Integration of Optimized Modulation Filter Sets Into Deep Neural Networks for Automatic Speech Recognition
Inspired by physiological studies on the human auditory system and by results from psychoacoustics, an amplitude modulation filter bank (AMFB) has been developed and successfully applied to feature extraction for automatic speech recognition (ASR) in earlier work. Here, we address the question as to...
Saved in:
Published in: | IEEE/ACM transactions on audio, speech, and language processing Vol. 24; no. 12; pp. 2439 - 2452 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Piscataway
IEEE
01-12-2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Inspired by physiological studies on the human auditory system and by results from psychoacoustics, an amplitude modulation filter bank (AMFB) has been developed and successfully applied to feature extraction for automatic speech recognition (ASR) in earlier work. Here, we address the question as to which amplitude modulation (AM) frequency decomposition leads to optimal ASR performance by proposing a parameterized functional relationship between modulation center frequency and modulation bandwidth. Word error rates (WERs) of ASR experiments with 1551 different AMFBs are systematically evaluated and compared, resulting in the identification of a comparatively narrow range of optimal modulation frequency to modulation bandwidth characteristics. To integrate modulation processing with deep neural network (DNN) acoustic modeling, we propose merging of modulation filter coefficients with DNN weights prior to a final training step and an improved mean-variance normalization scheme for AMFBs. These modifications are shown to result in further reduction of WERs and are indicative of the proposed system's improved generalization ability, when compared across corpora of 100-960 h of data with mismatched training and test conditions. Analysis of DNN-learned temporal AM filtering properties is carried out and implications for the relevance of different modulation regions as well as the relation to psychoacoustic findings are discussed. ASR experiments with the proposed system demonstrate a high degree of robustness against extrinsic acoustic distortions, resulting in, e.g., an average WER of 9.79% on the Aurora-4 task. |
---|---|
AbstractList | Inspired by physiological studies on the human auditory system and by results from psychoacoustics, an amplitude modulation filter bank (AMFB) has been developed and successfully applied to feature extraction for automatic speech recognition (ASR) in earlier work. Here, we address the question as to which amplitude modulation (AM) frequency decomposition leads to optimal ASR performance by proposing a parameterized functional relationship between modulation center frequency and modulation bandwidth. Word error rates (WERs) of ASR experiments with 1551 different AMFBs are systematically evaluated and compared, resulting in the identification of a comparatively narrow range of optimal modulation frequency to modulation bandwidth characteristics. To integrate modulation processing with deep neural network (DNN) acoustic modeling, we propose merging of modulation filter coefficients with DNN weights prior to a final training step and an improved mean-variance normalization scheme for AMFBs. These modifications are shown to result in further reduction of WERs and are indicative of the proposed system's improved generalization ability, when compared across corpora of 100-960 h of data with mismatched training and test conditions. Analysis of DNN-learned temporal AM filtering properties is carried out and implications for the relevance of different modulation regions as well as the relation to