Population differentiation at a regional scale in spadefoot toads: contributions of distance and divergent selective environments
The causes of population differentiation can provide insight into the origins of early barriers to gene flow. Two key drivers of population differentiation are geographic distance and local adaptation to divergent selective environments. When reproductive isolation arises because some populations of...
Saved in:
Published in: | Current zoology Vol. 62; no. 2; pp. 193 - 206 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Oxford University Press
01-04-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The causes of population differentiation can provide insight into the origins of early barriers to gene flow. Two key drivers of population differentiation are geographic distance and local adaptation to divergent selective environments. When reproductive isolation arises because some populations of a species are under selection to avoid hybridization while others are not, population differentiation and even speciation can result. Spadefoot toad populations Spea multiplicata that are sympatric with a congener have undergone reinforcement. This reinforcement has resulted not only in increased reproductive isolation from the congener, but also in the evolution of reproductive isolation from nearby and distant conspecific allopatric populations. We used multiple approaches to evaluate the contributions of geographic distance and divergent selective environments to population structure across this regional scale in S. multiplicata, based on genotypes from six nuclear microsatellite markers. We compared groups of populations varying in both geographic location and in the presence of a congener. Hierarchical F-statistics and results from cluster analyses and discriminant analyses of principal components all indicate that geographic distance is the stronger contributor to genetic differentiation among S. multiplicata populations at a regional scale. However, we found evidence that adaptation to divergent selective environments also contributes to population structure. Our findings highlight how variation in the balance of evolutionary forces acting across a species' range can lead to variation in the relative contributions of geographic distance and local adaptation to population differentiation across different spatial scales. |
---|---|
AbstractList | The causes of population differentiation can provide insight into the origins of early barriers to gene flow. Two key drivers of population differentiation are geographic distance and local adaptation to divergent selective environments. When reproductive isolation arises because some populations of a species are under selection to avoid hybridization while others are not, population differentiation and even speciation can result. Spadefoot toad populations
Spea multiplicata
that are sympatric with a congener have undergone reinforcement. This reinforcement has resulted not only in increased reproductive isolation from the congener, but also in the evolution of reproductive isolation from nearby and distant conspecific allopatric populations. We used multiple approaches to evaluate the contributions of geographic distance and divergent selective environments to population structure across this regional scale in
S. multiplicata
, based on genotypes from six nuclear microsatellite markers. We compared groups of populations varying in both geographic location and in the presence of a congener. Hierarchical F-statistics and results from cluster analyses and discriminant analyses of principal components all indicate that geographic distance is the stronger contributor to genetic differentiation among
S. multiplicata
