A Clinician’s Guide to Running Custom Machine-Learning Models in an Electronic Health Record Environment
We recently brought an internally developed machine-learning model for predicting which patients in the emergency department would require hospital admission into the live electronic health record environment. Doing so involved navigating several engineering challenges that required the expertise of...
Saved in:
Published in: | Mayo Clinic proceedings Vol. 98; no. 3; pp. 445 - 450 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Elsevier Inc
01-03-2023
Elsevier, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We recently brought an internally developed machine-learning model for predicting which patients in the emergency department would require hospital admission into the live electronic health record environment. Doing so involved navigating several engineering challenges that required the expertise of multiple parties across our institution. Our team of physician data scientists developed, validated, and implemented the model. We recognize a broad interest and need to adopt machine-learning models into clinical practice and seek to share our experience to enable other clinician-led initiatives. This Brief Report covers the entire model deployment process, starting once a team has trained and validated a model they wish to deploy in live clinical operations. |
---|---|
AbstractList | We recently brought an internally developed machine-learning model for predicting which patients in the emergency department would require hospital admission into the live electronic health record environment. Doing so involved navigating several engineering challenges that required the expertise of multiple parties across our institution. Our team of physician data scientists developed, validated, and implemented the model. We recognize a broad interest and need to adopt machine-learning models into clinical practice and seek to share our experience to enable other clinician-led initiatives. This Brief Report covers the entire model deployment process, starting once a team has trained and validated a model they wish to deploy in live clinical operations. |
Audience | Academic |
Author | Heaton, Heather A. Condon, Jennifer L. Boyum, Jens P. Core, Marcia A. Peters, Steve G. Lamb, Matthew W. Ayanian, Shant Ryu, Alexander J. Parikh, Riddhi S. Garza, Esteban L. Qian, Ray |
Author_xml | – sequence: 1 givenname: Alexander J. orcidid: 0000-0002-0138-5112 surname: Ryu fullname: Ryu, Alexander J. email: Ryu.Alexander@mayo.edu organization: Mayo Clinic Division of Hospital Internal Medicine, Rochester, MN – sequence: 2 givenname: Shant surname: Ayanian fullname: Ayanian, Shant organization: Mayo Clinic Division of Hospital Internal Medicine, Rochester, MN – sequence: 3 givenname: Ray surname: Qian fullname: Qian, Ray organization: Mayo Clinic Department of Laboratory Medicine and Pathology, Rochester, MN – sequence: 4 givenname: Marcia A. surname: Core fullname: Core, Marcia A. organization: Mayo Clinic Department of Information Technology, Phoenix, AZ – sequence: 5 givenname: Heather A. surname: Heaton fullname: Heaton, Heather A. organization: Mayo Clinic Department of Emergency Medicine, Rochester, MN – sequence: 6 givenname: Matthew W. surname: Lamb fullname: Lamb, Matthew