Population differentiation at a regional scale in spadefoot toads: contributions of distance and divergent selective environments

The causes of population differentiation can provide insight into the origins of early barriers to gene flow. Two key drivers of population differentiation are geographic distance and local adaptation to divergent selective environments. When reproductive isolation arises because some populations of...

Full description

Saved in:
Bibliographic Details
Published in:Current zoology Vol. 62; no. 2; pp. 193 - 206
Main Authors: Rice, Amber M., McQuillan, Michael A., Seears, Heidi A., Warren, Joanna A.
Format: Journal Article
Language:English
Published: England Oxford University Press 01-04-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The causes of population differentiation can provide insight into the origins of early barriers to gene flow. Two key drivers of population differentiation are geographic distance and local adaptation to divergent selective environments. When reproductive isolation arises because some populations of a species are under selection to avoid hybridization while others are not, population differentiation and even speciation can result. Spadefoot toad populations Spea multiplicata that are sympatric with a congener have undergone reinforcement. This reinforcement has resulted not only in increased reproductive isolation from the congener, but also in the evolution of reproductive isolation from nearby and distant conspecific allopatric populations. We used multiple approaches to evaluate the contributions of geographic distance and divergent selective environments to population structure across this regional scale in S. multiplicata, based on genotypes from six nuclear microsatellite markers. We compared groups of populations varying in both geographic location and in the presence of a congener. Hierarchical F-statistics and results from cluster analyses and discriminant analyses of principal components all indicate that geographic distance is the stronger contributor to genetic differentiation among S. multiplicata populations at a regional scale. However, we found evidence that adaptation to divergent selective environments also contributes to population structure. Our findings highlight how variation in the balance of evolutionary forces acting across a species' range can lead to variation in the relative contributions of geographic distance and local adaptation to population differentiation across different spatial scales.
AbstractList The causes of population differentiation can provide insight into the origins of early barriers to gene flow. Two key drivers of population differentiation are geographic distance and local adaptation to divergent selective environments. When reproductive isolation arises because some populations of a species are under selection to avoid hybridization while others are not, population differentiation and even speciation can result. Spadefoot toad populations Spea multiplicata that are sympatric with a congener have undergone reinforcement. This reinforcement has resulted not only in increased reproductive isolation from the congener, but also in the evolution of reproductive isolation from nearby and distant conspecific allopatric populations. We used multiple approaches to evaluate the contributions of geographic distance and divergent selective environments to population structure across this regional scale in S. multiplicata , based on genotypes from six nuclear microsatellite markers. We compared groups of populations varying in both geographic location and in the presence of a congener. Hierarchical F-statistics and results from cluster analyses and discriminant analyses of principal components all indicate that geographic distance is the stronger contributor to genetic differentiation among S. multiplicata populations at a regional scale. However, we found evidence that adaptation to divergent selective environments also contributes to population structure. Our findings highlight how variation in the balance of evolutionary forces acting across a species’ range can lead to variation in the relative contributions of geographic distance and local adaptation to population differentiation across different spatial scales.
Abstract The causes of population differentiation can provide insight into the origins of early barriers to gene flow. Two key drivers of population differentiation are geographic distance and local adaptation to divergent selective environments. When reproductive isolation arises because some populations of a species are under selection to avoid hybridization while others are not, population differentiation and even speciation can result. Spadefoot toad populations Spea multiplicata that are sympatric with a congener have undergone reinforcement. This reinforcement has resulted not only in increased reproductive isolation from the congener, but also in the evolution of reproductive isolation from nearby and distant conspecific allopatric populations. We used multiple approaches to evaluate the contributions of geographic distance and divergent selective environments to population structure across this regional scale in S. multiplicata, based on genotypes from six nuclear microsatellite markers. We compared groups of populations varying in both geographic location and in the presence of a congener. Hierarchical F-statistics and results from cluster analyses and discriminant analyses of principal components all indicate that geographic distance is the stronger contributor to genetic differentiation among S. multiplicata populations at a regional scale. However, we found evidence that adaptation to divergent selective environments also contributes to population structure. Our findings highlight how variation in the balance of evolutionary forces acting across a species’ range can lead to variation in the relative contributions of geographic distance and local adaptation to population differentiation across different spatial scales.
