref_primary_10_1016_j_scitotenv_2019_07_278 crossref_primary_10_1016_j_jece_2018_04_049 crossref_primary_10_1016_j_jece_2021_106276 crossref_primary_10_1016_j_cej_2019_05_154 crossref_primary_10_1007_s10562_022_04143_8 crossref_primary_10_1139_cjc_2019_0485 crossref_primary_10_1016_j_seppur_2021_118773 crossref_primary_10_1016_j_cej_2020_127800 crossref_primary_10_1016_j_jwpe_2023_104722 crossref_primary_10_1002_jctb_6080 crossref_primary_10_1016_j_apsusc_2020_147887 crossref_primary_10_1016_j_chemosphere_2019_01_036 crossref_primary_10_1371_journal_pone_0214024 crossref_primary_10_1016_j_cej_2021_129162 crossref_primary_10_1016_j_jenvman_2022_114622 crossref_primary_10_3390_catal9121062 crossref_primary_10_1016_j_watres_2020_115862 crossref_primary_10_1021_acs_est_1c04238 crossref_primary_10_1016_j_cej_2020_127242 |
Cites_doi | 10.1016/j.reprotox.2007.07.010 10.1021/es011177b 10.1016/j.apcatb.2016.01.033 10.1021/es050634b 10.1039/C5RA02023A 10.1016/j.cej.2015.06.061 10.1016/j.chemosphere.2004.03.001 10.1007/s11356-014-2668-3 10.1016/j.envint.2011.04.010 10.1016/j.apcatb.2016.06.021 10.1016/j.chemosphere.2010.12.027 10.1016/j.envres.2008.07.016 10.1023/A:1012280216273 10.1016/j.cej.2011.03.042 10.1007/s11356-014-3718-6 10.1016/j.chemosphere.2016.02.055 10.1021/es0481169 10.1016/j.jhazmat.2012.05.074 10.1016/j.watres.2014.10.006 10.1021/es502056d 10.1080/10643380802039303 10.1016/j.chemosphere.2011.12.011 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION |
DOI | 10.1016/j.watres.2017.07.046 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2448 |
EndPage | 107 |
ExternalDocumentID | 10_1016_j_watres_2017_07_046 28750289 S004313541730619X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM AAHBH AAXKI AKRWK CGR CUY CVF ECM EIF NPM .55 186 29R 6TJ AAQXK AAYXX ABEFU ABTAH ABXDB ACKIV ADMUD AFFNX AFJKZ ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HMA HVGLF HZ~ H~9 MVM OHT R2- SEN SEP SEW WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ |
ID | FETCH-LOGICAL-c434t-2fba8538d2ae129a9c559373acf8d06a43ac4a6278bf205798e0ba65634115393 |
ISSN | 0043-1354 |
IngestDate | Thu Sep 26 15:28:52 EDT 2024 Sat Sep 28 08:47:56 EDT 2024 Fri Feb 23 02:26:13 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Endocrine disruptors Fenton-like Chloride Operating parameters Radicals Intermediates |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c434t-2fba8538d2ae129a9c559373acf8d06a43ac4a6278bf205798e0ba65634115393 |
OpenAccessLink | https://repositorio-aberto.up.pt/bitstream/10216/136080/2/231121.pdf |
PMID | 28750289 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_watres_2017_07_046 pubmed_primary_28750289 elsevier_sciencedirect_doi_10_1016_j_watres_2017_07_046 |
PublicationCentury | 2000 |
PublicationDate | 2017-11-01 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Water research (Oxford) |
PublicationTitleAlternate | Water Res |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Lin, Liang, Chen (bib11) 2011; 82 Ribeiro, Silva, Figueiredo, Faria, Gomes (bib19) 2016; 187 Lutze, Kerlin, Schmidt (bib13) 2015; 72 Potakis, Frontistis, Antonopoulou, Konstantinou, Mantzavinos (bib17) 2017; 195 Ribeiro, Frontistis, Mantzavinos, Venieri, Antonopoulou, Konstantinou, Silva, Faria, Gomes (bib20) 2016; 199 Gallard, Leclercq, Croué (bib8) 2004; 56 Darsinou, Frontistis, Antonopoulou, Konstantinou, Mantzavinos (bib4) 2015; 280 Zhao, Hou, Fujii, Hosomi, Li (bib25) 2014; 21 Huang, Wong, Zheng, Bouwman, Barra, Wahlstrom, Neretin, Wong (bib10) 2012; 42 Vandenberg, Hauser, Marcus, Olea, Welshons (bib23) 2007; 24 Qi, Liu, Zhao, Lin, Ma, Shi, Sun, Xiao (bib18) 2015; 22 Dewil, Mantzavinos, Poulios, Rodrigo (bib5) 2017; 195 Oehlmann, Oetken, Schulte-Oehlmann (bib16) 2008; 108 Bautista-Toledo, Ferro-Garcia, Moreno-Castilla, Vegas Fernandez (bib2) 2005; 39 Vicente, Santos, Romero, Rodriguez (bib24) 2011; 170 Liu, Bruton, Doyle, Sedlak (bib12) 2014; 48 Nidheesh (bib15) 2015; 5 Sharma, Mishra, Kumar (bib21) 2016; 166 Ežerskis, Jusys (bib6) 2001; 31 Tsitonaki, Petri, Crimi, Mosbaek, Siegrist, Bjerg (bib22) 2010; 40 Fang, Dionysiou, Wang, Al-Abed, Zhou (bib7) 2012; 227–228 Hu, Aizawa, Ookubo (bib9) 2002; 36 Anipsitakis, Dionysiou, Gonzalez (bib1) 2006; 40 Bennedsen, Muff, Sogaard (bib3) 2012; 86 Matzek, Carter (bib14) 2016; 151 Matzek (10.1016/j.watres.2017.07.046_bib14) 2016; 151 Dewil (10.1016/j.watres.2017.07.046_bib5) 2017; 195 Nidheesh (10.1016/j.watres.2017.07.046_bib15) 2015; 5 Lin (10.1016/j.watres.2017.07.046_bib11) 2011; 82 Fang (10.1016/j.watres.2017.07.046_bib7) 2012; 227–228 Gallard (10.1016/j.watres.2017.07.046_bib8) 2004; 56 Ribeiro (10.1016/j.watres.2017.07.046_bib19) 2016; 187 Qi (10.1016/j.watres.2017.07.046_bib18) 2015; 22 Vicente (10.1016/j.watres.2017.07.046_bib24) 2011; 170 Hu (10.1016/j.watres.2017.07.046_bib9) 2002; 36 Ežerskis (10.1016/j.watres.2017.07.046_bib6) 2001; 31 Lutze (10.1016/j.watres.2017.07.046_bib13) 2015; 72 Huang (10.1016/j.watres.2017.07.046_bib10) 2012; 42 Bautista-Toledo (10.1016/j.watres.2017.07.046_bib2) 2005; 39 Liu (10.1016/j.watres.2017.07.046_bib12) 2014; 48 Oehlmann (10.1016/j.watres.2017.07.046_bib16) 2008; 108 Tsitonaki (10.1016/j.watres.2017.07.046_bib22) 2010; 40 Anipsitakis (10.1016/j.watres.2017.07.046_bib1) 2006; 40 Zhao (10.1016/j.watres.2017.07.046_bib25) 2014; 21 Ribeiro (10.1016/j.watres.2017.07.046_bib20) 2016; 199 Sharma (10.1016/j.watres.2017.07.046_bib21) 2016; 166 Bennedsen (10.1016/j.watres.2017.07.046_bib3) 2012; 86 Vandenberg (10.1016/j.watres.2017.07.046_bib23) 2007; 24 Darsinou (10.1016/j.watres.2017.07.046_bib4) 2015; 280 Potakis (10.1016/j.watres.2017.07.046_bib17) 2017; 195 |
References_xml | – volume: 195 start-page: 93 year: 2017 end-page: 99 ident: bib5 article-title: New perspectives for advanced oxidation processes publication-title: J. Environ. Manag. contributor: fullname: Rodrigo – volume: 227–228 start-page: 394 year: 2012 end-page: 401 ident: bib7 article-title: Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics publication-title: J. Hazard. Mater. contributor: fullname: Zhou – volume: 5 start-page: 40552 year: 2015 end-page: 40577 ident: bib15 article-title: Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review publication-title: RSC Adv. contributor: fullname: Nidheesh – volume: 187 start-page: 428 year: 2016 end-page: 460 ident: bib19 article-title: Catalytic wet peroxide oxidation: a route towards the application of hybrid magnetic carbon nanocomposites for the degradation of organic pollutants. A review publication-title: Appl. Catal. B Environ. contributor: fullname: Gomes – volume: 199 start-page: 170 year: 2016 end-page: 186 ident: bib20 article-title: Magnetic carbon xerogels for the catalytic wet peroxide oxidation of sulfamethoxazole in environmentally relevant water matrices publication-title: Appl. Catal. B Environ. contributor: fullname: Gomes – volume: 31 start-page: 1117 year: 2001 end-page: 1124 ident: bib6 article-title: Electropolymerization of chlorinated phenols on a Pt electrode in alkaline solution Part I: a cyclic voltammetry study publication-title: J. Appl. Electrochem. contributor: fullname: Jusys – volume: 40 start-page: 1000 year: 2006 end-page: 1007 ident: bib1 article-title: Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions publication-title: Environ. Sci. Technol. contributor: fullname: Gonzalez – volume: 195 start-page: 125 year: 2017 end-page: 132 ident: bib17 article-title: Oxidation of bisphenol A in water by heat-activated persulfate publication-title: J. Environ. Manag. contributor: fullname: Mantzavinos – volume: 21 start-page: 7457 year: 2014 end-page: 7465 ident: bib25 article-title: Degradation of 1,4-dioxane in water with heat- and Fe publication-title: Environ. Sci. Pollut. Res. contributor: fullname: Li – volume: 36 start-page: 1980 year: 2002 end-page: 1987 ident: bib9 article-title: Products of aqueous chlorination of BPA and the estrogenic activity publication-title: Environ. Sci. Technol. contributor: fullname: Ookubo – volume: 24 start-page: 139 year: 2007 end-page: 177 ident: bib23 article-title: Human exposure to bisphenol A (BPA) publication-title: Reprod. Toxicol. contributor: fullname: Welshons – volume: 280 start-page: 623 year: 2015 end-page: 633 ident: bib4 article-title: Sono-activated persulfate oxidation of bisphenol A: kinetics, pathways and the controversial role of temperature publication-title: Chem. Eng. J. contributor: fullname: Mantzavinos – volume: 48 start-page: 10330 year: 2014 end-page: 10336 ident: bib12 article-title: In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials publication-title: Environ. Sci. Technol. contributor: fullname: Sedlak – volume: 40 start-page: 55 year: 2010 end-page: 91 ident: bib22 article-title: In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review publication-title: Crit. Rev. Environ. Sci. Technol. contributor: fullname: Bjerg – volume: 151 start-page: 178 year: 2016 end-page: 188 ident: bib14 article-title: Activated persulfate for organic chemical degradation: a review publication-title: Chemosphere contributor: fullname: Carter – volume: 72 start-page: 349 year: 2015 end-page: 360 ident: bib13 article-title: Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate publication-title: Water Res. contributor: fullname: Schmidt – volume: 170 start-page: 127 year: 2011 end-page: 135 ident: bib24 article-title: Kinetic study of diuron oxidation and mineralization by persulphate: effects of temperature, oxidant concentration and iron dosage method publication-title: Chem. Eng. J. contributor: fullname: Rodriguez – volume: 39 start-page: 6246 year: 2005 end-page: 6250 ident: bib2 article-title: Bisphenol A removal from water by activated carbon. Effects of carbon characteristics and solution chemistry publication-title: Environ. Sci. Technol. contributor: fullname: Vegas Fernandez – volume: 42 start-page: 91 year: 2012 end-page: 99 ident: bib10 article-title: Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts publication-title: Environ. Int. contributor: fullname: Wong – volume: 82 start-page: 1168 year: 2011 end-page: 1172 ident: bib11 article-title: Feasibility study of ultraviolet activated persulfate oxidation of phenol publication-title: Chemosphere contributor: fullname: Chen – volume: 108 start-page: 140 year: 2008 end-page: 149 ident: bib16 article-title: A critical evaluation of the environmental risk assessment