W. organization: Mayo Clinic Department of Information Technology, Jacksonville, FL – sequence: 7 givenname: Riddhi S. surname: Parikh fullname: Parikh, Riddhi S. organization: Mayo Clinic Division of Hospital Internal Medicine, Rochester, MN – sequence: 8 givenname: Jens P. surname: Boyum fullname: Boyum, Jens P. organization: Mayo Clinic Department of Practice Optimization, Rochester, MN – sequence: 9 givenname: Esteban L. surname: Garza fullname: Garza, Esteban L. organization: Mayo Clinic Department of Information Technology, Phoenix, AZ – sequence: 10 givenname: Jennifer L. surname: Condon fullname: Condon, Jennifer L. organization: Mayo Clinic Department of Emergency Medicine, Rochester, MN – sequence: 11 givenname: Steve G. surname: Peters fullname: Peters, Steve G. organization: Mayo Clinic Chief Medical Information Officer, Rochester, MN |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36868752$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9q3DAQh0VJaTZp36AUnUovdvXPsn0pLMsmKWwohPYsZGmc1WJLW8kO5NbX6Ov1SaLEaWkvRQfB8P1Go_nO0IkPHhB6S0lJCZUfD-Wo74M5lowwVlJaEtq-QCvaClZUlZAnaEUIqwpJW3mKzlI6EELqthWv0CmXjWzqiq3QYY03g_POOO1__fiZ8OXsLOAp4JvZe-dv8WZOUxjxtTZ756HYgY5P9etgYUjYeaw93g5gphhyH3wFepj2-AZMiBZv_Z3L9RH89Bq97PWQ4M3zfY6-XWy_bq6K3ZfLz5v1rjCCs6mobUuBE9oYy1tBOKWm6wyvSVP3DCQxDUDdNRUD3WvWNdAzQ6UUmkJjreD8HH1Y-h5j-D5DmtTokoFh0B7CnBSrGy5aVnOR0XJBb_UAyvk-TFGbfCyMzuR99y7X17XgkktRyxx4_1dg__TVFIZ5csGnf0GxgCaGlCL06hjdqOO9okQ9-lMHtfhTj_4UpSr7y7F3z7PP3Qj2T-i3sAx8WoC8e7hzEFUyDrwB62JWoGxw_3_hAXE1r8s |
CitedBy_id | crossref_primary_10_1016_j_mayocp_2023_01_013 crossref_primary_10_1093_jamia_ocad203 |
Cites_doi | 10.1046/j.1442-2026.2003.00403.x 10.1016/j.mayocpiqo.2022.03.003 10.1001/jamahealthforum.2020.0345 |
ContentType | Journal Article |
Copyright | 2022 Mayo Foundation for Medical Education and Research Copyright © 2022 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved. COPYRIGHT 2023 Elsevier, Inc. |
Copyright_xml | – notice: 2022 Mayo Foundation for Medical Education and Research – notice: Copyright © 2022 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved. – notice: COPYRIGHT 2023 Elsevier, Inc. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1016/j.mayocp.2022.11.019 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1942-5546 |
EndPage | 450 |
ExternalDocumentID | A743636476 10_1016_j_mayocp_2022_11_019 36868752 S0025619622006693 |
Genre | Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | --- --K .1- .55 .FO .GJ 08P 0R~ 18M 1CY 1P~ 29M 2WC 354 36B 3O- 3V. 4.4 457 53G 5GY 5RE 7RV 7X7 88E 88I 8AF 8C1 8F7 8FI 8FJ 96U AAEDT AAEDW AAIAV AAKAS AALRI AAQQT AAQXK AAWTL AAXUO AAYEP AAYOK ABCQX ABJNI ABLJU ABMAC ABUWG ACGFO ACGOD ACPRK ADBBV ADFRT ADMUD ADZCM AENEX AERZD AEVXI AFAZI AFCTW AFFNX AFKRA AFRHN AFTJW AGNAY AHMBA AHPSJ AITUG AJUYK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN AZQEC BAAKF BAWUL BCR BCU BEC BENPR BES BKEYQ BKNYI BKOMP BLC BPHCQ BVXVI CCPQU DIK DU5 DWQXO E3Z EBS EJD EX3 F8P F9R FAC FAS FDB FEDTE FGOYB FJW FYUFA GNUQQ GX1 HCIFZ HMCUK HVGLF HYE HZ~ IAO ICW IEA IHR IHW INH INR IOF ITC J5H K9- L7B M0R M1P M2P M2Q M41 N4W N95 NAPCQ O9- OD. OHT OK1 OO~ OVD P2P PCD PEA PQQKQ PROAC PSQYO R2- RIG ROL RPM RVF RWL RXW S0X SEL SJFOW TAE TEORI TJF TR2 U5U UKHRP UNMZH VVN W8F WH7 WOW X7M XH2 XI7 YFH YOC Z5R ZA5 ZGI ZXP AFJKZ ALIPV CGR CUY CVF ECM EIF H13 NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c432t-7d91e3018cd3940311cbbc37087f2e60c8ee7b852eafa2b8ef2c1664a1e8dd433 |
ISSN | 0025-6196 |
IngestDate | Fri Oct 25 09:30:51 EDT 2024 Tue Nov 12 22:50:45 EST 2024 Tue Aug 20 22:10:19 EDT 2024 Thu Nov 21 22:20:05 EST 2024 Sat Sep 28 08:19:04 EDT 2024 Fri Feb 23 02:38:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | UI AI IT EHR AUC ED ML |
Language | English |
License | Copyright © 2022 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c432t-7d91e3018cd3940311cbbc37087f2e60c8ee7b852eafa2b8ef2c1664a1e8dd433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0138-5112 |
PMID | 36868752 |
PQID | 2783492734 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2783492734 gale_infotracacademiconefile_A743636476 gale_healthsolutions_A743636476 crossref_primary_10_1016_j_mayocp_2022_11_019 pubmed_primary_36868752 elsevier_sciencedirect_doi_10_1016_j_mayocp_2022_11_019 |
PublicationCentury | 2000 |
PublicationDate | March 2023 2023-03-00 20230301 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Mayo Clinic proceedings |
PublicationTitleAlternate | Mayo Clin Proc |
PublicationYear | 2023 |
Publisher | Elsevier Inc Elsevier, Inc |
Publisher_xml | – name: Elsevier Inc – name: Elsevier, Inc |
References | Ryu, Romero-Brufau, Qian (bib6) 2022; 6 Cavallo, Donoho, Forman (bib3) 2020; 1 Schafermeyer, Asplin (bib1) 2003; 15 News and Publications. The Johns Hopkins Hospital launches capacity command center to enhance hospital operations. Johns Hopkins Medicine. Published online October 26, 2016. Accessed November 16, 2020. bib5 Kelen, Wolfe, D’Onofrio (bib2) 2021; 5 36868743 - Mayo Clin Proc. 2023 Mar;98(3):366-369 Schafermeyer (10.1016/j.mayocp.2022.11.019_bib1) 2003; 15 Kelen (10.1016/j.mayocp.2022.11.019_bib2) 2021; 5 Cavallo (10.1016/j.mayocp.2022.11.019_bib3) 2020; 1 Ryu (10.1016/j.mayocp.2022.11.019_bib6) 2022; 6 10.1016/j.mayocp.2022.11.019_bib4 |
References_xml | – volume: 6 start-page: 193 year: 2022 end-page: 199 ident: bib6 article-title: Assessing the generalizability of a clinical machine learning model across multiple emergency departments publication-title: Mayo Clin Proc Innov Qual Outcomes contributor: fullname: Qian – ident: bib5 article-title: Improving patient-care with hospital command centers: AI/ machine learning insights medical technology – volume: 1 year: 2020 ident: bib3 article-title: Hospital capacity and operations in the coronavirus disease 2019 (COVID-19) pandemic: planning for the nth patient publication-title: JAMA Health Forum contributor: fullname: Forman – volume: 5 year: 2021 ident: bib2 article-title: Emergency department crowding: the canary in the health care system publication-title: N Engl J Med Catalyst contributor: fullname: D’Onofrio – volume: 15 start-page: 22 year: 2003 end-page: 27 ident: bib1 article-title: Hospital and emergency department crowding in the United States publication-title: Emerg Med contributor: fullname: Asplin – volume: 15 start-page: 22 issue: 1 year: 2003 ident: 10.1016/j.mayocp.2022.11.019_bib1 article-title: Hospital and emergency department crowding in the United States publication-title: Emerg Med doi: 10.1046/j.1442-2026.2003.00403.x contributor: fullname: Schafermeyer – volume: 6 start-page: 193 issue: 3 year: 2022 ident: 10.1016/j.mayocp.2022.11.019_bib6 article-title: Assessing the generalizability of a clinical machine learning model across multiple emergency departments publication-title: Mayo Clin Proc Innov Qual Outcomes doi: 10.1016/j.mayocpiqo.2022.03.003 contributor: fullname: Ryu – ident: 10.1016/j.mayocp.2022.11.019_bib4 – volume: 5 issue: 2 year: 2021 ident: 10.1016/j.mayocp.2022.11.019_bib2 article-title: Emergency department crowding: the canary in the health care system publication-title: N Engl J Med Catalyst contributor: fullname: Kelen – volume: 1 issue: 3 year: 2020 ident: 10.1016/j.mayocp.2022.11.019_bib3 article-title: Hospital capacity and operations in the coronavirus disease 2019 (COVID-19) pandemic: planning for the nth patient publication-title: JAMA Health Forum doi: 10.1001/jamahealthforum.2020.0345 contributor: fullname: Cavallo |
SSID | ssj0007994 |
Score | 2.4613812 |
Snippet | We recently brought an internally developed machine-learning model for predicting which patients in the emergency department would require hospital admission... |
SourceID | proquest gale crossref pubmed elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 445 |
SubjectTerms | Analysis Electronic Health Records Electronic records Emergency Service, Hospital Health care industry Health Facilities Humans Machine Learning Management Medical records Running Technology application |
Title | A Clinician’s Guide to Running Custom Machine-Learning Models in an Electronic Health Record Environment |
URI | https://dx.doi.org/10.1016/j.mayocp.2022.11.019 https://www.ncbi.nlm.nih.gov/pubmed/36868752 https://search.proquest.com/docview/2783492734 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBbZLZReSt-bPlUo9GAc1pIiS8eQppTSFJrdQulFyLbMJnSdsokPue3f2L_XX9LRw3aSpfQBvZgglDjSfB7NjGfmQ-hVMTTSOoVxYTIeM0azWGhTxIznInctw0tHYnuSfvwi3kzYpNdr-NK6sf8qaRgDWdvK2b-QdvujMACfQeZwBanD9Y_kPop8q08Qe5PIIFeAhHnhSDJmteMoisY1WH3nlnfoDOzM-EMTIbHcaN9cjiw8-JOOIyeUK3lvNZp05XHb1u1Ub5bh9lF3MnbZ9Jt6p6Ymej9o8bbR1TzEYs90l4vzKQzOulyfccgMnloWJB2NBtuBC0K7zC0fTWsqanYSPh29Ljh1oT22V8qSgcM8DKHKoLWl2EIn3VLBzLenDKc5821trx0UPmaxGJzDxuS2bykhA9vNNejv3RbcJ84yhD9F3KsqSQ_QDQKKzerVr8NZe_KnUrKGIthOb0o1XT7h9Tv9yhTatw32PB5n-ZzeQbeDy4JHHmt3Uc9U99DNaUjKuI8WI9xC7sfl1Qo7sOH1EgewYQ82vA827MGG5xXWFe7Ahj3YsAcb3gLbA_T57eR0_C4OFB5xzihZx2khEwNniMgLKhkcIEmeZTlNj0VaEsOPc2FMmokhMbrUJBOmJHnCOdOJEUXBKH2IDqtlZY4QTjOiKUtpCRaUtbykIUyQrOQkKTXXWR_FzW6q775Ti2pSGBfK776yuw9Or4Ld76O02XIVrE1vRSrAyG---cJKSPlK5VZpqBFY49zyMfA-eu1mWMitL3SuQ60LrMS2W9uZ-bIRswLFbt_W6cos65VyFDjSdp_qo0de_u26KBdcpEPy-J_X8ATd6p7Jp-hwfVGbZ-hgVdTPHaZ_Atbgzuw |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Clinician%E2%80%99s+Guide+to+Running+Custom+Machine-Learning+Models+in+an+Electronic+Health+Record+Environment&rft.jtitle=Mayo+Clinic+proceedings&rft.au=Ryu%2C+Alexander+J.&rft.au=Ayanian%2C+Shant&rft.au=Qian%2C+Ray&rft.au=Core%2C+Marcia+A.&rft.date=2023-03-01&rft.pub=Elsevier+Inc&rft.issn=0025-6196&rft.eissn=1942-5546&rft.volume=98&rft.issue=3&rft.spage=445&rft.epage=450&rft_id=info:doi/10.1016%2Fj.mayocp.2022.11.019&rft.externalDocID=S0025619622006693 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-6196&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-6196&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-6196&client=summon |