The causes of population differentiation can provide insight into the origins of early barriers to gene flow. Two key drivers of population differentiation are geographic distance and local adaptation to divergent selective environments. When reproductive isolation arises because some populations of a species are under selection to avoid hybridization while others are not, population differentiation and even speciation can result. Spadefoot toad populations Spea multiplicata that are sympatric with a congener have undergone reinforcement. This reinforcement has resulted not only in increased reproductive isolation from the congener, but also in the evolution of reproductive isolation from nearby and distant conspecific allopatric populations. We used multiple approaches to evaluate the contributions of geographic distance and divergent selective environments to population structure across this regional scale in S. multiplicata, based on genotypes from six nuclear microsatellite markers. We compared groups of populations varying in both geographic location and in the presence of a congener. Hierarchical F-statistics and results from cluster analyses and discriminant analyses of principal components all indicate that geographic distance is the stronger contributor to genetic differentiation among S. multiplicata populations at a regional scale. However, we found evidence that adaptation to divergent selective environments also contributes to population structure. Our findings highlight how variation in the balance of evolutionary forces acting across a species' range can lead to variation in the relative contributions of geographic distance and local adaptation to population differentiation across different spatial scales.
The causes of population differentiation can provide insight into the origins of early barriers to gene flow. Two key drivers of population differentiation are geographic distance and local adaptation to divergent selective environments. When reproductive isolation arises because some populations of a species are under selection to avoid hybridization while others are not, population differentiation and even speciation can result. Spadefoot toad populations that are sympatric with a congener have undergone reinforcement. This reinforcement has resulted not only in increased reproductive isolation from the congener, but also in the evolution of reproductive isolation from nearby and distant conspecific allopatric populations. We used multiple approaches to evaluate the contributions of geographic distance and divergent selective environments to population structure across this regional scale in , based on genotypes from six nuclear microsatellite markers. We compared groups of populations varying in both geographic location and in the presence of a congener. Hierarchical F-statistics and results from cluster analyses and discriminant analyses of principal components all indicate that geographic distance is the stronger contributor to genetic differentiation among populations at a regional scale. However, we found evidence that adaptation to divergent selective environments also contributes to population structure. Our findings highlight how variation in the balance of evolutionary forces acting across a species' range can lead to variation in the relative contributions of geographic distance and local adaptation to population differentiation across different spatial scales.
Author Amber M. RICE Michael A. MCQUILLAN Heidi A. SEEARS Joanna A. WARREN
AuthorAffiliation Department of Biological Sciences, Lehigh University, BethLehem, PA 18015, USA
AuthorAffiliation_xml – name: Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
Author_xml – sequence: 1
  givenname: Amber M.
  surname: Rice
  fullname: Rice, Amber M.
  email: amber.rice@lehigh.edu
  organization: Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
– sequence: 2
  givenname: Michael A.
  surname: McQuillan
  fullname: McQuillan, Michael A.
  organization: Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
– sequence: 3
  givenname: Heidi A.
  surname: Seears
  fullname: Seears, Heidi A.
  organization: Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
– sequence: 4
  givenname: Joanna A.
  surname: Warren
  fullname: Warren, Joanna A.