psychoacoustic findings are discussed. ASR experiments with the proposed system demonstrate a high degree of robustness against extrinsic acoustic distortions, resulting in, e.g., an average WER of 9.79% on the Aurora-4 task. Inspired by physiological studies on the human auditory system and by results from psychoacoustics, an amplitude modulation filter bank (AMFB) has been developed and successfully applied to feature extraction for automatic speech recognition (ASR) in earlier work. Here, we address the question as to which amplitude modulation (AM) frequency decomposition leads to optimal ASR performance by proposing a parameterized functional relationship between modulation center frequency and modulation bandwidth. Word error rates (WERs) of ASR experiments with 1551 different AMFBs are systematically evaluated and compared, resulting in the identification of a comparatively narrow range of optimal modulation frequency to modulation bandwidth characteristics. To integrate modulation processing with deep neural network (DNN) acoustic modeling, we propose merging of modulation filter coefficients with DNN weights prior to a final training step and an improved mean-variance normalization scheme for AMFBs. These modifications are shown to result in further reduction of WERs and are indicative of the proposed syste's improved generalization ability, when compared across corpora of 100-960 h of data with mismatched training and test conditions. Analysis of DNN-learned temporal AM filtering properties is carried out and implications for the relevance of different modulation regions as well as the relation to psychoacoustic findings are discussed. ASR experiments with the proposed system demonstrate a high degree of robustness against extrinsic acoustic distortions, resulting in, e.g., an average WER of 9.79% on the Aurora-4 task. |
Author | Moritz, Niko Anemuller, Jorn Kollmeier, Birger |
Author_xml | – sequence: 1 givenname: Niko surname: Moritz fullname: Moritz, Niko email: niko.moritz@idmt.fraunhofer.de organization: Project Group for Hearing, Fraunhofer Inst. for Digital Media Technol., Oldenburg, Germany – sequence: 2 givenname: Birger surname: Kollmeier fullname: Kollmeier, Birger email: birger.kollmeier@uni-oldenburg.de organization: Project Group for Hearing, Fraunhofer Inst. for Digital Media Technol., Oldenburg, Germany – sequence: 3 givenname: Jorn surname: Anemuller fullname: Anemuller, Jorn email: joern.anemueller@uni-oldenburg.de organization: Univ. of Oldenburg, Oldenburg, Germany |
BookMark | eNqNkUtPwzAQhC1UJMrjD8DFEhcuLV47ie1jVZ5SoYjCOXKTDaSkcbAdIfj1JBQ4cEJaaVarb0ZazS4Z1LZGQg6BjQGYPn2YLGZ3Y84gGfMEYi70FhlywfVICxYNfnau2Q458H7FGAMmtZbRkKyu64BPzoTS1tQWdN6Ecl1-YE5vbN5Wm_tFWQV0dIHB04639AyxobfYOlN1Et6se_G0sI5O2mDXnSmjiwYxe6b3mNmnuuxj9sl2YSqPB9-6Rx4vzh-mV6PZ_PJ6OpmNskhAGEljVKRkBrnBJGKsHw1LxU2RZxEsEXQiZJ6LHJZaaS6YUGikSriMJUIh9sjJJrdx9rVFH9J16TOsKlOjbX0KKo5FIgWP_4EKKVjCherQ4z_oyrau7h7pKQFKg5IdxTdU5qz3Dou0ceXauPcUWNqXlX6VlfZlpd9ldaajjalExF-DjBWPpBKf8CaRHw |
CODEN | ITASD8 |
CitedBy_id | crossref_primary_10_1016_j_csl_2021_101329 crossref_primary_10_1016_j_csl_2024_101684 crossref_primary_10_1016_j_csl_2016_11_004 crossref_primary_10_1109_TASLP_2017_2690569 crossref_primary_10_2139_ssrn_4608134 crossref_primary_10_1016_j_csl_2017_08_003 crossref_primary_10_1121_10_0009411 |
Cites_doi | 10.1109/ICASSP.2015.7178964 10.1109/TASL.2011.2109382 10.1109/TASLP.2016.2545928 10.1109/ICASSP.2015.7178847 10.1121/1.420344 10.1109/ASRU.2003.1318451 10.1109/ICASSP.2014.6853589 10.1121/1.2229005 10.1152/jn.00851.2002 10.1121/1.408546 10.3115/1075527.1075614 10.1121/1.397751 10.1121/1.397956 10.1109/TASLP.2015.2456420 10.1121/1.1908963 10.1109/ICASSP.1999.758119 10.1109/ASRU.2013.6707746 10.1152/jn.1988.60.6.1799 10.1121/1.3699200 10.1109/89.902277 10.1109/ICASSP.2011.5947602 10.1007/BF02478259 10.1109/TASL.2011.2134090 10.1109/ICSLP.1996.607213 10.1109/TASLP.2014.2304637 10.1016/S0167-6393(98)00032-6 10.1109/78.277799 10.1007/BF00336731 10.1109/ASRU.2005.1566470 10.1121/1.3504658 10.1109/ICASSP.2012.6288824 10.1109/ICASSP.2013.6639013 10.1371/journal.pcbi.1000302 10.1121/1.383531 10.1109/89.326616 10.1109/ASRU.2003.1318474 10.1109/ICASSP.2013.6637622 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 7TK |
DOI | 10.1109/TASLP.2016.2615239 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Neurosciences Abstracts |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Neurosciences Abstracts |
DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2329-9304 |
EndPage | 2452 |
ExternalDocumentID | 4231509261 10_1109_TASLP_2016_2615239 7582478 |
Genre | orig-research |
GrantInformation_xml | – fundername: KANTATE grantid: V4ARB029 – fundername: DFG SFB/TRR 31 – fundername: European Commission grantid: AAL-2013-6-144 funderid: 10.13039/501100000780 – fundername: Federal Ministry of Education and Research funderid: 10.13039/501100002347 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AAKMM AALFJ AASAJ AAWTV ABQJQ ABVLG ACIWK ACM ADBCU ADPZR AEBYY AENSD AFWIH AFWXC AIKLT AKJIK ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF EBS EJD GUFHI HGAVV IFIPE IPLJI JAVBF LHSKQ M43 OCL PQQKQ RIA RIE RNS ROL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 7TK |
ID | FETCH-LOGICAL-c431t-7aa8487c1dae6400400491b82afdc41be19637dd3d1b98923038ea7862757e1f3 |
IEDL.DBID | RIE |
ISSN | 2329-9290 |
IngestDate | Sat Aug 17 00:51:32 EDT 2024 Thu Aug 15 22:36:33 EDT 2024 Thu Oct 10 20:40:49 EDT 2024 Fri Aug 23 00:55:33 EDT 2024 Wed Jun 26 19:22:23 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c431t-7aa8487c1dae6400400491b82afdc41be19637dd3d1b98923038ea7862757e1f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1833189187 |
PQPubID | 85426 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1837306238 ieee_primary_7582478 proquest_journals_1833189187 crossref_primary_10_1109_TASLP_2016_2615239 proquest_miscellaneous_1855367325 |
PublicationCentury | 2000 |
PublicationDate | 2016-12-01 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE/ACM transactions on audio, speech, and language processing |
PublicationTitleAbbrev | TASLP |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref52 ref11 ref54 sainath (ref55) 0 robinson (ref39) 0 bengio (ref44) 0; 19 patternson (ref2) 1986 ref17 ref19 ref18 tüske (ref53) 0 ref51 ref46 kleinschmidt (ref24) 0 ref45 ref41 ref8 ref9 ref4 ref3 ref6 ref5 ref40 vertanen (ref47) 2006 langner (ref32) 1988; 60 ref35 povey (ref43) 0 ref34 kanedera (ref7) 0 ref37 ref36 ref31 veselý (ref50) 0 ref30 ref33 van vuuren (ref10) 0 young (ref42) 2009 ref1 qui (ref26) 2003; 90 rouvier (ref48) 0 bisnai (ref49) 0 hermansky (ref22) 0 ref23 ref25 ref20 ref28 schwarz (ref21) 2009 ref27 greenberg (ref16) 0 ref29 pariha (ref38) 2002 |
References_xml | – ident: ref41 doi: 10.1109/ICASSP.2015.7178964 – ident: ref28 doi: 10.1109/TASL.2011.2109382 – ident: ref3 doi: 10.1109/TASLP.2016.2545928 – start-page: 3007 year: 0 ident: ref48 article-title: Speaker adaptation of DNN-based ASR with i-vectors: Does it actually adapt models to speakers? publication-title: Proc INTERSPEECH contributor: fullname: rouvier – ident: ref54 doi: 10.1109/ICASSP.2015.7178847 – ident: ref33 doi: 10.1121/1.420344 – ident: ref13 doi: 10.1109/ASRU.2003.1318451 – ident: ref46 doi: 10.1109/ICASSP.2014.6853589 – ident: ref35 doi: 10.1121/1.2229005 – volume: 90 start-page: 456 year: 2003 ident: ref26 article-title: Gabor analysis of auditory midbrain receptive fields: Spectro-temporal and binaural composition publication-title: J Neurophysiol doi: 10.1152/jn.00851.2002 contributor: fullname: qui – ident: ref17 doi: 10.1121/1.408546 – ident: ref37 doi: 10.3115/1075527.1075614 – year: 2006 ident: ref47 article-title: Baseline WSJ acoustic models for HTK and Sphinx: Training recipes and recognition experiments publication-title: Tech Rep contributor: fullname: vertanen – ident: ref31 doi: 10.1121/1.397751 – ident: ref30 doi: 10.1121/1.397956 – start-page: 2573 year: 0 ident: ref24 article-title: Localized spectro-temporal features for automatic speech recognition publication-title: Proc EUROSPEECH contributor: fullname: kleinschmidt – ident: ref5 doi: 10.1109/TASLP.2015.2456420 – ident: ref1 doi: 10.1121/1.1908963 – ident: ref20 doi: 10.1109/ICASSP.1999.758119 – ident: ref52 doi: 10.1109/ASRU.2013.6707746 – start-page: 24 year: 0 ident: ref16 article-title: Insights into spoken language gleaned from phonetic transcription of the switchboard corpus publication-title: Proc Int Conf Spoken Lang Process contributor: fullname: greenberg – start-page: 409 year: 0 ident: ref10 article-title: Data-driven design of RASTA-like filters publication-title: Proc EUROSPEECH contributor: fullname: van vuuren – volume: 60 start-page: 1799 year: 1988 ident: ref32 article-title: Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms publication-title: J Neurophysiol doi: 10.1152/jn.1988.60.6.1799 contributor: fullname: langner – ident: ref27 doi: 10.1121/1.3699200 – ident: ref51 doi: 10.1109/89.902277 – ident: ref19 doi: 10.1109/ICASSP.2011.5947602 – ident: ref4 doi: 10.1007/BF02478259 – ident: ref45 doi: 10.1109/TASL.2011.2134090 – start-page: 1079 year: 0 ident: ref7 article-title: On the importance of various modulation frequencies for speech recognition publication-title: Proc EUROSPEECH contributor: fullname: kanedera – start-page: 409 year: 0 ident: ref49 article-title: Boostrap estimates for confidence intervals in ASR performance evaluation publication-title: Proc IEEE Int Conf Acoust Speech Signal Process contributor: fullname: bisnai – ident: ref9 doi: 10.1109/ICSLP.1996.607213 – ident: ref34 doi: 10.1109/TASLP.2014.2304637 – ident: ref15 doi: 10.1016/S0167-6393(98)00032-6 – ident: ref11 doi: 10.1109/78.277799 – year: 2009 ident: ref42 contributor: fullname: young – ident: ref25 doi: 10.1007/BF00336731 – ident: ref40 doi: 10.1109/ASRU.2005.1566470 – ident: ref14 doi: 10.1121/1.3504658 – ident: ref12 doi: 10.1109/ICASSP.2012.6288824 – ident: ref23 doi: 10.1109/ICASSP.2013.6639013 – start-page: 2345 year: 0 ident: ref50 article-title: Sequence-discriminative training of deep neural networks publication-title: Proc INTERSPEECH contributor: fullname: veselý – start-page: 361 year: 0 ident: ref22 article-title: Multi-resolution RASTA filtering for TANDEM-based ASR publication-title: Proc INTERSPEECH contributor: fullname: hermansky – start-page: 1 year: 0 ident: ref55 article-title: Learning the speech front-end with raw waveform CLDNNs publication-title: Proc INTERSPEECH contributor: fullname: sainath – ident: ref6 doi: 10.1371/journal.pcbi.1000302 – volume: 19 start-page: 153 year: 0 ident: ref44 article-title: Greedy layer-wise training of deep networks publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: bengio – ident: ref29 doi: 10.1121/1.383531 – ident: ref8 doi: 10.1109/89.326616 – ident: ref18 doi: 10.1109/ASRU.2003.1318474 – year: 2009 ident: ref21 article-title: Phoneme recognition based on long temporal context contributor: fullname: schwarz – start-page: 980 year: 0 ident: ref53 article-title: Acoustic modeling with deep neural networks using raw time signals for LVCSR publication-title: Proc INTERSPEECH contributor: fullname: tüske – year: 1986 ident: ref2 article-title: Auditory filters and excitation patterns as representations of frequency resolution publication-title: Frequency Selectivity in Hearing contributor: fullname: patternson – year: 2002 ident: ref38 article-title: DSR front end LVCSR evaluation AU/384/02 contributor: fullname: pariha – start-page: 81 year: 0 ident: ref39 article-title: WSJCAM0: A British English speech corpus for large vocabulary continuous speech recognition publication-title: Proc Int Conf Acoust Speech Signal Process contributor: fullname: robinson – ident: ref36 doi: 10.1109/ICASSP.2013.6637622 – start-page: 1 year: 0 ident: ref43 article-title: The Kaldi speech recognition toolkit publication-title: Proc IEEE Workshop on Automatic Speech Recognition and Understanding contributor: fullname: povey |
SSID | ssj0001079974 |
Score | 2.1261523 |
Snippet | Inspired by physiological studies on the human auditory system and by results from psychoacoustics, an amplitude modulation filter bank (AMFB) has been... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 2439 |
SubjectTerms | Amplitude modulation Amplitude modulation filter bank Automatic speech recognition Bandwidth Feature extraction Filter banks Frequency modulation Modulation modulation frequency resolution neural net filter properties Neural networks Optimization Psychoacoustics Training |
Title | Integration of Optimized Modulation Filter Sets Into Deep Neural Networks for Automatic Speech Recognition |
URI | https://ieeexplore.ieee.org/document/7582478 https://www.proquest.com/docview/1833189187 https://search.proquest.com/docview/1837306238 https://search.proquest.com/docview/1855367325 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-tfdoeBgymlS95Em-Q1vm0_VhRKpA2mChIe4sc-yJAIqlo88Jfz9lJOxDTpL1FyiWx7nLn39nn3wEcSW4NZqUKbFwUAQU8GRRGJ4HQujQYCxsWvnXCTFz-lpMzR5Nzsj4Lg4i--AyH7tLv5dvaNG6pbETYNkqE7EFPKNme1fqznsKFUp50mTCCCmjW56szMlyNbsazH79cIVc2pJSBki_1Zh7yjVXeRWM_xUw3_m9wm_C5g5Js3Np-Cz5g9QU-vSIY3IaHi44NgrTP6pJdUYB4vH9Gy37Wtmvcxab3bseczXC5YCRfswninDnWDnr7ZVsmvmAEbtm4Wdae4pXN5ojmjl2vyo_qagdup2c3p-dB110hMAQals4akrIVE1qNWdI6swoLGenSmiQs0PmmsDYmcylJOJDHErWQjtZYYFjGX6Ff1RV-A4acHoi0TU1WJkZyXaSJ4NJirHRUhDiA45Wu83lLopH75IOr3Fsmd5bJO8sMYNtpdy3ZKXYA-yvz5J2fLXIKSBSUVCjFAL6vb5OHuG0PXWHdeBkKYwTz5L9k0jTORBylu3__-h58dGNsC3X3ob98avAAegvbHPr_8AUKAtwJ |
link.rule.ids | 315,782,786,798,27933,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4N9sB4YAM2UWCbkXhjAeen7cdqUIFWCqKdtLfIsS8aSCQVbV746zk7aQFtmrS3SLkk1n258519_g7gUHJrMCtVYOOiCMjhyaAwOgmE1qXBWNiw8K0TxmL0S56eOZqcb8uzMIjoi8_w2F36vXxbm8YtlZ1QbBslQq7A2zQRmWhPaz2vqHChlKddpihBBTTv88UpGa5OJv3x8NqVcmXHlDRQ-qVezUS-tcof_thPMoP3_ze8D7DRBZOs36K_CW-w2oL1FxSD23B30fFBkP5ZXbIrchH3t49o2WVtu9ZdbHDr9szZGOczRvI1O0WcMsfbQW8ftYXiM0bhLes389qTvLLxFNH8ZjeLAqS6-gg_B2eT7-dB118hMBQ2zB0ekvIVE1qNWdKaswoLGenSmiQs0FmnsDYmwJSkSJDHErWQjthYYFjGn2C1qivcAYacHoi0TU1WJkZyXRBCXFqMlY6KEHtwtNB1Pm1pNHKffnCVe2Ryh0zeIdODbafdpWSn2B7sL-DJO0ub5eSSyC2pUIoeHCxvk424jQ9dYd14GXJkFOjJf8mkaZyJOEp3__71r7B2Prkc5sOL0Y89eOfG25a17MPq_KHBz7Ays80X_08-AcLm31Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+Optimized+Modulation+Filter+Sets+Into+Deep+Neural+Networks+for+Automatic+Speech+Recognition&rft.jtitle=IEEE%2FACM+transactions+on+audio%2C+speech%2C+and+language+processing&rft.au=Moritz%2C+Niko&rft.au=Kollmeier%2C+Birger&rft.au=Anemuller%2C+Jorn&rft.date=2016-12-01&rft.pub=IEEE&rft.issn=2329-9290&rft.eissn=2329-9304&rft.volume=24&rft.issue=12&rft.spage=2439&rft.epage=2452&rft_id=info:doi/10.1109%2FTASLP.2016.2615239&rft.externalDocID=7582478 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-9290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-9290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-9290&client=summon |