A Clinician’s Guide to Running Custom Machine-Learning Models in an Electronic Health Record Environment

We recently brought an internally developed machine-learning model for predicting which patients in the emergency department would require hospital admission into the live electronic health record environment. Doing so involved navigating several engineering challenges that required the expertise of...

Full description

Saved in:
Bibliographic Details
Published in:Mayo Clinic proceedings Vol. 98; no. 3; pp. 445 - 450
Main Authors: Ryu, Alexander J., Ayanian, Shant, Qian, Ray, Core, Marcia A., Heaton, Heather A., Lamb, Matthew W., Parikh, Riddhi S., Boyum, Jens P., Garza, Esteban L., Condon, Jennifer L., Peters, Steve G.
Format: Journal Article
Language:English
Published: England Elsevier Inc 01-03-2023
Elsevier, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We recently brought an internally developed machine-learning model for predicting which patients in the emergency department would require hospital admission into the live electronic health record environment. Doing so involved navigating several engineering challenges that required the expertise of multiple parties across our institution. Our team of physician data scientists developed, validated, and implemented the model. We recognize a broad interest and need to adopt machine-learning models into clinical practice and seek to share our experience to enable other clinician-led initiatives. This Brief Report covers the entire model deployment process, starting once a team has trained and validated a model they wish to deploy in live clinical operations.
AbstractList We recently brought an internally developed machine-learning model for predicting which patients in the emergency department would require hospital admission into the live electronic health record environment. Doing so involved navigating several engineering challenges that required the expertise of multiple parties across our institution. Our team of physician data scientists developed, validated, and implemented the model. We recognize a broad interest and need to adopt machine-learning models into clinical practice and seek to share our experience to enable other clinician-led initiatives. This Brief Report covers the entire model deployment process, starting once a team has trained and validated a model they wish to deploy in live clinical operations.
Audience Academic
Author Heaton, Heather A.
Condon, Jennifer L.
Boyum, Jens P.
Core, Marcia A.
Peters, Steve G.
Lamb, Matthew W.
Ayanian, Shant
Ryu, Alexander J.
Parikh, Riddhi S.
Garza, Esteban L.
Qian, Ray
Author_xml – sequence: 1
  givenname: Alexander J.
  orcidid: 0000-0002-0138-5112
  surname: Ryu
  fullname: Ryu, Alexander J.
  email: Ryu.Alexander@mayo.edu
  organization: Mayo Clinic Division of Hospital Internal Medicine, Rochester, MN
– sequence: 2
  givenname: Shant
  surname: Ayanian
  fullname: Ayanian, Shant
  organization: Mayo Clinic Division of Hospital Internal Medicine, Rochester, MN
– sequence: 3
  givenname: Ray
  surname: Qian
  fullname: Qian, Ray
  organization: Mayo Clinic Department of Laboratory Medicine and Pathology, Rochester, MN
– sequence: 4
  givenname: Marcia A.
  surname: Core
  fullname: Core, Marcia A.
  organization: Mayo Clinic Department of Information Technology, Phoenix, AZ
– sequence: 5
  givenname: Heather A.
  surname: Heaton
  fullname: Heaton, Heather A.
  organization: Mayo Clinic Department of Emergency Medicine, Rochester, MN
– sequence: 6
  givenname: Matthew W.
  surname: Lamb
  fullname: Lamb, Matthew W.
  organization: Mayo Clinic Department of Information Technology, Jacksonville, FL
– sequence: 7
  givenname: Riddhi S.
  surname: Parikh
  fullname: Parikh, Riddhi S.
  organization: Mayo Clinic Division of Hospital Internal Medicine, Rochester, MN
– sequence: 8
  givenname: Jens P.
  surname: Boyum
  fullname: Boyum, Jens P.
  organization: Mayo Clinic Department of Practice Optimization, Rochester, MN
– sequence: 9
  givenname: Esteban L.
  surname: Garza
  fullname: Garza, Esteban L.
  organization: Mayo Clinic Department of Information Technology, Phoenix, AZ
– sequence: 10
  givenname: Jennifer L.
  surname: Condon
  fullname: Condon, Jennifer L.
  organization: Mayo Clinic Department of Emergency Medicine, Rochester, MN
– sequence: 11
  givenname: Steve G.