for plasticizers in the freshwater environment in Europe, with special emphasis on bisphenol A and endocrine disruption publication-title: Environ. Res. contributor: fullname: Schulte-Oehlmann – volume: 166 start-page: 12 year: 2016 end-page: 22 ident: bib21 article-title: Mechanistic study of photo-oxidation of bisphenol A (BPA) with hydrogen peroxide (H publication-title: J. Environ. Manag. contributor: fullname: Kumar – volume: 22 start-page: 4670 year: 2015 end-page: 4679 ident: bib18 article-title: Degradation and dechlorination of pentachlorophenol by microwave-activated persulfate publication-title: Environ. Sci. Pollut. Res. contributor: fullname: Xiao – volume: 86 start-page: 1092 year: 2012 end-page: 1097 ident: bib3 article-title: Influence of chloride and carbonates on the reactivity of activated persulfate publication-title: Chemosphere contributor: fullname: Sogaard – volume: 56 start-page: 465 year: 2004 end-page: 473 ident: bib8 article-title: Chlorination of bisphenol A: kinetics and by-products formation publication-title: Chemosphere contributor: fullname: Croué – volume: 24 start-page: 139 issue: 2 year: 2007 ident: 10.1016/j.watres.2017.07.046_bib23 article-title: Human exposure to bisphenol A (BPA) publication-title: Reprod. Toxicol. doi: 10.1016/j.reprotox.2007.07.010 contributor: fullname: Vandenberg – volume: 36 start-page: 1980 issue: 9 year: 2002 ident: 10.1016/j.watres.2017.07.046_bib9 article-title: Products of aqueous chlorination of BPA and the estrogenic activity publication-title: Environ. Sci. Technol. doi: 10.1021/es011177b contributor: fullname: Hu – volume: 187 start-page: 428 year: 2016 ident: 10.1016/j.watres.2017.07.046_bib19 article-title: Catalytic wet peroxide oxidation: a route towards the application of hybrid magnetic carbon nanocomposites for the degradation of organic pollutants. A review publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.01.033 contributor: fullname: Ribeiro – volume: 40 start-page: 1000 issue: 3 year: 2006 ident: 10.1016/j.watres.2017.07.046_bib1 article-title: Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions publication-title: Environ. Sci. Technol. doi: 10.1021/es050634b contributor: fullname: Anipsitakis – volume: 5 start-page: 40552 year: 2015 ident: 10.1016/j.watres.2017.07.046_bib15 article-title: Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review publication-title: RSC Adv. doi: 10.1039/C5RA02023A contributor: fullname: Nidheesh – volume: 166 start-page: 12 year: 2016 ident: 10.1016/j.watres.2017.07.046_bib21 article-title: Mechanistic study of photo-oxidation of bisphenol A (BPA) with hydrogen peroxide (H2O2) and sodium persulfate (SPS) publication-title: J. Environ. Manag. contributor: fullname: Sharma – volume: 280 start-page: 623 year: 2015 ident: 10.1016/j.watres.2017.07.046_bib4 article-title: Sono-activated persulfate oxidation of bisphenol A: kinetics, pathways and the controversial role of temperature publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.06.061 contributor: fullname: Darsinou – volume: 56 start-page: 465 issue: 5 year: 2004 ident: 10.1016/j.watres.2017.07.046_bib8 article-title: Chlorination of bisphenol A: kinetics and by-products formation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.03.001 contributor: fullname: Gallard – volume: 21 start-page: 7457 issue: 12 year: 2014 ident: 10.1016/j.watres.2017.07.046_bib25 article-title: Degradation of 1,4-dioxane in water with heat- and