In Vitro Gene Expression Responses of Bovine Rumen Epithelial Cells to Different pH Stresses

Ruminal acidosis often occurs in production, which greatly affects animal health and production efficiency. Subacute rumen acidosis (SARA) occurs when rumen pH drops rapidly to 5.5−5.8, and acute rumen acidosis (ARA) occurs when rumen pH drops below 5.0, but the molecular regulation mechanism of the...

Full description

Saved in:
Bibliographic Details
Published in:Animals (Basel) Vol. 12; no. 19; p. 2621
Main Authors: Lian, Hongxia, Zhang, Chuankai, Liu, Yifan, Li, Wenjing, Fu, Tong, Gao, Tengyun, Zhang, Liyang
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 29-09-2022
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ruminal acidosis often occurs in production, which greatly affects animal health and production efficiency. Subacute rumen acidosis (SARA) occurs when rumen pH drops rapidly to 5.5−5.8, and acute rumen acidosis (ARA) occurs when rumen pH drops below 5.0, but the molecular regulation mechanism of the rumen epithelium after the rapid decrease in pH is still unclear. Bovine rumen epithelial cells (BRECs) were cultured at pH = 7.4 (control), 5.5 (SARA), and 4.5 (ARA). Transcriptome and metabolomic methods were used to obtain the molecular-based response of BRECs to different pH treatments; pH = 4.5 can significantly induce apoptosis of BRECs. The RNA-seq experiments revealed 1381 differently expressed genes (DEGs) in the control vs. SARA groups (p < 0.05). Fibroblast growth factor (FGF) and tumor necrosis factor (TNF) were upregulated 4.25 and 6.86 fold, respectively, and TLR4 was downregulated 0.58 fold. In addition, 283 DEGs were identified in the control vs. ARA comparison (p < 0.05), and prostaglandin-endoperoxide synthase 2 (PSTG2) was downregulated 0.54 fold. Our research reveals that the MAPK/TNF signaling pathway regulates the inflammatory response of BRECs. Metabolomics identified 35 biochemical compounds that were significantly affected (p < 0.05) in control vs. SARA and 51 in control vs. ARA. Bioinformatics analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database revealed that drug metabolism-cytochrome P450 metabolic and alpha-linolenic acid metabolism changes occurred. These transcriptional and metabolic changes are related to the adaptation of BRECs to low-pH stresses. In conclusion, the combined data analyses presented a worthy strategy to characterize the cellular, transcriptomic, and metabonomic adaptation of BRECs to pH in vitro. We demonstrated transcriptional expression changes in BRECs under pH stress and activation of the molecular mechanisms controlling inflammation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2076-2615
2076-2615
DOI:10.3390/ani12192621