  organization: Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29491906$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1DAYhS1URKeFBS-ALMQCFqG-xUk2lVDFTaoEC1hbvqZGGTu1nUHMlrfgWXgnXgFXGUawYfX7_P58jqVzBk5CDBaAxxi9xGigF3p_sY9fEUb3wIbQgTdDj9kJ2GDesaZtUXcKznL-ghDnbMAPwCkZ6hwQ34DvH-O8TLL4GKDxztlkQ_GrlgVKmOxYz3KCWcvJQh9gnqWxLsYCS5Qm__r5A-oYSvJquXuWYXTVKhcZtIUymCp2No3VF2Y7WV2qhDbsfIphW7f5Ibjv5JTto8M8B5_fvP509a65_vD2_dWr60YzikvTYYRN3znOlKID6RhWRClkpCMSdYPCnDnCFLVywMQa0qoKuhYb7YzBRNNzcLn6zovaWqNrdpKTmJPfyvRNROnFvzfB34gx7kTbI0YoqQbPDwYp3i42F7H1WdtpksHGJQuC0NDyrue0oi9WVKeYc7LuGIORuCtN6L1YS6vsk7__dST_tFSBZysQl_m_Pk8PmTcxjLc-jEeY854zRhmnvwE-8LN6
CitedBy_id crossref_primary_10_1002_ece3_9773
crossref_primary_10_3390_ijms21051860
crossref_primary_10_1002_ece3_3443
crossref_primary_10_1093_cz_zow011
Cites_doi 10.1016/j.ecolmodel.2005.03.026
10.1111/j.0014-3820.2006.tb01202.x
10.1111/j.1558-5646.2011.01535.x
10.1111/mec.12796
10.1038/35016000
10.1111/j.1471-8286.2007.01931.x
10.1086/281236
10.1111/j.1558-5646.2007.00034.x
10.1111/j.1558-5646.2007.00190.x
10.1016/S0169-5347(01)02198-X
10.1111/j.2041-210X.2010.00048.x
10.1111/j.1365-294X.2009.04314.x
10.1111/j.1558-5646.2009.00650.x
10.1098/rspb.2009.1337
10.1002/joc.1276
10.1093/bioinformatics/btn129
10.1111/ele.12120
10.1111/evo.12193
10.1371/journal.pone.0032748
10.1111/j.1420-9101.2007.01372.x
10.1093/beheco/11.2.220
10.1111/evo.12515
10.1534/genetics.104.033803
10.1046/j.1365-294x.1999.00730.x
10.1093/genetics/28.2.114
10.1086/281225
10.1111/j.1420-9101.2008.01627.x
10.1371/journal.pone.0020440
10.1093/bioinformatics/btn136
10.1111/j.1461-0248.2004.00715.x
10.1093/bioinformatics/btn419
10.2307/2640726
10.1111/j.1365-294X.2007.03367.x
10.1111/j.1365-294X.2004.02190.x
10.1111/j.1365-294X.2005.02764.x
10.1046/j.1471-8286.2003.00566.x
10.1093/jhered/esn048
10.1111/j.1420-9101.2008.01518.x
10.1111/j.1755-0998.2010.02847.x
10.1038/sj.hdy.6800548
10.1093/bioinformatics/btr521
10.1111/evo.12134
10.1111/j.1365-294X.2005.02416.x
10.1111/j.1558-5646.2008.00518.x
10.2307/2640768
10.1554/0014-3820(2002)056[1217:HFCAPP]2.0.CO;2
10.1111/j.1749-6632.2009.04919.x
10.1111/j.1365-294X.2009.04465.x
10.1016/j.tree.2008.10.011
10.1111/j.1461-0248.2010.01448.x
10.1111/j.1420-9101.2010.01955.x
10.1111/2041-210X.12200
10.1038/nature04004
10.1111/j.1558-5646.2007.00299.x
10.1111/j.1365-294X.2010.04641.x
10.1111/mec.12623
10.1093/oxfordjournals.jhered.a110271
10.1111/j.1365-294X.2008.03946.x
10.1111/j.1471-8286.2004.00684.x
10.1111/j.1420-9101.2011.02443.x
10.1093/molbev/msl191
10.1007/s12686-009-9017-8
10.1186/1471-2156-11-94
10.1525/california/9780520274181.001.0001
10.1111/j.0014-3820.2006.tb01835.x
10.1111/j.0014-3820.2003.tb01525.x
10.1098/rspb.2005.3446
10.1111/j.0014-3820.2002.tb00198.x
10.1111/j.1558-5646.2010.01190.x
10.1073/pnas.0901397106
10.1098/rspb.2014.0949
10.1111/j.0908-8857.2008.04094.x
10.1111/j.1365-294X.2006.02866.x
10.1111/j.1755-0998.2008.02291.x
10.1093/oxfordjournals.jhered.a111573
10.1111/j.1420-9101.2004.00675.x
10.1007/s10592-005-9112-7
10.1111/j.1755-0998.2012.03150.x
10.1111/2041-210X.12158
10.1038/nature13301
10.1554/0014-3820(2000)054[1738:CDIPT]2.0.CO;2
10.1371/journal.pbio.0040325
10.1111/evo.12258
ContentType Journal Article
Copyright The Author (2016). Published by Oxford University Press. 2016
Copyright_xml – notice: The Author (2016). Published by Oxford University Press. 2016
DBID 2RA
92L
CQIGP
W94
WU4
~WA
TOX
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1093/cz/zow010
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-自然科学
中文科技期刊数据库-自然科学-生物科学
中文科技期刊数据库- 镜像站点
Oxford Open
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList


PubMed
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
DocumentTitleAlternate Population differentiation at a regional scale in spadefoot toads: contributions of distance and divergent selective environments
EISSN 2396-9814
EndPage 206
ExternalDocumentID 10_1093_cz_zow010
29491906
10.1093/cz/zow010
668644346
Genre Journal Article
GroupedDBID -01
-04
-0A
-0D
-SA
-S~
0R~
29F
2B.
2C.
2RA
2WC
5VR
5VS
5XA
5XB
5XE
5XL
8FE
8FH
92E
92I
92L
92M
92Q
93N
9D9
9DA
AAFWJ
AAMVS
AAPPN
AAPXW
AAVAP
ABPTD
ACGFS
ACPRK
ADBBV
AENEX
AENZO
AFKRA
AFPKN
AFUIB
AFULF
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AOIJS
BAYMD
BBNVY
BCNDV
BENPR
BHPHI
BTTYL
C1A
CAJEA
CAJUS
CCEZO
CCPQU
CCVFK
CHBEP
CHDYS
CIDKT
CQIGP
CW9
E3Z
EBS
ECGQY
EJD
EYRJQ
FA0
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
IPNFZ
ISR
JUIAU
KQ8
KSI
LK8
M7P
ML0
O9-
OAWHX
OJQWA
OJZSN
OK1
PEELM
Q--
Q-0
R-A
R-D
RIG
RNS
ROX
RPM
RT1
RT4
S..
