Integration of Optimized Modulation Filter Sets Into Deep Neural Networks for Automatic Speech Recognition

Inspired by physiological studies on the human auditory system and by results from psychoacoustics, an amplitude modulation filter bank (AMFB) has been developed and successfully applied to feature extraction for automatic speech recognition (ASR) in earlier work. Here, we address the question as to...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on audio, speech, and language processing Vol. 24; no. 12; pp. 2439 - 2452
Main Authors: Moritz, Niko, Kollmeier, Birger, Anemuller, Jorn
Format: Journal Article
Language:English
Published: Piscataway IEEE 01-12-2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Inspired by physiological studies on the human auditory system and by results from psychoacoustics, an amplitude modulation filter bank (AMFB) has been developed and successfully applied to feature extraction for automatic speech recognition (ASR) in earlier work. Here, we address the question as to which amplitude modulation (AM) frequency decomposition leads to optimal ASR performance by proposing a parameterized functional relationship between modulation center frequency and modulation bandwidth. Word error rates (WERs) of ASR experiments with 1551 different AMFBs are systematically evaluated and compared, resulting in the identification of a comparatively narrow range of optimal modulation frequency to modulation bandwidth characteristics. To integrate modulation processing with deep neural network (DNN) acoustic modeling, we propose merging of modulation filter coefficients with DNN weights prior to a final training step and an improved mean-variance normalization scheme for AMFBs. These modifications are shown to result in further reduction of WERs and are indicative of the proposed system's improved generalization ability, when compared across corpora of 100-960 h of data with mismatched training and test conditions. Analysis of DNN-learned temporal AM filtering properties is carried out and implications for the relevance of different modulation regions as well as the relation to psychoacoustic findings are discussed. ASR experiments with the proposed system demonstrate a high degree of robustness against extrinsic acoustic distortions, resulting in, e.g., an average WER of 9.79% on the Aurora-4 task.
AbstractList Inspired by physiological studies on the human auditory system and by results from psychoacoustics, an amplitude modulation filter bank (AMFB) has been developed and successfully applied to feature extraction for automatic speech recognition (ASR) in earlier work. Here, we address the question as to which amplitude modulation (AM) frequency decomposition leads to optimal ASR performance by proposing a parameterized functional relationship between modulation center frequency and modulation bandwidth. Word error rates (WERs) of ASR experiments with 1551 different AMFBs are systematically evaluated and compared, resulting in the identification of a comparatively narrow range of optimal modulation frequency to modulation bandwidth characteristics. To integrate modulation processing with deep neural network (DNN) acoustic modeling, we propose merging of modulation filter coefficients with DNN weights prior to a final training step and an improved mean-variance normalization scheme for AMFBs. These modifications are shown to result in further reduction of WERs and are indicative of the proposed system's improved generalization ability, when compared across corpora of 100-960 h of data with mismatched training and test conditions. Analysis of DNN-learned temporal AM filtering properties is carried out and implications for the relevance of different modulation regions as well as the relation to psychoacoustic findings are discussed. ASR experiments with the proposed system demonstrate a high degree of robustness against extrinsic acoustic distortions, resulting in, e.g., an average WER of 9.79% on the Aurora-4 task.
Inspired by physiological studies on the human auditory system and by results from psychoacoustics, an amplitude modulation filter bank (AMFB) has been developed and successfully applied to feature extraction for automatic speech recognition (ASR) in earlier work. Here, we address the question as to which amplitude modulation (AM) frequency decomposition leads to optimal ASR performance by proposing a parameterized functional relationship between modulation center frequency and modulation bandwidth. Word error rates (WERs) of ASR experiments with 1551 different AMFBs are systematically evaluated and compared, resulting in the identification of a comparatively narrow range of optimal modulation frequency to modulation bandwidth characteristics. To integrate modulation processing with deep neural network (DNN) acoustic modeling, we propose merging of modulation filter coefficients with DNN weights prior to a final training step and an improved mean-variance normalization scheme for AMFBs. These modifications are shown to result in further reduction of WERs and are indicative of the proposed syste's improved generalization ability, when compared across corpora of 100-960 h of data with mismatched training and test conditions. Analysis of DNN-learned temporal AM filtering properties is carried out and implications for the relevance of different modulation regions as well as the relation to psychoacoustic findings are discussed. ASR experiments with the proposed system demonstrate a high degree of robustness against extrinsic acoustic distortions, resulting in, e.g., an average WER of 9.79% on the Aurora-4 task.