  surname: Peters
  fullname: Peters, Steve G.
  organization: Mayo Clinic Chief Medical Information Officer, Rochester, MN
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36868752$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9q3DAQh0VJaTZp36AUnUovdvXPsn0pLMsmKWwohPYsZGmc1WJLW8kO5NbX6Ov1SaLEaWkvRQfB8P1Go_nO0IkPHhB6S0lJCZUfD-Wo74M5lowwVlJaEtq-QCvaClZUlZAnaEUIqwpJW3mKzlI6EELqthWv0CmXjWzqiq3QYY03g_POOO1__fiZ8OXsLOAp4JvZe-dv8WZOUxjxtTZ756HYgY5P9etgYUjYeaw93g5gphhyH3wFepj2-AZMiBZv_Z3L9RH89Bq97PWQ4M3zfY6-XWy_bq6K3ZfLz5v1rjCCs6mobUuBE9oYy1tBOKWm6wyvSVP3DCQxDUDdNRUD3WvWNdAzQ6UUmkJjreD8HH1Y-h5j-D5DmtTokoFh0B7CnBSrGy5aVnOR0XJBb_UAyvk-TFGbfCyMzuR99y7X17XgkktRyxx4_1dg__TVFIZ5csGnf0GxgCaGlCL06hjdqOO9okQ9-lMHtfhTj_4UpSr7y7F3z7PP3Qj2T-i3sAx8WoC8e7hzEFUyDrwB62JWoGxw_3_hAXE1r8s
CitedBy_id crossref_primary_10_1016_j_mayocp_2023_01_013
crossref_primary_10_1093_jamia_ocad203
Cites_doi 10.1046/j.1442-2026.2003.00403.x
10.1016/j.mayocpiqo.2022.03.003
10.1001/jamahealthforum.2020.0345
ContentType Journal Article
Copyright 2022 Mayo Foundation for Medical Education and Research
Copyright © 2022 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
COPYRIGHT 2023 Elsevier, Inc.
Copyright_xml – notice: 2022 Mayo Foundation for Medical Education and Research
– notice: Copyright © 2022 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
– notice: COPYRIGHT 2023 Elsevier, Inc.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1016/j.mayocp.2022.11.019
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE



Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1942-5546
EndPage 450
ExternalDocumentID A743636476
10_1016_j_mayocp_2022_11_019
36868752
S0025619622006693
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
--K
.1-
.55
.FO
.GJ
08P
0R~
18M
1CY
1P~
29M
2WC
354
36B
3O-
3V.
4.4
457
53G
5GY
5RE
7RV
7X7
88E
88I
8AF
8C1
8F7
8FI
8FJ
96U
AAEDT
AAEDW
AAIAV
AAKAS
AALRI
AAQQT
AAQXK
AAWTL
AAXUO
AAYEP
AAYOK
ABCQX
ABJNI
ABLJU
ABMAC
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADFRT
ADMUD
ADZCM
AENEX
AERZD
AEVXI
AFAZI
AFCTW
AFFNX
AFKRA
AFRHN
AFTJW
AGNAY
AHMBA
AHPSJ
AITUG
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
AZQEC
BAAKF
BAWUL
BCR
BCU
BEC
BENPR
BES
BKEYQ
BKNYI
BKOMP
BLC
BPHCQ
BVXVI
CCPQU
DIK
DU5
DWQXO
E3Z
EBS
EJD
EX3
F8P
F9R
FAC
FAS
FDB
FEDTE
FGOYB
FJW
FYUFA
GNUQQ
GX1
HCIFZ
HMCUK
HVGLF
HYE
HZ~
IAO
ICW
IEA
IHR
IHW
INH
INR
IOF
ITC
J5H
K9-
L7B
M0R
M1P
M2P
M2Q
M41
N4W
N95
NAPCQ
O9-
OD.
