Hydrothermal Preparation of Faceted Vesicles Made of Span 40 and Tween 40 and Their Characterization
The Span 40 (sorbitan monooleate)/Tween 40 (polyoxyethylene sorbitan monolaurate) system gives faceted vesicles with angular surfaces, rather than spherical vesicles. Herein, a continuous and facile preparation method, based on the subcritical water-assisted emulsification and solvent diffusion, was...
Saved in:
Published in: | Applied sciences Vol. 13; no. 12; p. 6893 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-06-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Span 40 (sorbitan monooleate)/Tween 40 (polyoxyethylene sorbitan monolaurate) system gives faceted vesicles with angular surfaces, rather than spherical vesicles. Herein, a continuous and facile preparation method, based on the subcritical water-assisted emulsification and solvent diffusion, was presented to yield faceted vesicles with two major and minor axes (Type A) and vesicles closer to a polyhedron (Type B). Type A, rather than Type B, vesicles were likely to be formed. From the measurements concerning ζ-potential, membrane fluidity, and the polarization environment of the membranes, faceted vesicles could be obtained at 0.25 wt% of the surfactant concentration. The phase-separated behavior of Span 40 and Tween 40 within vesicle membranes could explain the structural feature of faceted vesicles and calcein leakage behavior. The significant advantage is that Type A vesicles would be utilized as alternative drug carriers for others with low encapsulation efficiency, although the present technical limitations cause difficulty in the selective formation of Type A and B vesicles and the selection of adequate solvent to accelerate the solvent diffusion step. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app13126893 |