Author Moritz, Niko
Anemuller, Jorn
Kollmeier, Birger
Author_xml – sequence: 1
  givenname: Niko
  surname: Moritz
  fullname: Moritz, Niko
  email: niko.moritz@idmt.fraunhofer.de
  organization: Project Group for Hearing, Fraunhofer Inst. for Digital Media Technol., Oldenburg, Germany
– sequence: 2
  givenname: Birger
  surname: Kollmeier
  fullname: Kollmeier, Birger
  email: birger.kollmeier@uni-oldenburg.de
  organization: Project Group for Hearing, Fraunhofer Inst. for Digital Media Technol., Oldenburg, Germany
– sequence: 3
  givenname: Jorn
  surname: Anemuller
  fullname: Anemuller, Jorn
  email: joern.anemueller@uni-oldenburg.de
  organization: Univ. of Oldenburg, Oldenburg, Germany
BookMark eNqNkUtPwzAQhC1UJMrjD8DFEhcuLV47ie1jVZ5SoYjCOXKTDaSkcbAdIfj1JBQ4cEJaaVarb0ZazS4Z1LZGQg6BjQGYPn2YLGZ3Y84gGfMEYi70FhlywfVICxYNfnau2Q458H7FGAMmtZbRkKyu64BPzoTS1tQWdN6Ecl1-YE5vbN5Wm_tFWQV0dIHB04639AyxobfYOlN1Et6se_G0sI5O2mDXnSmjiwYxe6b3mNmnuuxj9sl2YSqPB9-6Rx4vzh-mV6PZ_PJ6OpmNskhAGEljVKRkBrnBJGKsHw1LxU2RZxEsEXQiZJ6LHJZaaS6YUGikSriMJUIh9sjJJrdx9rVFH9J16TOsKlOjbX0KKo5FIgWP_4EKKVjCherQ4z_oyrau7h7pKQFKg5IdxTdU5qz3Dou0ceXauPcUWNqXlX6VlfZlpd9ldaajjalExF-DjBWPpBKf8CaRHw
CODEN ITASD8
CitedBy_id crossref_primary_10_1016_j_csl_2021_101329
crossref_primary_10_1016_j_csl_2024_101684
crossref_primary_10_1016_j_csl_2016_11_004
crossref_primary_10_1109_TASLP_2017_2690569
crossref_primary_10_2139_ssrn_4608134
crossref_primary_10_1016_j_csl_2017_08_003
crossref_primary_10_1121_10_0009411
Cites_doi 10.1109/ICASSP.2015.7178964
10.1109/TASL.2011.2109382
10.1109/TASLP.2016.2545928
10.1109/ICASSP.2015.7178847
10.1121/1.420344
10.1109/ASRU.2003.1318451
10.1109/ICASSP.2014.6853589
10.1121/1.2229005
10.1152/jn.00851.2002
10.1121/1.408546
10.3115/1075527.1075614
10.1121/1.397751
10.1121/1.397956
10.1109/TASLP.2015.2456420
10.1121/1.1908963
10.1109/ICASSP.1999.758119
10.1109/ASRU.2013.6707746
10.1152/jn.1988.60.6.1799
10.1121/1.3699200
10.1109/89.902277
10.1109/ICASSP.2011.5947602
10.1007/BF02478259
10.1109/TASL.2011.2134090
10.1109/ICSLP.1996.607213
10.1109/TASLP.2014.2304637
10.1016/S0167-6393(98)00032-6
10.1109/78.277799
10.1007/BF00336731
10.1109/ASRU.2005.1566470
10.1121/1.3504658
10.1109/ICASSP.2012.6288824
10.1109/ICASSP.2013.6639013
10.1371/journal.pcbi.1000302
10.1121/1.383531
10.1109/89.326616
10.1109/ASRU.2003.1318474
10.1109/ICASSP.2013.6637622
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7TK
DOI 10.1109/TASLP.2016.2615239
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Neurosciences Abstracts
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Neurosciences Abstracts
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2329-9304
EndPage 2452
ExternalDocumentID 4231509261
10_1109_TASLP_2016_2615239
7582478
Genre orig-research
GrantInformation_xml – fundername: KANTATE
  grantid: V4ARB029
– fundername: DFG SFB/TRR 31
– fundername: European Commission
  grantid: AAL-2013-6-144
  funderid: 10.13039/501100000780
– fundername: Federal Ministry of Education and Research
  funderid: 10.13039/501100002347
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AAKMM
AALFJ
AASAJ
AAWTV
ABQJQ
ABVLG
ACIWK
ACM
ADBCU
ADPZR
AEBYY
AENSD
AFWIH
AFWXC
AIKLT
AKJIK
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
EBS
EJD
GUFHI
HGAVV
IFIPE
IPLJI