populations at a regional scale. However, we found evidence that adaptation to divergent selective environments also contributes to population structure. Our findings highlight how variation in the balance of evolutionary forces acting across a species’ range can lead to variation in the relative contributions of geographic distance and local adaptation to population differentiation across different spatial scales. Abstract The causes of population differentiation can provide insight into the origins of early barriers to gene flow. Two key drivers of population differentiation are geographic distance and local adaptation to divergent selective environments. When reproductive isolation arises because some populations of a species are under selection to avoid hybridization while others are not, population differentiation and even speciation can result. Spadefoot toad populations Spea multiplicata that are sympatric with a congener have undergone reinforcement. This reinforcement has resulted not only in increased reproductive isolation from the congener, but also in the evolution of reproductive isolation from nearby and distant conspecific allopatric populations. We used multiple approaches to evaluate the contributions of geographic distance and divergent selective environments to population structure across this regional scale in S. multiplicata, based on genotypes from six nuclear microsatellite markers. We compared groups of populations varying in both geographic location and in the presence of a congener. Hierarchical F-statistics and results from cluster analyses and discriminant analyses of principal components all indicate that geographic distance is the stronger contributor to genetic differentiation among S. multiplicata populations at a regional scale. However, we found evidence that adaptation to divergent selective environments also contributes to population structure. Our findings highlight how variation in the balance of evolutionary forces acting across a species’ range can lead to variation in the relative contributions of geographic distance and local adaptation to population differentiation across different spatial scales. The causes of population differentiation can provide insight into the origins of early barriers to gene flow. Two key drivers of population differentiation are geographic distance and local adaptation to divergent selective environments. When reproductive isolation arises because some populations of a species are under selection to avoid hybridization while others are not, population differentiation and even speciation can result. Spadefoot toad populations Spea multiplicata that are sympatric with a congener have undergone reinforcement. This reinforcement has resulted not only in increased reproductive isolation from the congener, but also in the evolution of reproductive isolation from nearby and distant conspecific allopatric populations. We used multiple approaches to evaluate the contributions of geographic distance and divergent selective environments to population structure across this regional scale in S. multiplicata, based on genotypes from six nuclear microsatellite markers. We compared groups of populations varying in both geographic location and in the presence of a congener. Hierarchical F-statistics and results from cluster analyses and discriminant analyses of principal components all indicate that geographic distance is the stronger contributor to genetic differentiation among S. multiplicata populations at a regional scale. However, we found evidence that adaptation to divergent selective environments also contributes to population structure. Our findings highlight how variation in the balance of evolutionary forces acting across a species' range can lead to variation in the relative contributions of geographic distance and local adaptation to population differentiation across different spatial scales. The causes of population differentiation can provide insight into the origins of early barriers to gene flow. Two key drivers of population differentiation are geographic distance and local adaptation to divergent selective environments. When reproductive isolation arises because some populations of a species are under