T8Q
T8T
TCJ
TGP
TOX
U1F
U1G
U5A
U5D
U5K
W94
WFFXF
WU4
~WA
AAHBH
AAXDM
ABXVV
H13
ITC
NPM
AAYXX
ABEJV
CITATION
7X8
5PM
ID FETCH-LOGICAL-c431t-7101d87f64bb392741b2bb0daf2a079b164f24b3ea912ed25b4bbf51dcfdd12c3
IEDL.DBID RPM
ISSN 1674-5507
IngestDate Tue Sep 17 20:47:55 EDT 2024
Sun Sep 29 07:41:00 EDT 2024
Fri Nov 22 01:05:00 EST 2024
Wed Oct 16 00:58:25 EDT 2024
Wed Aug 28 03:18:20 EDT 2024
Wed Feb 14 10:19:27 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords reproductive isolation
spatial scale
cascade reinforcement
character displacement
speciation
Spea multiplicata
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-7101d87f64bb392741b2bb0daf2a079b164f24b3ea912ed25b4bbf51dcfdd12c3
Notes 11-5794/Q
cascade reinforcement, character displacement, reproductive isolation, spatial scale, Spea multipficata, speciation
The causes of population differentiation can provide insight into the origins of early barriers to gene flow. Two key drivers of population differentiation are geographic distance and local adaptation to divergent selective environments. When reproductive isolation arises because some populations of a species are under selection to avoid hybridization while others are not, population differentiation and even speciation can result. Spadefoot toad populations Spea multiplicata that are sympatric with a congener have undergone reinforcement. This reinforcement has resulted not only in increased reproductive isolation from the congener, but also in the evolution of reproductive isolation from nearby and distant conspecific allopatric populations. We used multiple approaches to evaluate the contributions of geographic distance and divergent selective environments to population structure across this regional scale in S. multiplicata, based on genotypes from six nuclear microsatellite markers. We compared groups of populations varying in both geographic location and in the presence of a congener. Hierarchical F-statistics and results from cluster analyses and discriminant analyses of principal components all indicate that geographic distance is the stronger contributor to genetic differentiation among S. multiplicata populations at a regional scale. However, we found evidence that adaptation to divergent selective environments also contributes to population structure. Our findings highlight how variation in the balance of evolutionary forces acting across a species' range can lead to variation in the relative contributions of geographic distance and local adaptation to population differentiation across different spatial scales.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5804232/
PMID 29491906
PQID 2009567863
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5804232
proquest_miscellaneous_2009567863
crossref_primary_10_1093_cz_zow010
pubmed_primary_29491906
oup_primary_10_1093_cz_zow010
chongqing_primary_668644346
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current zoology
PublicationTitleAlternate Acta Zoologica Sinica
PublicationYear 2016
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 2016040607262858000_62.2.193.18
2016040607262858000_62.2.193.19
2016040607262858000_62.2.193.16
2016040607262858000_62.2.193.17
2016040607262858000_62.2.193.58
2016040607262858000_62.2.193.15
2016040607262858000_62.2.193.59
2016040607262858000_62.2.193.12
2016040607262858000_62.2.193.56
2016040607262858000_62.2.193.13
2016040607262858000_62.2.193.57
2016040607262858000_62.2.193.10