JAVBF
LHSKQ
M43
OCL
PQQKQ
RIA
RIE
RNS
ROL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7TK
ID FETCH-LOGICAL-c431t-7aa8487c1dae6400400491b82afdc41be19637dd3d1b98923038ea7862757e1f3
IEDL.DBID RIE
ISSN 2329-9290
IngestDate Sat Aug 17 00:51:32 EDT 2024
Thu Aug 15 22:36:33 EDT 2024
Thu Oct 10 20:40:49 EDT 2024
Fri Aug 23 00:55:33 EDT 2024
Wed Jun 26 19:22:23 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-7aa8487c1dae6400400491b82afdc41be19637dd3d1b98923038ea7862757e1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1833189187
PQPubID 85426
PageCount 14
ParticipantIDs proquest_miscellaneous_1837306238
ieee_primary_7582478
proquest_journals_1833189187
crossref_primary_10_1109_TASLP_2016_2615239
proquest_miscellaneous_1855367325
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE/ACM transactions on audio, speech, and language processing
PublicationTitleAbbrev TASLP
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref52
ref11
ref54
sainath (ref55) 0
robinson (ref39) 0
bengio (ref44) 0; 19
patternson (ref2) 1986
ref17
ref19
ref18
tüske (ref53) 0
ref51
ref46
kleinschmidt (ref24) 0
ref45
ref41
ref8
ref9
ref4
ref3
ref6
ref5
ref40
vertanen (ref47) 2006
langner (ref32) 1988; 60
ref35
povey (ref43) 0
ref34
kanedera (ref7) 0
ref37
ref36
ref31
veselý (ref50) 0
ref30
ref33
van vuuren (ref10) 0
young (ref42) 2009
ref1
qui (ref26) 2003; 90
rouvier (ref48) 0
bisnai (ref49) 0
hermansky (ref22) 0
ref23
ref25
ref20
ref28
schwarz (ref21) 2009
ref27
greenberg (ref16) 0
ref29
pariha (ref38) 2002
References_xml – ident: ref41
  doi: 10.1109/ICASSP.2015.7178964
– ident: ref28
  doi: 10.1109/TASL.2011.2109382
– ident: ref3
  doi: 10.1109/TASLP.2016.2545928
– start-page: 3007
  year: 0
  ident: ref48
  article-title: Speaker adaptation of DNN-based ASR with i-vectors: Does it actually adapt models to speakers?
  publication-title: Proc INTERSPEECH
  contributor:
    fullname: rouvier
– ident: ref54
  doi: 10.1109/ICASSP.2015.7178847
– ident: ref33
  doi: 10.1121/1.420344
– ident: ref13
  doi: 10.1109/ASRU.2003.1318451
– ident: ref46
  doi: 10.1109/ICASSP.2014.6853589
– ident: ref35
  doi: 10.1121/1.2229005
– volume: 90
  start-page: 456
  year: 2003
  ident: ref26
  article-title: Gabor analysis of auditory midbrain receptive fields: Spectro-temporal and binaural composition
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00851.2002
  contributor:
    fullname: qui
– ident: ref17
  doi: 10.1121/1.408546
– ident: ref37
  doi: 10.3115/1075527.1075614
– year: 2006
  ident: ref47
  article-title: Baseline WSJ acoustic models for HTK and Sphinx: Training recipes and recognition experiments
  publication-title: Tech Rep
  contributor:
    fullname: vertanen
– ident: ref31
  doi: 10.1121/1.397751
– ident: ref30
  doi: 10.1121/1.397956
– start-page: 2573
  year: 0
  ident: ref24
  article-title: Localized spectro-temporal features for automatic speech recognition
  publication-title: Proc EUROSPEECH
  contributor:
    fullname: kleinschmidt
– ident: ref5
  doi: 10.1109/TASLP.2015.2456420
– ident: ref1
  doi: 10.1121/1.1908963
– ident: ref20
  doi: 10.1109/ICASSP.1999.758119
– ident: ref52
  doi: 10.1109/ASRU.2013.6707746
– start-page: 24
  year: 0
  ident: ref16
  article-title: Insights into spoken language gleaned from phonetic transcription of the switchboard corpus
  publication-title: Proc Int Conf Spoken Lang Process
  contributor:
    fullname: greenberg
– start-page: 409
  year: 0
  ident: ref10
  article-title: Data-driven design of RASTA-like filters
  publication-title: Proc EUROSPEECH
  contributor:
    fullname: van vuuren
– volume: 60
  start-page: 1799
  year: 1988
  ident: ref32
  article-title: Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1988.60.6.1799
  contributor:
    fullname: langner
– ident: ref27
  doi: 10.1121/1.3699200
– ident: ref51
  doi: 10.1109/89.902277
– ident: ref19
  doi: 10.1109/ICASSP.2011.5947602
– ident: ref4
  doi: 10.1007/BF02478259
– ident: ref45
  doi: 10.1109/TASL.2011.2134090
– start-page: 1079
  year: 0
  ident: ref7
  article-title: On the importance of various modulation frequencies for speech recognition
  publication-title: Proc EUROSPEECH
  contributor:
    fullname: kanedera
– start-page: 409
  year: 0
  ident: ref49
  article-title: Boostrap estimates for confidence intervals in ASR performance evaluation
  publication-title: Proc IEEE Int Conf Acoust Speech Signal Process
  contributor:
    fullname: bisnai
– ident: ref9
  doi: 10.1109/ICSLP.1996.607213
– ident: ref34
  doi: 10.1109/TASLP.2014.2304637
– ident: ref15
  doi: 10.1016/S0167-6393(98)00032-6
– ident: ref11
  doi: 10.1109/78.277799
– year: 2009
  ident: ref42
  contributor:
    fullname: young
– ident: ref25
  doi: 10.1007/BF00336731
– ident: ref40
  doi: 10.1109/ASRU.2005.1566470
– ident: ref14
  doi: 10.1121/1.3504658
– ident: ref12
  doi: 10.1109/ICASSP.2012.6288824
– ident: ref23
  doi: 10.1109/ICASSP.2013.6639013
– start-page: 2345
  year: 0
  ident: ref50
  article-title: Sequence-discriminative training of deep neural networks
  publication-title: Proc INTERSPEECH
  contributor:
    fullname: veselý
– start-page: 361
  year: 0
  ident: ref22
  article-title: Multi-resolution RASTA filtering for TANDEM-based ASR
  publication-title: Proc INTERSPEECH
  contributor:
    fullname: hermansky
– start-page: 1
  year: 0
  ident: ref55
  article-title: Learning the speech front-end with raw waveform CLDNNs
  publication-title: Proc INTERSPEECH
  contributor:
    fullname: sainath
– ident: ref6
  doi: 10.1371/journal.pcbi.1000302
– volume: 19
  start-page: 153
  year: 0
  ident: ref44
  article-title: Greedy layer-wise training of deep networks
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: bengio
– ident: ref29
  doi: 10.1121/1.383531
– ident: ref8
  doi: 10.1109/89.326616
– ident: ref18
  doi: 10.1109/ASRU.2003.1318474
– year: 2009
  ident: ref21
  article-title: Phoneme recognition based on long temporal context
  contributor:
    fullname: schwarz
– start-page: 980
  year: 0
  ident: ref53
  article-title: Acoustic modeling with deep neural networks using raw time signals for LVCSR
  publication-title: Proc INTERSPEECH
  contributor:
    fullname: tüske
– year: 1986
  ident: ref2
  article-title: Auditory filters and excitation patterns as representations of frequency resolution
  publication-title: Frequency Selectivity in Hearing
  contributor:
    fullname: patternson
– year: 2002
  ident: ref38
  article-title: DSR front end LVCSR evaluation AU/384/02
  contributor:
    fullname: pariha
– start-page: 81
  year: 0
  ident: ref39
  article-title: WSJCAM0: A British English speech corpus for large vocabulary continuous speech recognition
  publication-title: Proc Int Conf Acoust Speech Signal Process
  contributor:
    fullname: robinson
– ident: ref36
  doi: 10.1109/ICASSP.2013.6637622
– start-page: 1
  year: 0
  ident: ref43
  article-title: The Kaldi speech recognition toolkit
  publication-title: Proc IEEE Workshop on Automatic Speech Recognition and Understanding
  contributor:
    fullname: povey
SSID ssj0001079974
Score 2.1261523
Snippet Inspired by physiological studies on the human auditory system and by results from psychoacoustics, an amplitude modulation filter bank (AMFB) has been...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 2439
SubjectTerms Amplitude modulation
Amplitude modulation filter bank
Automatic speech recognition
Bandwidth
Feature extraction
Filter banks
Frequency modulation
Modulation
modulation frequency resolution
neural net filter properties
Neural networks
Optimization
Psychoacoustics
Training
Title Integration of Optimized Modulation Filter Sets Into Deep Neural Networks for Automatic Speech Recognition
URI https://ieeexplore.ieee.org/document/7582478
https://www.proquest.com/docview/1833189187
https://search.proquest.com/docview/1837306238
https://search.proquest.com/docview/1855367325
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-tfdoeBgymlS95Em-Q1vm0_VhRKpA2mChIe4sc-yJAIqlo88Jfz9lJOxDTpL1FyiWx7nLn39nn3wEcSW4NZqUKbFwUAQU8GRRGJ4HQujQYCxsWvnXCTFz-lpMzR5Nzsj4Lg4i--AyH7tLv5dvaNG6pbETYNkqE7EFPKNme1fqznsKFUp50mTCCCmjW56szMlyNbsazH79cIVc2pJSBki_1Zh7yjVXeRWM_xUw3_m9wm_C5g5Js3Np-Cz5g9QU-vSIY3IaHi44NgrTP6pJdUYB4vH9Gy37Wtmvcxab3bseczXC5YCRfswninDnWDnr7ZVsmvmAEbtm4Wdae4pXN5ojmjl2vyo_qagdup2c3p-dB110hMAQals4akrIVE1qNWdI6swoLGenSmiQs0PmmsDYmcylJOJDHErWQjtZYYFjGX6Ff1RV-A4acHoi0TU1WJkZyXaSJ4NJirHRUhDiA45Wu83lLopH75IOr3Fsmd5bJO8sMYNtpdy3ZKXYA-yvz5J2fLXIKSBSUVCjFAL6vb5OHuG0PXWHdeBkKYwTz5L9k0jTORBylu3__-h58dGNsC3X3ob98avAAegvbHPr_8AUKAtwJ
link.rule.ids 315,782,786,798,27933,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4N9sB4YAM2UWCbkXhjAeen7cdqUIFWCqKdtLfIsS8aSCQVbV746zk7aQFtmrS3SLkk1n258519_g7gUHJrMCtVYOOiCMjhyaAwOgmE1qXBWNiw8K0TxmL0S56eOZqcb8uzMIjoi8_w2F36vXxbm8YtlZ1QbBslQq7A2zQRmWhPaz2vqHChlKddpihBBTTv88UpGa5OJv3x8NqVcmXHlDRQ-qVezUS-tcof_thPMoP3_ze8D7DRBZOs36K_CW-w2oL1FxSD23B30fFBkP5ZXbIrchH3t49o2WVtu9ZdbHDr9szZGOczRvI1O0WcMsfbQW8ftYXiM0bhLes389qTvLLxFNH8ZjeLAqS6-gg_B2eT7-dB118hMBQ2zB0ekvIVE1qNWdKaswoLGenSmiQs0FmnsDYmwJSkSJDHErWQjthYYFjGn2C1qivcAYacHoi0TU1WJkZyXRBCXFqMlY6KEHtwtNB1Pm1pNHKffnCVe2Ryh0zeIdODbafdpWSn2B7sL-DJO0ub5eSSyC2pUIoeHCxvk424jQ9dYd14GXJkFOjJf8mkaZyJOEp3__71r7B2Prkc5sOL0Y89eOfG25a17MPq_KHBz7Ays80X_08-AcLm31Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+Optimized+Modulation+Filter+Sets+Into+Deep+Neural+Networks+for+Automatic+Speech+Recognition&rft.jtitle=IEEE%2FACM+transactions+on+audio%2C+speech%2C+and+language+processing&rft.au=Moritz%2C+Niko&rft.au=Kollmeier%2C+Birger&rft.au=Anemuller%2C+Jorn&rft.date=2016-12-01&rft.pub=IEEE&rft.issn=2329-9290&rft.eissn=2329-9304&rft.volume=24&rft.issue=12&rft.spage=2439&rft.epage=2452&rft_id=info:doi/10.1109%2FTASLP.2016.2615239&rft.externalDocID=7582478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-9290&client=summon