selection to avoid hybridization while others are not, population differentiation and even speciation can result. Spadefoot toad populations that are sympatric with a congener have undergone reinforcement. This reinforcement has resulted not only in increased reproductive isolation from the congener, but also in the evolution of reproductive isolation from nearby and distant conspecific allopatric populations. We used multiple approaches to evaluate the contributions of geographic distance and divergent selective environments to population structure across this regional scale in , based on genotypes from six nuclear microsatellite markers. We compared groups of populations varying in both geographic location and in the presence of a congener. Hierarchical F-statistics and results from cluster analyses and discriminant analyses of principal components all indicate that geographic distance is the stronger contributor to genetic differentiation among populations at a regional scale. However, we found evidence that adaptation to divergent selective environments also contributes to population structure. Our findings highlight how variation in the balance of evolutionary forces acting across a species' range can lead to variation in the relative contributions of geographic distance and local adaptation to population differentiation across different spatial scales. |
Author | Amber M. RICE Michael A. MCQUILLAN Heidi A. SEEARS Joanna A. WARREN |
AuthorAffiliation | Department of Biological Sciences, Lehigh University, BethLehem, PA 18015, USA |
AuthorAffiliation_xml | – name: Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA |
Author_xml | – sequence: 1 givenname: Amber M. surname: Rice fullname: Rice, Amber M. email: amber.rice@lehigh.edu organization: Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA – sequence: 2 givenname: Michael A. surname: McQuillan fullname: McQuillan, Michael A. organization: Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA – sequence: 3 givenname: Heidi A. surname: Seears fullname: Seears, Heidi A. organization: Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA – sequence: 4 givenname: Joanna A. surname: Warren fullname: Warren, Joanna A. organization: Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29491906$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctu1DAYhS1URKeFBS-ALMQCFqG-xUk2lVDFTaoEC1hbvqZGGTu1nUHMlrfgWXgnXgFXGUawYfX7_P58jqVzBk5CDBaAxxi9xGigF3p_sY9fEUb3wIbQgTdDj9kJ2GDesaZtUXcKznL-ghDnbMAPwCkZ6hwQ34DvH-O8TLL4GKDxztlkQ_GrlgVKmOxYz3KCWcvJQh9gnqWxLsYCS5Qm__r5A-oYSvJquXuWYXTVKhcZtIUymCp2No3VF2Y7WV2qhDbsfIphW7f5Ibjv5JTto8M8B5_fvP509a65_vD2_dWr60YzikvTYYRN3znOlKID6RhWRClkpCMSdYPCnDnCFLVywMQa0qoKuhYb7YzBRNNzcLn6zovaWqNrdpKTmJPfyvRNROnFvzfB34gx7kTbI0YoqQbPDwYp3i42F7H1WdtpksHGJQuC0NDyrue0oi9WVKeYc7LuGIORuCtN6L1YS6vsk7__dST_tFSBZysQl_m_Pk8PmTcxjLc-jEeY854zRhmnvwE-8LN6 |
CitedBy_id | crossref_primary_10_1002_ece3_9773 crossref_primary_10_3390_ijms21051860 crossref_primary_10_1002_ece3_3443 crossref_primary_10_1093_cz_zow011 |
Cites_doi | 10.1016/j.ecolmodel.2005.03.026 10.1111/j.0014-3820.2006.tb01202.x 10.1111/j.1558-5646.2011.01535.x 10.1111/mec.12796 10.1038/35016000 10.1111/j.1471-8286.2007.01931.x 10.1086/281236 10.1111/j.1558-5646.2007.00034.x 10.1111/j.1558-5646.2007.00190.x 10.1016/S0169-5347(01)02198-X 10.1111/j.2041-210X.2010.00048.x 10.1111/j.1365-294X.2009.04314.x 10.1111/j.1558-5646.2009.00650.x 10.1098/rspb.2009.1337 10.1002/joc.1276 10.1093/bioinformatics/btn129 10.1111/ele.12120 10.1111/evo.12193 10.1371/journal.pone.0032748 10.1111/j.1420-9101.2007.01372.x 10.1093/beheco/11.2.220 10.1111/evo.12515 10.1534/genetics.104.033803 10.1046/j.1365-294x.1999.00730.x 10.1093/genetics/28.2.114 10.1086/281225 10.1111/j.1420-9101.2008.01627.x 10.1371/journal.pone.0020440 10.1093/bioinformatics/btn136 10.1111/j.1461-0248.2004.00715.x 10.1093/bioinformatics/btn419 10.2307/2640726 10.1111/j.1365-294X.2007.03367.x 10.1111/j.1365-294X.2004.02190.x 10.1111/j.1365-294X.2005.02764.x 10.1046/j.1471-8286.2003.00566.x 10.1093/jhered/esn048 10.1111/j.1420-9101.2008.01518.x 10.1111/j.1755-0998.2010.02847.x 10.1038/sj.hdy.6800548 10.1093/bioinformatics/btr521 10.1111/evo.12134 10.1111/j.1365-294X.2005.02416.x 10.1111/j.1558-5646.2008.00518.x 10.2307/2640768 10.1554/0014-3820(2002)056[1217:HFCAPP]2.0.CO;2 10.1111/j.1749-6632.2009.04919.x 10.1111/j.1365-294X.2009.04465.x 10.1016/j.tree.2008.10.011 10.1111/j.1461-0248.2010.01448.x 10.1111/j.1420-9101.2010.01955.x 10.1111/2041-210X.12200 10.1038/nature04004 10.1111/j.1558-5646.2007.00299.x 10.1111/j.1365-294X.2010.04641.x 10.1111/mec.12623 10.1093/oxfordjournals.jhered.a110271 10.1111/j.1365-294X.2008.03946.x 10.1111/j.1471-8286.2004.00684.x 10.1111/j.1420-9101.2011.02443.x 10.1093/molbev/msl191 10.1007/s12686-009-9017-8 10.1186/1471-2156-11-94 10.1525/california/9780520274181.001.0001 10.1111/j.0014-3820.2006.tb01835.x 10.1111/j.0014-3820.2003.tb01525.x 10.1098/rspb.2005.3446 10.1111/j.0014-3820.2002.tb00198.x 10.1111/j.1558-5646.2010.01190.x 10.1073/pnas.0901397106 10.1098/rspb.2014.0949 10.1111/j.0908-8857.2008.04094.x 10.1111/j.1365-294X.2006.02866.x 10.1111/j.1755-0998.2008.02291.x 10.1093/oxfordjournals.jhered.a111573 10.1111/j.1420-9101.2004.00675.x 10.1007/s10592-005-9112-7 10.1111/j.1755-0998.2012.03150.x 10.1111/2041-210X.12158 10.1038/nature13301 10.1554/0014-3820(2000)054[1738:CDIPT]2.0.CO;2 10.1371/journal.pbio.0040325 10.1111/evo.12258 |
ContentType | Journal Article |
Copyright | The Author (2016). Published by Oxford University Press. 2016 |
Copyright_xml | – notice: The Author (2016). Published by Oxford University Press. 2016 |
DBID | 2RA 92L CQIGP W94 WU4 ~WA TOX NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1093/cz/zow010 |
DatabaseName | 中文科技期刊数据库 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-自然科学 中文科技期刊数据库-自然科学-生物科学 中文科技期刊数据库- 镜像站点 Oxford Open PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
DocumentTitleAlternate | Population differentiation at a regional scale in spadefoot toads: contributions of distance and divergent selective environments |
EISSN | 2396-9814 |
EndPage | 206 |
ExternalDocumentID | 10_1093_cz_zow010 29491906 10.1093/cz/zow010 668644346 |
Genre | Journal Article |
GroupedDBID | -01 -04 -0A -0D -SA -S~ 0R~ 29F 2B. 2C. 2RA 2WC 5VR 5VS 5XA 5XB 5XE 5XL 8FE 8FH 92E 92I 92L 92M 92Q 93N 9D9 9DA AAFWJ AAMVS AAPPN AAPXW AAVAP ABPTD ACGFS ACPRK ADBBV AENEX AENZO AFKRA AFPKN AFUIB AFULF ALMA_UNASSIGNED_HOLDINGS ALUQC AOIJS BAYMD BBNVY BCNDV BENPR BHPHI BTTYL C1A CAJEA CAJUS CCEZO CCPQU CCVFK CHBEP CHDYS CIDKT CQIGP CW9 E3Z EBS ECGQY EJD EYRJQ FA0 GROUPED_DOAJ HCIFZ HYE IAO IHR IPNFZ ISR JUIAU KQ8 KSI LK8 M7P ML0 O9- OAWHX OJQWA OJZSN OK1 PEELM Q-- Q-0 R-A R-D RIG RNS ROX RPM RT1 RT4 S.. T8Q T8T TCJ TGP TOX U1F U1G U5A U5D U5K W94 WFFXF WU4 ~WA AAHBH AAXDM ABXVV H13 ITC NPM AAYXX ABEJV CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c431t-7101d87f64bb392741b2bb0daf2a079b164f24b3ea912ed25b4bbf51dcfdd12c3 |
IEDL.DBID | RPM |
ISSN | 1674-5507 |
IngestDate | Tue Sep 17 20:47:55 EDT 2024 Sun Sep 29 07:41:00 EDT 2024 Fri Nov 22 01:05:00 EST 2024 Wed Oct 16 00:58:25 EDT 2024 Wed Aug 28 03:18:20 EDT 2024 Wed Feb 14 10:19:27 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | reproductive isolation spatial scale cascade reinforcement character displacement speciation Spea multiplicata |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c431t-7101d87f64bb392741b2bb0daf2a079b164f24b3ea912ed25b4bbf51dcfdd12c3 |