2016040607262858000_62.2.193.54
2016040607262858000_62.2.193.11
2016040607262858000_62.2.193.55
2016040607262858000_62.2.193.63
2016040607262858000_62.2.193.20
2016040607262858000_62.2.193.61
2016040607262858000_62.2.193.62
2016040607262858000_62.2.193.60
Wright (2016040607262858000_62.2.193.89) 1943; 28
2016040607262858000_62.2.193.29
Raymond (2016040607262858000_62.2.193.64) 1995; 86
2016040607262858000_62.2.193.27
2016040607262858000_62.2.193.28
2016040607262858000_62.2.193.25
2016040607262858000_62.2.193.69
2016040607262858000_62.2.193.26
2016040607262858000_62.2.193.23
2016040607262858000_62.2.193.67
2016040607262858000_62.2.193.24
2016040607262858000_62.2.193.68
2016040607262858000_62.2.193.21
2016040607262858000_62.2.193.65
2016040607262858000_62.2.193.22
2016040607262858000_62.2.193.66
2016040607262858000_62.2.193.30
2016040607262858000_62.2.193.74
2016040607262858000_62.2.193.31
2016040607262858000_62.2.193.75
2016040607262858000_62.2.193.72
2016040607262858000_62.2.193.73
2016040607262858000_62.2.193.70
2016040607262858000_62.2.193.71
Nosil (2016040607262858000_62.2.193.46) 2005; 59
2016040607262858000_62.2.193.38
2016040607262858000_62.2.193.39
2016040607262858000_62.2.193.36
2016040607262858000_62.2.193.37
2016040607262858000_62.2.193.34
2016040607262858000_62.2.193.78
2016040607262858000_62.2.193.35
2016040607262858000_62.2.193.79
2016040607262858000_62.2.193.32
2016040607262858000_62.2.193.33
2016040607262858000_62.2.193.77
2016040607262858000_62.2.193.41
2016040607262858000_62.2.193.85
2016040607262858000_62.2.193.42
2016040607262858000_62.2.193.86
2016040607262858000_62.2.193.83
2016040607262858000_62.2.193.40
2016040607262858000_62.2.193.84
2016040607262858000_62.2.193.81
2016040607262858000_62.2.193.82
2016040607262858000_62.2.193.80
Simovich (2016040607262858000_62.2.193.76) 1986; 77
Crispo (2016040607262858000_62.2.193.14) 2006; 15
2016040607262858000_62.2.193.9
2016040607262858000_62.2.193.8
2016040607262858000_62.2.193.49
2016040607262858000_62.2.193.7
2016040607262858000_62.2.193.6
2016040607262858000_62.2.193.47
2016040607262858000_62.2.193.5
2016040607262858000_62.2.193.48
2016040607262858000_62.2.193.4
2016040607262858000_62.2.193.45
2016040607262858000_62.2.193.3
2016040607262858000_62.2.193.2
2016040607262858000_62.2.193.43
2016040607262858000_62.2.193.87
2016040607262858000_62.2.193.1
2016040607262858000_62.2.193.44
2016040607262858000_62.2.193.88
2016040607262858000_62.2.193.52
2016040607262858000_62.2.193.53
2016040607262858000_62.2.193.50
2016040607262858000_62.2.193.51
References_xml – ident: 2016040607262858000_62.2.193.60
  doi: 10.1016/j.ecolmodel.2005.03.026
– ident: 2016040607262858000_62.2.193.79
  doi: 10.1111/j.0014-3820.2006.tb01202.x
– ident: 2016040607262858000_62.2.193.61
  doi: 10.1111/j.1558-5646.2011.01535.x
– ident: 2016040607262858000_62.2.193.15
  doi: 10.1111/mec.12796
– ident: 2016040607262858000_62.2.193.28
  doi: 10.1038/35016000
– ident: 2016040607262858000_62.2.193.71
  doi: 10.1111/j.1471-8286.2007.01931.x
– ident: 2016040607262858000_62.2.193.7
  doi: 10.1086/281236
– ident: 2016040607262858000_62.2.193.53
  doi: 10.1111/j.1558-5646.2007.00034.x
– ident: 2016040607262858000_62.2.193.52
  doi: 10.1111/j.1558-5646.2007.00190.x
– ident: 2016040607262858000_62.2.193.73
  doi: 10.1016/S0169-5347(01)02198-X
– ident: 2016040607262858000_62.2.193.17
  doi: 10.1111/j.2041-210X.2010.00048.x
– ident: 2016040607262858000_62.2.193.19
  doi: 10.1111/j.1365-294X.2009.04314.x
– ident: 2016040607262858000_62.2.193.40
  doi: 10.1111/j.1558-5646.2009.00650.x
– ident: 2016040607262858000_62.2.193.65
  doi: 10.1098/rspb.2009.1337
– ident: 2016040607262858000_62.2.193.29
  doi: 10.1002/joc.1276
– ident: 2016040607262858000_62.2.193.35
  doi: 10.1093/bioinformatics/btn129
– ident: 2016040607262858000_62.2.193.75
  doi: 10.1111/ele.12120
– ident: 2016040607262858000_62.2.193.5
  doi: 10.1111/evo.12193
– ident: 2016040607262858000_62.2.193.63
– ident: 2016040607262858000_62.2.193.12
  doi: 10.1371/journal.pone.0032748
– ident: 2016040607262858000_62.2.193.77
  doi: 10.1111/j.1420-9101.2007.01372.x
– ident: 2016040607262858000_62.2.193.54
  doi: 10.1093/beheco/11.2.220
– ident: 2016040607262858000_62.2.193.4
  doi: 10.1111/evo.12515
– ident: 2016040607262858000_62.2.193.23
  doi: 10.1534/genetics.104.033803
– ident: 2016040607262858000_62.2.193.21
  doi: 10.1046/j.1365-294x.1999.00730.x
– volume: 28
  start-page: 114
  year: 1943
  ident: 2016040607262858000_62.2.193.89
  article-title: Isolation by distance
  publication-title: Genetics
  doi: 10.1093/genetics/28.2.114
  contributor:
    fullname: Wright
– ident: 2016040607262858000_62.2.193.6
  doi: 10.1086/281225
– ident: 2016040607262858000_62.2.193.80
  doi: 10.1111/j.1420-9101.2008.01627.x
– ident: 2016040607262858000_62.2.193.88
  doi: 10.1371/journal.pone.0020440
– ident: 2016040607262858000_62.2.193.24
  doi: 10.1093/bioinformatics/btn136
– ident: 2016040607262858000_62.2.193.72
  doi: 10.1111/j.1461-0248.2004.00715.x
– ident: 2016040607262858000_62.2.193.22
  doi: 10.1093/bioinformatics/btn419
– ident: 2016040607262858000_62.2.193.25
  doi: 10.2307/2640726
– ident: 2016040607262858000_62.2.193.27
  doi: 10.1111/j.1365-294X.2007.03367.x
– ident: 2016040607262858000_62.2.193.9
  doi: 10.1111/j.1365-294X.2004.02190.x
– volume: 15
  start-page: 49
  year: 2006
  ident: 2016040607262858000_62.2.193.14
  article-title: The relative influence of natural selection and geography on gene flow in guppies
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2005.02764.x
  contributor:
    fullname: Crispo
– ident: 2016040607262858000_62.2.193.69
  doi: 10.1046/j.1471-8286.2003.00566.x
– ident: 2016040607262858000_62.2.193.10
  doi: 10.1093/jhered/esn048
– ident: 2016040607262858000_62.2.193.67
  doi: 10.1111/j.1420-9101.2008.01518.x
– ident: 2016040607262858000_62.2.193.18
  doi: 10.1111/j.1755-0998.2010.02847.x
– ident: 2016040607262858000_62.2.193.38
  doi: 10.1038/sj.hdy.6800548
– ident: 2016040607262858000_62.2.193.36
  doi: 10.1093/bioinformatics/btr521
– ident: 2016040607262858000_62.2.193.86
  doi: 10.1111/evo.12134
– ident: 2016040607262858000_62.2.193.39
  doi: 10.1111/j.1365-294X.2005.02416.x
– ident: 2016040607262858000_62.2.193.20
  doi: 10.1111/j.1558-5646.2008.00518.x
– ident: 2016040607262858000_62.2.193.26
  doi: 10.2307/2640768
– ident: 2016040607262858000_62.2.193.50
  doi: 10.1554/0014-3820(2002)056[1217:HFCAPP]2.0.CO;2
– ident: 2016040607262858000_62.2.193.48
  doi: 10.1111/j.1749-6632.2009.04919.x
– ident: 2016040607262858000_62.2.193.87
  doi: 10.1111/j.1365-294X.2009.04465.x
– ident: 2016040607262858000_62.2.193.45
  doi: 10.1016/j.tree.2008.10.011
– ident: 2016040607262858000_62.2.193.30
  doi: 10.1111/j.1461-0248.2010.01448.x
– ident: 2016040607262858000_62.2.193.68
  doi: 10.1111/j.1420-9101.2010.01955.x
– ident: 2016040607262858000_62.2.193.8
  doi: 10.1111/2041-210X.12200
– ident: 2016040607262858000_62.2.193.31
  doi: 10.1038/nature04004
– ident: 2016040607262858000_62.2.193.43
  doi: 10.1111/j.1558-5646.2007.00299.x
– volume: 59
  start-page: 705
  year: 2005
  ident: 2016040607262858000_62.2.193.46
  article-title: Perspective: reproductive isolation caused by natural selection against immigrants from divergent habitats
  publication-title: Evolution
  contributor:
    fullname: Nosil
– ident: 2016040607262858000_62.2.193.81
  doi: 10.1111/j.1365-294X.2010.04641.x
– ident: 2016040607262858000_62.2.193.42
  doi: 10.1111/mec.12623
– volume: 77
  start-page: 410
  year: 1986
  ident: 2016040607262858000_62.2.193.76
  article-title: Four independent electrophoretic markers in spadefoot toads
  publication-title: J Hered
  doi: 10.1093/oxfordjournals.jhered.a110271
  contributor:
    fullname: Simovich
– ident: 2016040607262858000_62.2.193.44
  doi: 10.1111/j.1365-294X.2008.03946.x
– ident: 2016040607262858000_62.2.193.83
  doi: 10.1111/j.1471-8286.2004.00684.x
– ident: 2016040607262858000_62.2.193.16
  doi: 10.1111/j.1420-9101.2011.02443.x
– ident: 2016040607262858000_62.2.193.11
  doi: 10.1093/molbev/msl191
– ident: 2016040607262858000_62.2.193.82
  doi: 10.1007/s12686-009-9017-8
– ident: 2016040607262858000_62.2.193.37
  doi: 10.1186/1471-2156-11-94
– ident: 2016040607262858000_62.2.193.51
  doi: 10.1525/california/9780520274181.001.0001
– ident: 2016040607262858000_62.2.193.13
– ident: 2016040607262858000_62.2.193.41
  doi: 10.1111/j.0014-3820.2006.tb01835.x
– ident: 2016040607262858000_62.2.193.55
  doi: 10.1111/j.0014-3820.2003.tb01525.x
– ident: 2016040607262858000_62.2.193.58
  doi: 10.1098/rspb.2005.3446
– ident: 2016040607262858000_62.2.193.47
– ident: 2016040607262858000_62.2.193.59
  doi: 10.1111/j.0014-3820.2002.tb00198.x
– ident: 2016040607262858000_62.2.193.70
  doi: 10.1111/j.1558-5646.2010.01190.x
– ident: 2016040607262858000_62.2.193.84
  doi: 10.1073/pnas.0901397106
– ident: 2016040607262858000_62.2.193.57
  doi: 10.1098/rspb.2014.0949
– ident: 2016040607262858000_62.2.193.62
  doi: 10.1111/j.0908-8857.2008.04094.x
– ident: 2016040607262858000_62.2.193.34
  doi: 10.1111/j.1365-294X.2006.02866.x
– ident: 2016040607262858000_62.2.193.66
  doi: 10.1111/j.1755-0998.2008.02291.x
– volume: 86
  start-page: 248
  year: 1995
  ident: 2016040607262858000_62.2.193.64
  article-title: GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism
  publication-title: J Hered
  doi: 10.1093/oxfordjournals.jhered.a111573
  contributor:
    fullname: Raymond
– ident: 2016040607262858000_62.2.193.33
  doi: 10.1111/j.1420-9101.2004.00675.x
– ident: 2016040607262858000_62.2.193.78
– ident: 2016040607262858000_62.2.193.2
  doi: 10.1007/s10592-005-9112-7
– ident: 2016040607262858000_62.2.193.56
  doi: 10.1111/j.1755-0998.2012.03150.x
– ident: 2016040607262858000_62.2.193.1
  doi: 10.1111/2041-210X.12158
– ident: 2016040607262858000_62.2.193.3
  doi: 10.1038/nature13301
– ident: 2016040607262858000_62.2.193.49
  doi: 10.1554/0014-3820(2000)054[1738:CDIPT]2.0.CO;2
– ident: 2016040607262858000_62.2.193.32
  doi: 10.1371/journal.pbio.0040325
– ident: 2016040607262858000_62.2.193.74
  doi: 10.1111/evo.12258
– ident: 2016040607262858000_62.2.193.85
SSID ssj0066491
Score 2.088878
Snippet The causes of population differentiation can provide insight into the origins of early barriers to gene flow. Two key drivers of population differentiation are...
Abstract The causes of population differentiation can provide insight into the origins of early barriers to gene flow. Two key drivers of population...
SourceID pubmedcentral
proquest
crossref
pubmed
oup
chongqing
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 193
SubjectTerms Special Column Cascade Reinforcement
人口结构
地理位置
标记基因型
环境
生殖隔离
种群分化
蟾蜍
距离和
Title Population differentiation at a regional scale in spadefoot toads: contributions of distance and divergent selective environments
URI http://lib.cqvip.com/qk/94056X/201602/668644346.html
https://www.ncbi.nlm.nih.gov/pubmed/29491906
https://search.proquest.com/docview/2009567863
https://pubmed.ncbi.nlm.nih.gov/PMC5804232
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6xRUhcEOWZlq4M4pomayeOw620W1VIoEo8hLhEfrYr0aQ02VbaG_-csbOJdjlw4GjZsax8Y_uz_c0MwFuRU5cL6mKj8jLOjDCxcCUCkpk0N5kVznjn5LPPxafv4mTuw-Tkgy9MEO1rtTisf14d1ovLoK28vtLJoBNLzj8e58KrOWgygQlyw-GI3i-_nGchTZ5X18c-WNcQTqhkiV4lq-YOTyA-BHCJ7co0xFS4bOqLX7hTbO1NW_5uG7Tzb_XkxnZ0-hgerXkkOerHuwv3bP0EHvxowi35U_h9PibmIkMOlK5HgciOSOITMngSTloEyZJFTXBpMdY1TUe6Rpr2HQkq9nU6rJY0DjvyVFJbImuDhdvguNmRNqTSwSLZ9Jp7Bl9P51-Oz-J1toVYI4novChzZkTheKYUkiZkGooqlRrpqEyLUuG5ytFMMSvLGbWG5gobunxmtDNmRjV7Djt1U9uXQBRnWYpDZjnOdiq5UFRLJrRhrNSMuwj2x39eXfdRNSrOBXIzlvEI3gwojJX9Uzmr9KrqEYzgAPH5V_3rAbkKJ4x_BZG1bZatz7uJZ8JCcBbBix7JsZvBKCIotjAeG_hg3Ns1aKMhKPfaJvf--8t9eIhkjPeqoFew090s7QFMWrOcwv2j9_MP36bhwmAazP0P2j0Hyw
link.rule.ids 230,315,729,782,786,866,887,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB3RIgQXylchlIJBXNNk7cRxeqtKq0W0VSWKhLhE_qQr0aSQLEh745937GyiXQ4cerTGsRLN2H6O38wDeC9y6nJBXWxUXsaZESYWrkSHZCbNTWaFMz45efq5OPsqPhz5Mjn5kAsTSPtazfbqH1d79ewycCuvr3Qy8MSS89PDXHg2B0024C7O1zQdDun9Asx5FoTyPL8-9uW6hoJCJUv0Ilk0f_AM4osAl9ivTENVhcum_v4T94q13Wkt420FeP7Ln1zZkI63bvkpj-DhEoGSg978GO7Y-gnc-9aE_-tP4e_5KOlFBvWUrvcfkR2RxEs5ePhOWnSvJbOa4KJkrGuajnSNNO0-Cfz3pZBWSxqHA3kQqi2RtcHG75Dy2ZE2iPBgk6zm2z2DL8dHF4fTeKnTEGuEH52nc06MKBzPlEK4hRhFUaVSIx2VaVEqPJE5milmZTmh1tBcYUeXT4x2xkyoZtuwWTe1fQFEcZal-Mosx3WCSi4U1ZIJbRgrNeMugp3RV9V1X4-j4lwgqmMZj-Dd4L3R2F-ys0ovqt7zEeyiX_9nfzt4vMKp5u9PZG2beesVO_E0WQjOInjeR8A4zBBMERRrsTF28GW81y0YEqGc9zIEXt76yTdwf3pxelKdfDz7tAMPENLxnlv0Cja7X3O7Cxutmb8Ok-QGWj8ayw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RIhAXvktDKRjENU3WThyHG2q7KgKqlQAJcYn8SVeiyZZkQdob_5yxs4l2OXCAo2XHSjRj-038Zh7AS5FTlwvqYqPyMs6MMLFwJRokM2luMiuc8cnJZx-K88_i5NSXyRmlvgJpX6v5Uf3t8qieXwRu5eJSJwNPLJm9P86FZ3PQZGFcsgPXcc2mdAjU-02Y8yyI5XmOfexLdg1FhUqW6FWyan5iHOILAZc4rkxDZYWLpv56hefF1gm1lfW2AT7_5FBuHErTO__xOXfh9hqJktf9kHtwzdb34caXJvxnfwC_ZqO0FxlUVLrejkR2RBIv6eBhPGnRzJbMa4Kbk7GuaTrSNdK0r0jgwa8FtVrSOJzIg1FtiawNNn6E1M-OtEGMB5tkM-_uIXyann48PovXeg2xRhjSeVrnxIjC8UwphF2IVRRVKjXSUZkWpcLIzNFMMSvLCbWG5goHunxitDNmQjXbg926qe0-EMVZluIrsxz3Cyq5UFRLJrRhrNSMuwgORntVi74uR8W5QHTHMh7Bi8GCY2d_2c4qvap660dwiLb9W__zweoVLjl_jyJr2yxbr9yJUWUhOIvgUe8F4zSDQ0VQbPnHOMCX897uQbcIZb3XbvD4n598BjdnJ9Pq3ZvztwdwC5Ed7ylGT2C3-760h7DTmuXTsE5-AxNeHUs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population+differentiation+at+a+regional+scale+in+spadefoot+toads%3A+contributions+of+distance+and+divergent+selective+environments&rft.jtitle=Current+zoology&rft.au=Rice%2C+Amber+M.&rft.au=McQuillan%2C+Michael+A.&rft.au=Seears%2C+Heidi+A.&rft.au=Warren%2C+Joanna+A.&rft.date=2016-04-01&rft.pub=Oxford+University+Press&rft.issn=1674-5507&rft.eissn=2396-9814&rft.volume=62&rft.issue=2&rft.spage=193&rft.epage=206&rft_id=info:doi/10.1093%2Fcz%2Fzow010&rft.externalDocID=10.1093%2Fcz%2Fzow010
thumbnail_s http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F94056X%2F94056X.jpg