Fe2+-activated persulfate oxidation publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-2668-3 contributor: fullname: Zhao – volume: 42 start-page: 91 year: 2012 ident: 10.1016/j.watres.2017.07.046_bib10 article-title: Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts publication-title: Environ. Int. doi: 10.1016/j.envint.2011.04.010 contributor: fullname: Huang – volume: 195 start-page: 93 year: 2017 ident: 10.1016/j.watres.2017.07.046_bib5 article-title: New perspectives for advanced oxidation processes publication-title: J. Environ. Manag. contributor: fullname: Dewil – volume: 199 start-page: 170 year: 2016 ident: 10.1016/j.watres.2017.07.046_bib20 article-title: Magnetic carbon xerogels for the catalytic wet peroxide oxidation of sulfamethoxazole in environmentally relevant water matrices publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.06.021 contributor: fullname: Ribeiro – volume: 82 start-page: 1168 issue: 8 year: 2011 ident: 10.1016/j.watres.2017.07.046_bib11 article-title: Feasibility study of ultraviolet activated persulfate oxidation of phenol publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.12.027 contributor: fullname: Lin – volume: 108 start-page: 140 issue: 2 year: 2008 ident: 10.1016/j.watres.2017.07.046_bib16 article-title: A critical evaluation of the environmental risk assessment for plasticizers in the freshwater environment in Europe, with special emphasis on bisphenol A and endocrine disruption publication-title: Environ. Res. doi: 10.1016/j.envres.2008.07.016 contributor: fullname: Oehlmann – volume: 31 start-page: 1117 issue: 10 year: 2001 ident: 10.1016/j.watres.2017.07.046_bib6 article-title: Electropolymerization of chlorinated phenols on a Pt electrode in alkaline solution Part I: a cyclic voltammetry study publication-title: J. Appl. Electrochem. doi: 10.1023/A:1012280216273 contributor: fullname: Ežerskis – volume: 170 start-page: 127 issue: 1 year: 2011 ident: 10.1016/j.watres.2017.07.046_bib24 article-title: Kinetic study of diuron oxidation and mineralization by persulphate: effects of temperature, oxidant concentration and iron dosage method publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.03.042 contributor: fullname: Vicente – volume: 22 start-page: 4670 issue: 6 year: 2015 ident: 10.1016/j.watres.2017.07.046_bib18 article-title: Degradation and dechlorination of pentachlorophenol by microwave-activated persulfate publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-3718-6 contributor: fullname: Qi – volume: 151 start-page: 178 year: 2016 ident: 10.1016/j.watres.2017.07.046_bib14 article-title: Activated persulfate for organic chemical degradation: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.02.055 contributor: fullname: Matzek – volume: 39 start-page: 6246 issue: 16 year: 2005 ident: 10.1016/j.watres.2017.07.046_bib2 article-title: Bisphenol A removal from water by activated carbon. Effects of carbon characteristics and solution chemistry publication-title: Environ. Sci. Technol. doi: 10.1021/es0481169 contributor: fullname: Bautista-Toledo – volume: 227–228 start-page: 394 year: 2012 ident: 10.1016/j.watres.2017.07.046_bib7 article-title: Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.05.074 contributor: fullname: Fang – volume: 72 start-page: 349 year: 2015 ident: 10.1016/j.watres.2017.07.046_bib13 article-title: Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate publication-title: Water Res. doi: 