Notes | 11-5794/Q cascade reinforcement, character displacement, reproductive isolation, spatial scale, Spea multipficata, speciation The causes of population differentiation can provide insight into the origins of early barriers to gene flow. Two key drivers of population differentiation are geographic distance and local adaptation to divergent selective environments. When reproductive isolation arises because some populations of a species are under selection to avoid hybridization while others are not, population differentiation and even speciation can result. Spadefoot toad populations Spea multiplicata that are sympatric with a congener have undergone reinforcement. This reinforcement has resulted not only in increased reproductive isolation from the congener, but also in the evolution of reproductive isolation from nearby and distant conspecific allopatric populations. We used multiple approaches to evaluate the contributions of geographic distance and divergent selective environments to population structure across this regional scale in S. multiplicata, based on genotypes from six nuclear microsatellite markers. We compared groups of populations varying in both geographic location and in the presence of a congener. Hierarchical F-statistics and results from cluster analyses and discriminant analyses of principal components all indicate that geographic distance is the stronger contributor to genetic differentiation among S. multiplicata populations at a regional scale. However, we found evidence that adaptation to divergent selective environments also contributes to population structure. Our findings highlight how variation in the balance of evolutionary forces acting across a species' range can lead to variation in the relative contributions of geographic distance and local adaptation to population differentiation across different spatial scales. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5804232/ |
PMID | 29491906 |
PQID | 2009567863 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5804232 proquest_miscellaneous_2009567863 crossref_primary_10_1093_cz_zow010 pubmed_primary_29491906 oup_primary_10_1093_cz_zow010 chongqing_primary_668644346 |
PublicationCentury | 2000 |
PublicationDate | 2016-04-01 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current zoology |
PublicationTitleAlternate | Acta Zoologica Sinica |
PublicationYear | 2016 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 2016040607262858000_62.2.193.18 2016040607262858000_62.2.193.19 2016040607262858000_62.2.193.16 2016040607262858000_62.2.193.17 2016040607262858000_62.2.193.58 2016040607262858000_62.2.193.15 2016040607262858000_62.2.193.59 2016040607262858000_62.2.193.12 2016040607262858000_62.2.193.56 2016040607262858000_62.2.193.13 2016040607262858000_62.2.193.57 2016040607262858000_62.2.193.10 2016040607262858000_62.2.193.54 2016040607262858000_62.2.193.11 2016040607262858000_62.2.193.55 2016040607262858000_62.2.193.63 2016040607262858000_62.2.193.20 2016040607262858000_62.2.193.61 2016040607262858000_62.2.193.62 2016040607262858000_62.2.193.60 Wright (2016040607262858000_62.2.193.89) 1943; 28 2016040607262858000_62.2.193.29 Raymond (2016040607262858000_62.2.193.64) 1995; 86 2016040607262858000_62.2.193.27 2016040607262858000_62.2.193.28 2016040607262858000_62.2.193.25 2016040607262858000_62.2.193.69 2016040607262858000_62.2.193.26 2016040607262858000_62.2.193.23 2016040607262858000_62.2.193.67 2016040607262858000_62.2.193.24 2016040607262858000_62.2.193.68 2016040607262858000_62.2.193.21 2016040607262858000_62.2.193.65 2016040607262858000_62.2.193.22 2016040607262858000_62.2.193.66 2016040607262858000_62.2.193.30 2016040607262858000_62.2.193.74 2016040607262858000_62.2.193.31 2016040607262858000_62.2.193.75 2016040607262858000_62.2.193.72 2016040607262858000_62.2.193.73 2016040607262858000_62.2.193.70 2016040607262858000_62.2.193.71 Nosil (2016040607262858000_62.2.193.46) 2005; 59 2016040607262858000_62.2.193.38 2016040607262858000_62.2.193.39 2016040607262858000_62.2.193.36 2016040607262858000_62.2.193.37 2016040607262858000_62.2.193.34 2016040607262858000_62.2.193.78 2016040607262858000_62.2.193.35 2016040607262858000_62.2.193.79 2016040607262858000_62.2.193.32 2016040607262858000_62.2.193.33 2016040607262858000_62.2.193.77 2016040607262858000_62.2.193.41 2016040607262858000_62.2.193.85 2016040607262858000_62.2.193.42 2016040607262858000_62.2.193.86 2016040607262858000_62.2.193.83 2016040607262858000_62.2.193.40 2016040607262858000_62.2.193.84 2016040607262858000_62.2.193.81 2016040607262858000_62.2.193.82 2016040607262858000_62.2.193.80 Simovich (2016040607262858000_62.2.193.76) 1986; 77 Crispo (2016040607262858000_62.2.193.14) 2006; 15 2016040607262858000_62.2.193.9 2016040607262858000_62.2.193.8 2016040607262858000_62.2.193.49 2016040607262858000_62.2.193.7 2016040607262858000_62.2.193.6 2016040607262858000_62.2.193.47 2016040607262858000_62.2.193.5 2016040607262858000_62.2.193.48 2016040607262858000_62.2.193.4 2016040607262858000_62.2.193.45 2016040607262858000_62.2.193.3 2016040607262858000_62.2.193.2 2016040607262858000_62.2.193.43 2016040607262858000_62.2.193.87 2016040607262858000_62.2.193.1 2016040607262858000_62.2.193.44 2016040607262858000_62.2.193.88 2016040607262858000_62.2.193.52 2016040607262858000_62.2.193.53 2016040607262858000_62.2.193.50 2016040607262858000_62.2.193.51 |
References_xml | – ident: 2016040607262858000_62.2.193.60 doi: 10.1016/j.ecolmodel.2005.03.026 – ident: 2016040607262858000_62.2.193.79 doi: 10.1111/j.0014-3820.2006.tb01202.x – ident: 2016040607262858000_62.2.193.61 doi: 10.1111/j.1558-5646.2011.01535.x – ident: 2016040607262858000_62.2.193.15 doi: 10.1111/mec.12796 – ident: 2016040607262858000_62.2.193.28 doi: 10.1038/35016000 – ident: 2016040607262858000_62.2.193.71 doi: 10.1111/j.1471-8286.2007.01931.x – ident: 2016040607262858000_62.2.193.7 doi: 10.1086/281236 – ident: 2016040607262858000_62.2.193.53 doi: 10.1111/j.1558-5646.2007.00034.x – ident: 2016040607262858000_62.2.193.52 doi: 10.1111/j.1558-5646.2007.00190.x – ident: 2016040607262858000_62.2.193.73 doi: 10.1016/S0169-5347(01)02198-X – ident: 2016040607262858000_62.2.193.17 doi: 10.1111/j.2041-210X.2010.00048.x – ident: 2016040607262858000_62.2.193.19 doi: 10.1111/j.1365-294X.2009.04314.x – ident: 2016040607262858000_62.2.193.40 doi: 10.1111/j.1558-5646.2009.00650.x – ident: 2016040607262858000_62.2.193.65 doi: 10.1098/rspb.2009.1337 – ident: 2016040607262858000_62.2.193.29 doi: 10.1002/joc.1276 – ident: 2016040607262858000_62.2.193.35 doi: 10.1093/bioinformatics/btn129 – ident: 2016040607262858000_62.2.193.75 doi: 10.1111/ele.12120 – ident: 2016040607262858000_62.2.193.5 doi: 10.1111/evo.12193 – ident: 2016040607262858000_62.2.193.63 – ident: 2016040607262858000_62.2.193.12 doi: 10.1371/journal.pone.0032748 – ident: 2016040607262858000_62.2.193.77 doi: 10.1111/j.1420-9101.2007.01372.x – ident: 2016040607262858000_62.2.193.54 doi: 10.1093/beheco/11.2.220 – ident: 2016040607262858000_62.2.193.4 doi: 10.1111/evo.12515 – ident: 2016040607262858000_62.2.193.23 doi: 10.1534/genetics.104.033803 – ident: 2016040607262858000_62.2.193.21 doi: 10.1046/j.1365-294x.1999.00730.x – volume: 28 start-page: 114 year: 1943 ident: 2016040607262858000_62.2.193.89 article-title: Isolation by distance publication-title: Genetics doi: 10.1093/genetics/28.2.114 contributor: fullname: Wright – ident: 2016040607262858000_62.2.193.6 doi: 10.1086/281225 – ident: 2016040607262858000_62.2.193.80 doi: 10.1111/j.1420-9101.2008.01627.x – ident: 2016040607262858000_62.2.193.88 doi: 10.1371/journal.pone.0020440 – ident: 2016040607262858000_62.2.193.24 doi: 10.1093/bioinformatics/btn136 – ident: 2016040607262858000_62.2.193.72 doi: 10.1111/j.1461-0248.2004.00715.x – ident: 2016040607262858000_62.2.193.22 doi: 10.1093/bioinformatics/btn419 – ident: 2016040607262858000_62.2.193.25 doi: 10.2307/2640726 – ident: 2016040607262858000_62.2.193.27 doi: 10.1111/j.1365-294X.2007.03367.x – ident: 2016040607262858000_62.2.193.9 doi: 10.1111/j.1365-294X.2004.02190.x – volume: 15 start-page: 49 year: 2006 ident: 2016040607262858000_62.2.193.14 article-title: The relative influence of natural selection and geography on gene flow in guppies publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2005.02764.x contributor: fullname: Crispo – ident: 2016040607262858000_62.2.193.69 doi: 10.1046/j.1471-8286.2003.00566.x – ident: 2016040607262858000_62.2.193.10 doi: 10.1093/jhered/esn048 – ident: 2016040607262858000_62.2.193.67 doi: 10.1111/j.1420-9101.2008.01518.x – ident: 2016040607262858000_62.2.193.18 doi: 10.1111/j.1755-0998.2010.02847.x – ident: 2016040607262858000_62.2.193.38 doi: 10.1038/sj.hdy.6800548 – ident: 2016040607262858000_62.2.193.36 doi: 10.1093/bioinformatics/btr521 – ident: 2016040607262858000_62.2.193.86 doi: 10.1111/evo.12134 – ident: 2016040607262858000_62.2.193.39 doi: 10.1111/j.1365-294X.2005.02416.x – ident: 2016040607262858000_62.2.193.20 doi: 10.1111/j.1558-5646.2008.00518.x – ident: 2016040607262858000_62.2.193.26 doi: 10.2307/2640768 – ident: 2016040607262858000_62.2.193.50 doi: 10.1554/0014-3820(2002)056[1217:HFCAPP]2.0.CO;2 – ident: 2016040607262858000_62.2.193.48 doi: 10.1111/j.1749-6632.2009.04919.x – ident: 2016040607262858000_62.2.193.87 doi: 10.1111/j.1365-294X.2009.04465.x – ident: 2016040607262858000_62.2.193.45 doi: 10.1016/j.tree.2008.10.011 – ident: 2016040607262858000_62.2.193.30 doi: 10.1111/j.1461-0248.2010.01448.x – ident: 2016040607262858000_62.2.193.68 doi: 10.1111/j.1420-9101.2010.01955.x – ident: 2016040607262858000_62.2.193.8 doi: 10.1111/2041-210X.12200 – ident: 2016040607262858000_62.2.193.31 doi: 10.1038/nature04004 – ident: 2016040607262858000_62.2.193.43 doi: 10.1111/j.1558-5646.2007.00299.x – volume: 59 start-page: 705 year: 2005 ident: 2016040607262858000_62.2.193.46 article-title: Perspective: reproductive isolation caused by natural selection against immigrants from divergent habitats publication-title: Evolution contributor: fullname: Nosil – ident: 2016040607262858000_62.2.193.81 doi: 10.1111/j.1365-294X.2010.04641.x – ident: 2016040607262858000_62.2.193.42 doi: 10.1111/mec.12623 – volume: 77 start-page: 410 year: 1986 ident: 2016040607262858000_62.2.193.76 article-title: Four independent electrophoretic markers in spadefoot toads publication-title: J Hered doi: 10.1093/oxfordjournals.jhered.a110271 contributor: fullname: Simovich – ident: 2016040607262858000_62.2.193.44 doi: 10.1111/j.1365-294X.2008.03946.x – ident: 2016040607262858000_62.2.193.83 doi: 10.1111/j.1471-8286.2004.00684.x – ident: 2016040607262858000_62.2.193.16 doi: 10.1111/j.1420-9101.2011.02443.x – ident: 2016040607262858000_62.2.193.11 doi: 10.1093/molbev/msl191 – ident: 2016040607262858000_62.2.193.82 doi: 10.1007/s12686-009-9017-8 – ident: 2016040607262858000_62.2.193.37 doi: 10.1186/1471-2156-11-94 – ident: 2016040607262858000_62.2.193.51 doi: 10.1525/california/9780520274181.001.0001 – ident: 2016040607262858000_62.2.193.13 – ident: 2016040607262858000_62.2.193.41 doi: 10.1111/j.0014-3820.2006.tb01835.x – ident: 2016040607262858000_62.2.193.55 doi: 10.1111/j.0014-3820.2003.tb01525.x – ident: 2016040607262858000_62.2.193.58 doi: 10.1098/rspb.2005.3446 – ident: 2016040607262858000_62.2.193.47 – ident: 2016040607262858000_62.2.193.59 doi: 10.1111/j.0014-3820.2002.tb00198.x – ident: 2016040607262858000_62.2.193.70 doi: 10.1111/j.1558-5646.2010.01190.x – ident: 2016040607262858000_62.2.193.84 doi: 10.1073/pnas.0901397106 – ident: 2016040607262858000_62.2.193.57 doi: 10.1098/rspb.2014.0949 – ident: 2016040607262858000_62.2.193.62 doi: 10.1111/j.0908-8857.2008.04094.x – ident: 2016040607262858000_62.2.193.34 doi: 10.1111/j.1365-294X.2006.02866.x – ident: 2016040607262858000_62.2.193.66 doi: 10.1111/j.1755-0998.2008.02291.x – volume: 86 start-page: 248 year: 1995 ident: 2016040607262858000_62.2.193.64 article-title: GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism publication-title: J Hered doi: 10.1093/oxfordjournals.jhered.a111573 contributor: fullname: Raymond – ident: 2016040607262858000_62.2.193.33 doi: 10.1111/j.1420-9101.2004.00675.x – ident: 2016040607262858000_62.2.193.78 – ident: 2016040607262858000_62.2.193.2 doi: 10.1007/s10592-005-9112-7 – ident: 2016040607262858000_62.2.193.56 doi: 10.1111/j.1755-0998.2012.03150.x – ident: 2016040607262858000_62.2.193.1 doi: 10.1111/2041-210X.12158 – ident: 2016040607262858000_62.2.193.3 doi: 10.1038/nature13301 – ident: 2016040607262858000_62.2.193.49 doi: 10.1554/0014-3820(2000)054[1738:CDIPT]2.0.CO;2 – ident: 2016040607262858000_62.2.193.32 doi: 10.1371/journal.pbio.0040325 – ident: 2016040607262858000_62.2.193.74 doi: 10.1111/evo.12258 – ident: 2016040607262858000_62.2.193.85 |
SSID | ssj0066491 |
Score | 2.088878 |
Snippet | The causes of population differentiation can provide insight into the origins of early barriers to gene flow. Two key drivers of population differentiation are... Abstract The causes of population differentiation can provide insight into the origins of early barriers to gene flow. Two key drivers of population... |
SourceID | pubmedcentral proquest crossref pubmed oup chongqing |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 193 |
SubjectTerms | Special Column Cascade Reinforcement 人口结构 地理位置 标记基因型 环境 生殖隔离 种群分化 蟾蜍 距离和 |
Title | Population differentiation at a regional scale in spadefoot toads: contributions of distance and divergent selective environments |
URI | http://lib.cqvip.com/qk/94056X/201602/668644346.html https://www.ncbi.nlm.nih.gov/pubmed/29491906 https://search.proquest.com/docview/2009567863 https://pubmed.ncbi.nlm.nih.gov/PMC5804232 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6xRUhcEOWZlq4M4pomayeOw620W1VIoEo8hLhEfrYr0aQ02VbaG_-csbOJdjlw4GjZsax8Y_uz_c0MwFuRU5cL6mKj8jLOjDCxcCUCkpk0N5kVznjn5LPPxafv4mTuw-Tkgy9MEO1rtTisf14d1ovLoK28vtLJoBNLzj8e58KrOWgygQlyw-GI3i-_nGchTZ5X18c-WNcQTqhkiV4lq-YOTyA-BHCJ7co0xFS4bOqLX7hTbO1NW_5uG7Tzb_XkxnZ0-hgerXkkOerHuwv3bP0EHvxowi35U_h9PibmIkMOlK5HgciOSOITMngSTloEyZJFTXBpMdY1TUe6Rpr2HQkq9nU6rJY0DjvyVFJbImuDhdvguNmRNqTSwSLZ9Jp7Bl9P51-Oz-J1toVYI4novChzZkTheKYUkiZkGooqlRrpqEyLUuG5ytFMMSvLGbWG5gobunxmtDNmRjV7Djt1U9uXQBRnWYpDZjnOdiq5UFRLJrRhrNSMuwj2x39eXfdRNSrOBXIzlvEI3gwojJX9Uzmr9KrqEYzgAPH5V_3rAbkKJ4x_BZG1bZatz7uJZ8JCcBbBix7JsZvBKCIotjAeG_hg3Ns1aKMhKPfaJvf--8t9eIhkjPeqoFew090s7QFMWrOcwv2j9_MP36bhwmAazP0P2j0Hyw |
link.rule.ids | 230,315,729,782,786,866,887,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB3RIgQXylchlIJBXNNk7cRxeqtKq0W0VSWKhLhE_qQr0aSQLEh745937GyiXQ4cerTGsRLN2H6O38wDeC9y6nJBXWxUXsaZESYWrkSHZCbNTWaFMz45efq5OPsqPhz5Mjn5kAsTSPtazfbqH1d79ewycCuvr3Qy8MSS89PDXHg2B0024C7O1zQdDun9Asx5FoTyPL8-9uW6hoJCJUv0Ilk0f_AM4osAl9ivTENVhcum_v4T94q13Wkt420FeP7Ln1zZkI63bvkpj-DhEoGSg978GO7Y-gnc-9aE_-tP4e_5KOlFBvWUrvcfkR2RxEs5ePhOWnSvJbOa4KJkrGuajnSNNO0-Cfz3pZBWSxqHA3kQqi2RtcHG75Dy2ZE2iPBgk6zm2z2DL8dHF4fTeKnTEGuEH52nc06MKBzPlEK4hRhFUaVSIx2VaVEqPJE5milmZTmh1tBcYUeXT4x2xkyoZtuwWTe1fQFEcZal-Mosx3WCSi4U1ZIJbRgrNeMugp3RV9V1X4-j4lwgqmMZj-Dd4L3R2F-ys0ovqt7zEeyiX_9nfzt4vMKp5u9PZG2beesVO_E0WQjOInjeR8A4zBBMERRrsTF28GW81y0YEqGc9zIEXt76yTdwf3pxelKdfDz7tAMPENLxnlv0Cja7X3O7Cxutmb8Ok-QGWj8ayw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RIhAXvktDKRjENU3WThyHG2q7KgKqlQAJcYn8SVeiyZZkQdob_5yxs4l2OXCAo2XHSjRj-038Zh7AS5FTlwvqYqPyMs6MMLFwJRokM2luMiuc8cnJZx-K88_i5NSXyRmlvgJpX6v5Uf3t8qieXwRu5eJSJwNPLJm9P86FZ3PQZGFcsgPXcc2mdAjU-02Y8yyI5XmOfexLdg1FhUqW6FWyan5iHOILAZc4rkxDZYWLpv56hefF1gm1lfW2AT7_5FBuHErTO__xOXfh9hqJktf9kHtwzdb34caXJvxnfwC_ZqO0FxlUVLrejkR2RBIv6eBhPGnRzJbMa4Kbk7GuaTrSNdK0r0jgwa8FtVrSOJzIg1FtiawNNn6E1M-OtEGMB5tkM-_uIXyann48PovXeg2xRhjSeVrnxIjC8UwphF2IVRRVKjXSUZkWpcLIzNFMMSvLCbWG5goHunxitDNmQjXbg926qe0-EMVZluIrsxz3Cyq5UFRLJrRhrNSMuwgORntVi74uR8W5QHTHMh7Bi8GCY2d_2c4qvap660dwiLb9W__zweoVLjl_jyJr2yxbr9yJUWUhOIvgUe8F4zSDQ0VQbPnHOMCX897uQbcIZb3XbvD4n598BjdnJ9Pq3ZvztwdwC5Ed7ylGT2C3-760h7DTmuXTsE5-AxNeHUs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population+differentiation+at+a+regional+scale+in+spadefoot+toads%3A+contributions+of+distance+and+divergent+selective+environments&rft.jtitle=Current+zoology&rft.au=Rice%2C+Amber+M.&rft.au=McQuillan%2C+Michael+A.&rft.au=Seears%2C+Heidi+A.&rft.au=Warren%2C+Joanna+A.&rft.date=2016-04-01&rft.pub=Oxford+University+Press&rft.issn=1674-5507&rft.eissn=2396-9814&rft.volume=62&rft.issue=2&rft.spage=193&rft.epage=206&rft_id=info:doi/10.1093%2Fcz%2Fzow010&rft.externalDocID=10.1093%2Fcz%2Fzow010 |
thumbnail_s | http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F94056X%2F94056X.jpg |