OHT
OK1
OO~
OVD
P2P
PCD
PEA
PQQKQ
PROAC
PSQYO
R2-
RIG
ROL
RPM
RVF
RWL
RXW
S0X
SEL
SJFOW
TAE
TEORI
TJF
TR2
U5U
UKHRP
UNMZH
VVN
W8F
WH7
WOW
X7M
XH2
XI7
YFH
YOC
Z5R
ZA5
ZGI
ZXP
AFJKZ
ALIPV
CGR
CUY
CVF
ECM
EIF
H13
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c432t-7d91e3018cd3940311cbbc37087f2e60c8ee7b852eafa2b8ef2c1664a1e8dd433
ISSN 0025-6196
IngestDate Fri Oct 25 09:30:51 EDT 2024
Tue Nov 12 22:50:45 EST 2024
Tue Aug 20 22:10:19 EDT 2024
Thu Nov 21 22:20:05 EST 2024
Sat Sep 28 08:19:04 EDT 2024
Fri Feb 23 02:38:42 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords UI
AI
IT
EHR
AUC
ED
ML
Language English
License Copyright © 2022 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c432t-7d91e3018cd3940311cbbc37087f2e60c8ee7b852eafa2b8ef2c1664a1e8dd433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0138-5112
PMID 36868752
PQID 2783492734
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2783492734
gale_infotracacademiconefile_A743636476
gale_healthsolutions_A743636476
crossref_primary_10_1016_j_mayocp_2022_11_019
pubmed_primary_36868752
elsevier_sciencedirect_doi_10_1016_j_mayocp_2022_11_019
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Mayo Clinic proceedings
PublicationTitleAlternate Mayo Clin Proc
PublicationYear 2023
Publisher Elsevier Inc
Elsevier, Inc
Publisher_xml – name: Elsevier Inc
– name: Elsevier, Inc
References Ryu, Romero-Brufau, Qian (bib6) 2022; 6
Cavallo, Donoho, Forman (bib3) 2020; 1
Schafermeyer, Asplin (bib1) 2003; 15
News and Publications. The Johns Hopkins Hospital launches capacity command center to enhance hospital operations. Johns Hopkins Medicine. Published online October 26, 2016. Accessed November 16, 2020.
bib5
Kelen, Wolfe, D’Onofrio (bib2) 2021; 5
36868743 - Mayo Clin Proc. 2023 Mar;98(3):366-369
Schafermeyer (10.1016/j.mayocp.2022.11.019_bib1) 2003; 15
Kelen (10.1016/j.mayocp.2022.11.019_bib2) 2021; 5
Cavallo (10.1016/j.mayocp.2022.11.019_bib3) 2020; 1
Ryu (10.1016/j.mayocp.2022.11.019_bib6) 2022; 6
10.1016/j.mayocp.2022.11.019_bib4
References_xml – volume: 6
  start-page: 193
  year: 2022
  end-page: 199
  ident: bib6
  article-title: Assessing the generalizability of a clinical machine learning model across multiple emergency departments
  publication-title: Mayo Clin Proc Innov Qual Outcomes
  contributor:
    fullname: Qian
– ident: bib5
  article-title: Improving patient-care with hospital command centers: AI/ machine learning insights medical technology
– volume: 1
  year: 2020
  ident: bib3
  article-title: Hospital capacity and operations in the coronavirus disease 2019 (COVID-19) pandemic: planning for the nth patient
  publication-title: JAMA Health Forum
  contributor:
    fullname: Forman
– volume: 5
  year: 2021
  ident: bib2
  article-title: Emergency department crowding: the canary in the health care system
  publication-title: N Engl J Med Catalyst
  contributor:
    fullname: D’Onofrio
– volume: 15
  start-page: 22
  year: 2003
  end-page: 27
  ident: bib1
  article-title: Hospital and emergency department crowding in the United States
  publication-title: Emerg Med
  contributor:
    fullname: Asplin
– volume: 15
  start-page: 22
  issue: 1
  year: 2003
  ident: 10.1016/j.mayocp.2022.11.019_bib1
  article-title: Hospital and emergency department crowding in the United States
  publication-title: Emerg Med
  doi: 10.1046/j.1442-2026.2003.00403.x
  contributor:
    fullname: Schafermeyer
– volume: 6
  start-page: 193
  issue: 3
  year: 2022
  ident: 10.1016/j.mayocp.2022.11.019_bib6
  article-title: Assessing the generalizability of a clinical machine learning model across multiple emergency departments
  publication-title: Mayo Clin Proc Innov Qual Outcomes
  doi: 10.1016/j.mayocpiqo.2022.03.003
  contributor:
    fullname: Ryu
– ident: 10.1016/j.mayocp.2022.11.019_bib4
– volume: 5
  issue: 2
  year: 2021
  ident: 10.1016/j.mayocp.2022.11.019_bib2
  article-title: Emergency department crowding: the canary in the health care system
  publication-title: N Engl J Med Catalyst
  contributor:
    fullname: Kelen
– volume: 1
  issue: 3
  year: 2020
  ident: 10.1016/j.mayocp.2022.11.019_bib3
  article-title: Hospital capacity and operations in the coronavirus disease 2019 (COVID-19) pandemic: planning for the nth patient
  publication-title: JAMA Health Forum
  doi: 10.1001/jamahealthforum.2020.0345
  contributor:
    fullname: Cavallo
SSID ssj0007994
Score 2.4613812
Snippet We recently brought an internally developed machine-learning model for predicting which patients in the emergency department would require hospital admission...
SourceID proquest
gale
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 445
SubjectTerms Analysis
Electronic Health Records
Electronic records
Emergency Service, Hospital
Health care industry
Health Facilities
Humans
Machine Learning
Management
Medical records
Running
Technology application
Title A Clinician’s Guide to Running Custom Machine-Learning Models in an Electronic Health Record Environment
URI https://dx.doi.org/10.1016/j.mayocp.2022.11.019
https://www.ncbi.nlm.nih.gov/pubmed/36868752
https://search.proquest.com/docview/2783492734
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBbZLZReSt-bPlUo9GAc1pIiS8eQppTSFJrdQulFyLbMJnSdsokPue3f2L_XX9LRw3aSpfQBvZgglDjSfB7NjGfmQ-hVMTTSOoVxYTIeM0azWGhTxIznInctw0tHYnuSfvwi3kzYpNdr-NK6sf8qaRgDWdvK2b-QdvujMACfQeZwBanD9Y_kPop8q08Qe5PIIFeAhHnhSDJmteMoisY1WH3nlnfoDOzM-EMTIbHcaN9cjiw8-JOOIyeUK3lvNZp05XHb1u1Ub5bh9lF3MnbZ9Jt6p6Ymej9o8bbR1TzEYs90l4vzKQzOulyfccgMnloWJB2NBtuBC0K7zC0fTWsqanYSPh29Ljh1oT22V8qSgcM8DKHKoLWl2EIn3VLBzLenDKc5821trx0UPmaxGJzDxuS2bykhA9vNNejv3RbcJ84yhD9F3KsqSQ_QDQKKzerVr8NZe_KnUrKGIthOb0o1XT7h9Tv9yhTatw32PB5n-ZzeQbeDy4JHHmt3Uc9U99DNaUjKuI8WI9xC7sfl1Qo7sOH1EgewYQ82vA827MGG5xXWFe7Ahj3YsAcb3gLbA_T57eR0_C4OFB5xzihZx2khEwNniMgLKhkcIEmeZTlNj0VaEsOPc2FMmokhMbrUJBOmJHnCOdOJEUXBKH2IDqtlZY4QTjOiKUtpCRaUtbykIUyQrOQkKTXXWR_FzW6q775Ti2pSGBfK776yuw9Or4Ld76O02XIVrE1vRSrAyG---cJKSPlK5VZpqBFY49zyMfA-eu1mWMitL3SuQ60LrMS2W9uZ-bIRswLFbt_W6cos65VyFDjSdp_qo0de_u26KBdcpEPy-J_X8ATd6p7Jp-hwfVGbZ-hgVdTPHaZ_Atbgzuw
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Clinician%E2%80%99s+Guide+to+Running+Custom+Machine-Learning+Models+in+an+Electronic+Health+Record+Environment&rft.jtitle=Mayo+Clinic+proceedings&rft.au=Ryu%2C+Alexander+J.&rft.au=Ayanian%2C+Shant&rft.au=Qian%2C+Ray&rft.au=Core%2C+Marcia+A.&rft.date=2023-03-01&rft.pub=Elsevier+Inc&rft.issn=0025-6196&rft.eissn=1942-5546&rft.volume=98&rft.issue=3&rft.spage=445&rft.epage=450&rft_id=info:doi/10.1016%2Fj.mayocp.2022.11.019&rft.externalDocID=S0025619622006693
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-6196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-6196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-6196&client=summon