10.1016/j.watres.2014.10.006 contributor: fullname: Lutze – volume: 195 start-page: 125 year: 2017 ident: 10.1016/j.watres.2017.07.046_bib17 article-title: Oxidation of bisphenol A in water by heat-activated persulfate publication-title: J. Environ. Manag. contributor: fullname: Potakis – volume: 48 start-page: 10330 issue: 17 year: 2014 ident: 10.1016/j.watres.2017.07.046_bib12 article-title: In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials publication-title: Environ. Sci. Technol. doi: 10.1021/es502056d contributor: fullname: Liu – volume: 40 start-page: 55 issue: 1 year: 2010 ident: 10.1016/j.watres.2017.07.046_bib22 article-title: In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643380802039303 contributor: fullname: Tsitonaki – volume: 86 start-page: 1092 issue: 11 year: 2012 ident: 10.1016/j.watres.2017.07.046_bib3 article-title: Influence of chloride and carbonates on the reactivity of activated persulfate publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.12.011 contributor: fullname: Bennedsen |
SSID | ssj0002239 |
Score | 2.5939653 |
Snippet | An advanced oxidation process comprising sodium persulfate (SPS) and a novel magnetic carbon xerogel was tested for the degradation of bisphenol A (BPA), a... |
SourceID | crossref pubmed elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 97 |
SubjectTerms | Benzhydryl Compounds - chemistry Carbon Chloride Endocrine disruptors Fenton-like Intermediates Operating parameters Oxidation-Reduction Phenols - chemistry Radicals Sodium Compounds Sulfates Water Pollutants, Chemical - chemistry |
Title | Activation of sodium persulfate by magnetic carbon xerogels (CX/CoFe) for the oxidation of bisphenol A: Process variables effects, matrix effects and reaction pathways |
URI | https://dx.doi.org/10.1016/j.watres.2017.07.046 https://www.ncbi.nlm.nih.gov/pubmed/28750289 |
Volume | 124 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2l7QUOiG_aApoDB1BxiO3FH9yikqggwYEUEXGx1va6uGriKo5p-ov4m8x4P2zooYCEFFmOE6-tzMvO2_Wbt4w9wxyYpVHgOphspMPjPHfS_HXmxFnu8SjjPJY0NXA0Cz_Oo7cTPhkMzIqn3bH_Gmk8hrGmytm_iLZtFA_gPsYctxh13P5R3MeZWbCMeGBd5WWzIHPiujkrkFcS3VyIkyXVLpItdYrf28hVdYI5sn2iOyfH3GpKZk1Wglhtytw2mZY16cIqDC1NJ-hKg4PvOOimMqzaSEQoeAtaAGBjRSOtll3q1clpLeQLcVn36fEXQZ6N2oDoW2uFulHq-242uFmTbrdXnLOymWVKbgzUabUX_yqopKwUnZq_TGWp6no-NeXBbNjNgSADrs6r5kw1_EEo8bWdD8Ec6_4yH2ILdTpVVNvxkxOrr_yqh1L19VFID5eU0adNBh7vdedKOqyJgV6e90rOUdMfp8MLQdU9pBYMWz9Y_pvFd0saZnQndCMudq04eJ1vsR0P-0jsonfG7ybz95ZGIG-LjTyCTjB1n6048eq1ruFVPdJ0fJvd0qMdGCuY3mEDubzLbvY8MO-xHx1goSpAARY6wEJ6CQawoAALBrDw_HD-isD6AhAlgFAFC1VqzEIVxm9AAxUsUEHD8iUomJr3gJgCA1MwML3PPk8nx4dHjl49xMm4z9eOV6QCuWiUe0IiqRVxhoNnP_RFVkT5KBAc97gIvDBKC49KsiM5SgUOb5DXIQ2I_Qdse1kt5SMGgrtxEVDqwg-RHyMncMNQhJnIMwxjuMsc89sn58okJjHqydNExSqhWCUjfPFgl4UmQIkmuorAJoipa858qOJpr-NFyPm9KN775zb32Y3uf_SYba9XjXzCtuq8eaox-RMgIdpf |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activation+of+sodium+persulfate+by+magnetic+carbon+xerogels+%28CX%2FCoFe%29+for+the+oxidation+of+bisphenol+A%3A+Process+variables+effects%2C+matrix+effects+and+reaction+pathways&rft.jtitle=Water+research+%28Oxford%29&rft.au=Outsiou%2C+Alexandra&rft.au=Frontistis%2C+Zacharias&rft.au=Ribeiro%2C+Rui+S.&rft.au=Antonopoulou%2C+Maria&rft.date=2017-11-01&rft.pub=Elsevier+Ltd&rft.issn=0043-1354&rft.eissn=1879-2448&rft.volume=124&rft.spage=97&rft.epage=107&rft_id=info:doi/10.1016%2Fj.watres.2017.07.046&rft.externalDocID=S004313541730619X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |