Fluorine NMR study of proline-rich sequences using fluoroprolines
Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins' functions. However, the dynamics of proline homopolymers is hard to study by NMR due to a lack of amide protons and small chemical shift dis...
Saved in:
Published in: | Magnetic Resonance : (Göttingen) Vol. 2; no. 2; pp. 795 - 813 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Copernicus GmbH
2021
Groupement Ampere - Copernicus Publications Copernicus Publications |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins' functions. However, the dynamics of proline homopolymers is hard to study by NMR due to a lack of amide protons and small chemical shift dispersion. Exploiting the spectroscopic properties of fluorinated prolines opens interesting perspectives to address these issues. Fluorinated prolines are already widely used in protein structure engineering - they introduce conformational and dynamical biases - but their use as
F NMR reporters of proline conformation has not yet been explored. In this work, we look at model peptides where C
-fluorinated prolines with opposite configurations of the chiral C
centre have been introduced at two positions in distinct polyproline segments. By looking at the effects of swapping these (4
)-fluoroproline and (4
)-fluoroproline within the polyproline segments, we were able to separate the intrinsic conformational properties of the polyproline sequence from the conformational alterations instilled by fluorination. We assess the fluoroproline
F relaxation properties, and we exploit the latter in elucidating binding kinetics to the SH3 (Src homology 3) domain. |
---|---|
AbstractList | Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins' functions. However, the dynamics of proline homopolymers is hard to study by NMR due to a lack of amide protons and small chemical shift dispersion. Exploiting the spectroscopic properties of fluorinated prolines opens interesting perspectives to address these issues. Fluorinated prolines are already widely used in protein structure engineering - they introduce conformational and dynamical biases - but their use as
F NMR reporters of proline conformation has not yet been explored. In this work, we look at model peptides where C
-fluorinated prolines with opposite configurations of the chiral C
centre have been introduced at two positions in distinct polyproline segments. By looking at the effects of swapping these (4
)-fluoroproline and (4
)-fluoroproline within the polyproline segments, we were able to separate the intrinsic conformational properties of the polyproline sequence from the conformational alterations instilled by fluorination. We assess the fluoroproline
F relaxation properties, and we exploit the latter in elucidating binding kinetics to the SH3 (Src homology 3) domain. Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins' functions. However, the dynamics of proline homopolymers is hard to study by NMR due to a lack of amide protons and small chemical shift dispersion. Exploiting the spectroscopic properties of fluorinated prolines opens interesting perspectives to address these issues. Fluorinated prolines are already widely used in protein structure engineering – they introduce conformational and dynamical biases – but their use as 19F NMR reporters of proline conformation has not yet been explored. In this work, we look at model peptides where Cγ-fluorinated prolines with opposite configurations of the chiral Cγ centre have been introduced at two positions in distinct polyproline segments. By looking at the effects of swapping these (4R)-fluoroproline and (4S)-fluoroproline within the polyproline segments, we were able to separate the intrinsic conformational properties of the polyproline sequence from the conformational alterations instilled by fluorination. We assess the fluoroproline 19F relaxation properties, and we exploit the latter in elucidating binding kinetics to the SH3 (Src homology 3) domain. Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins' functions. However, the dynamics of proline homopolymers is hard to study by NMR due to a lack of amide protons and small chemical shift dispersion. Exploiting the spectroscopic properties of fluorinated prolines opens interesting perspectives to address these issues. Fluorinated prolines are already widely used in protein structure engineering – they introduce conformational and dynamical biases – but their use as 19 F NMR reporters of proline conformation has not yet been explored. In this work, we look at model peptides where C γ -fluorinated prolines with opposite configurations of the chiral C γ centre have been introduced at two positions in distinct polyproline segments. By looking at the effects of swapping these (4 R )-fluoroproline and (4 S )-fluoroproline within the polyproline segments, we were able to separate the intrinsic conformational properties of the polyproline sequence from the conformational alterations instilled by fluorination. We assess the fluoroproline 19 F relaxation properties, and we exploit the latter in elucidating binding kinetics to the SH3 (Src homology 3) domain. Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins' functions. However, the dynamics of proline homopolymers is hard to study by NMR due to a lack of amide protons and small chemical shift dispersion. Exploiting the spectroscopic properties of fluorinated prolines opens interesting perspectives to address these issues. Fluorinated prolines are already widely used in protein structure engineering - they introduce conformational and dynamical biases - but their use as 19F NMR reporters of proline conformation has not yet been explored. In this work, we look at model peptides where Cγ-fluorinated prolines with opposite configurations of the chiral Cγ centre have been introduced at two positions in distinct polyproline segments. By looking at the effects of swapping these (4R)-fluoroproline and (4S)-fluoroproline within the polyproline segments, we were able to separate the intrinsic conformational properties of the polyproline sequence from the conformational alterations instilled by fluorination. We assess the fluoroproline 19F relaxation properties, and we exploit the latter in elucidating binding kinetics to the SH3 (Src homology 3) domain.Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins' functions. However, the dynamics of proline homopolymers is hard to study by NMR due to a lack of amide protons and small chemical shift dispersion. Exploiting the spectroscopic properties of fluorinated prolines opens interesting perspectives to address these issues. Fluorinated prolines are already widely used in protein structure engineering - they introduce conformational and dynamical biases - but their use as 19F NMR reporters of proline conformation has not yet been explored. In this work, we look at model peptides where Cγ-fluorinated prolines with opposite configurations of the chiral Cγ centre have been introduced at two positions in distinct polyproline segments. By looking at the effects of swapping these (4R)-fluoroproline and (4S)-fluoroproline within the polyproline segments, we were able to separate the intrinsic conformational properties of the polyproline sequence from the conformational alterations instilled by fluorination. We assess the fluoroproline 19F relaxation properties, and we exploit the latter in elucidating binding kinetics to the SH3 (Src homology 3) domain. Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins' functions. However, the dynamics of proline homopolymers is hard to study by NMR due to a lack of amide protons and small chemical shift dispersion. Exploiting the spectroscopic properties of fluorinated prolines opens interesting perspectives to address these issues. Fluorinated prolines are already widely used in protein structure engineering – they introduce conformational and dynamical biases – but their use as 19 F NMR reporters of proline conformation has not yet been explored. In this work, we look at model peptides where C γ -fluorinated prolines with opposite configurations of the chiral C γ centre have been introduced at two positions in distinct polyproline segments. By looking at the effects of swapping these (4 R )-fluoroproline and (4 S )-fluoroproline within the polyproline segments, we were able to separate the intrinsic conformational properties of the polyproline sequence from the conformational alterations instilled by fluorination. We assess the fluoroproline 19 F relaxation properties, and we exploit the latter in elucidating binding kinetics to the SH3 (Src homology 3) domain. Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins' functions. However, the dynamics of proline homopolymers is hard to study by NMR due to a lack of amide protons and small chemical shift dispersion. Exploiting the spectroscopic properties of fluorinated prolines opens interesting perspectives to address these issues. Fluorinated prolines are already widely used in protein structure engineering – they introduce conformational and dynamical biases – but their use as 19F NMR reporters of proline conformation has not yet been explored. In this work, we look at model peptides where Cγ-fluorinated prolines with opposite configurations of the chiral Cγ centre have been introduced at two positions in distinct polyproline segments. By looking at the effects of swapping these (4R)-fluoroproline and (4S)-fluoroproline within the polyproline segments, we were able to separate the intrinsic conformational properties of the polyproline sequence from the conformational alterations instilled by fluorination. We assess the fluoroproline 19F relaxation properties, and we exploit the latter in elucidating binding kinetics to the SH3 (Src homology 3) domain. |
Author | Sinnaeve, Davy Torbeev, Vladimir Kieffer, Bruno Hofman, Gert-Jan Martins, José C Linclau, Bruno Kuprov, Ilya Ottoy, Emile Ben Bouzayene, Abir Erdmann, Eva |
Author_xml | – sequence: 1 givenname: Davy surname: Sinnaeve fullname: Sinnaeve, Davy organization: CNRS, ERL9002 - Integrative Structural Biology, 59000 Lille, France – sequence: 2 givenname: Abir surname: Ben Bouzayene fullname: Ben Bouzayene, Abir organization: Department of Integrative Structural Biology, IGBMC, University of Strasbourg, Inserm U1258, CNRS UMR 7104, 1 rue Laurent Fries, 67404 Illkirch, France – sequence: 3 givenname: Emile surname: Ottoy fullname: Ottoy, Emile organization: Department of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, S4, Krijgslaan 281, 9000 Ghent, Belgium – sequence: 4 givenname: Gert-Jan surname: Hofman fullname: Hofman, Gert-Jan organization: School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom – sequence: 5 givenname: Eva surname: Erdmann fullname: Erdmann, Eva organization: Department of Integrative Structural Biology, IGBMC, University of Strasbourg, Inserm U1258, CNRS UMR 7104, 1 rue Laurent Fries, 67404 Illkirch, France – sequence: 6 givenname: Bruno surname: Linclau fullname: Linclau, Bruno organization: School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom – sequence: 7 givenname: Ilya surname: Kuprov fullname: Kuprov, Ilya organization: School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom – sequence: 8 givenname: José C surname: Martins fullname: Martins, José C organization: Department of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, S4, Krijgslaan 281, 9000 Ghent, Belgium – sequence: 9 givenname: Vladimir surname: Torbeev fullname: Torbeev, Vladimir organization: Institut de Science et d'Ingénierie Supramoléculaires (ISIS), International Center for Frontier Research in Chemistry (icFRC), University of Strasbourg, CNRS UMR 7006, 67000 Strasbourg, France – sequence: 10 givenname: Bruno surname: Kieffer fullname: Kieffer, Bruno organization: Department of Integrative Structural Biology, IGBMC, University of Strasbourg, Inserm U1258, CNRS UMR 7104, 1 rue Laurent Fries, 67404 Illkirch, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37905223$$D View this record in MEDLINE/PubMed https://hal.science/hal-03430871$$DView record in HAL |
BookMark | eNpdks1r3DAQxUVJSdIkx16LoZf0oHZGH5Z1KktomsC2hZKchSzLu15sayutA_nvK3e3IclJw9NvnqTRe0eOxjB6Qt4jfJaoxZchUkaVlpQBwzfklJVaUwAsj57VJ-QipQ0AMIkMSjgmJ1xpkIzxU7K47qcQu9EXP3_8LtJuah6L0BbbGPos0ti5dZH8n8mPzqdiSt24Ktq5JRyQdE7etrZP_uKwnpH76293Vzd0-ev77dViSZ3giNTW3DluS6YltHUpmbe8bWqBglslQTPPhAZhPWItnWygcQ3mWrRSlKJR_Izc7n2bYDdmG7vBxkcTbGf-CSGujI27zvXeVJhbRasb57VgSlQotUNmUVnROgXZ6-veazvVg8_YuIu2f2H6cmfs1mYVHgyC5Fpxnh0-7R3Wr_puFksza8AFh0rhA2b28nBaDHmSaWeGLjnf93b0YUqGVZUoVSmUyOjHV-gmTHHMczVM5snB_O2ZonvKxZBS9O3TDRDMTJghGmZyMMwcjMx_eP7cJ_p_DPhfcUezMQ |
CitedBy_id | crossref_primary_10_3389_fchem_2022_886382 crossref_primary_10_5194_mr_4_111_2023 crossref_primary_10_1021_acs_chemrev_4c00007 crossref_primary_10_1021_acs_biochem_2c00717 |
Cites_doi | 10.1038/33573 10.1016/j.jmr.2010.12.004 10.1111/j.1399-3011.1994.tb00169.x 10.1016/j.jmr.2007.09.002 10.1017/S0033583514000092 10.1051/jphysrad:01937008010039700 10.1002/biot.201400587 10.1002/psc.2836 10.1016/j.jmr.2010.11.008 10.1039/c2cc35347d 10.1016/S0076-6879(95)61025-1 10.1021/ja9623119 10.1147/rd.11.0019 10.1038/nprot.2016.079 10.1063/1.4928978 10.1002/mrc.4500 10.1021/ja065173o 10.1006/jmra.1995.1063 10.1021/acs.jmedchem.5b00258 10.1039/C8CC01493K 10.1021/acs.biochem.8b00787 10.1021/jp073411b 10.1073/pnas.0709567104 10.1016/0006-3002(60)90373-5 10.1021/j100785a001 10.1126/science.1215802 10.1021/ja507405j 10.1021/ct600110u 10.4161/idp.24360 10.1002/anie.201606544 10.1021/ja00281a002 10.1039/C1CS15241F 10.1021/jacs.0c02263 10.1021/ja00798a046 10.1073/pnas.1310414110 10.1038/s41592-019-0334-x 10.1096/fj.10-160572 10.1146/annurev.biochem.77.032207.120833 10.1038/s41573-020-00135-8 10.1017/S0033583517000051 10.3762/bjoc.17.40 10.1002/ijch.201600038 10.1016/j.ejmech.2019.111826 10.1007/s10858-020-00331-z 10.1021/bi00003a021 10.1007/s10858-012-9636-3 10.1007/s10858-019-00268-y 10.1021/acs.joc.8b02920 10.1007/978-1-4939-2447-9_22 10.1063/1.1520138 10.1021/ja0166904 10.1016/j.pnmrs.2011.06.003 10.1039/B711844A 10.1021/ja510109p 10.1016/j.bpj.2020.03.031 10.1021/jp810292n 10.1016/j.febslet.2012.04.042 10.1007/s10858-020-00348-4 10.1039/b801115j 10.1016/j.jmb.2015.11.023 10.1021/jo300044q 10.1016/j.jmr.2014.04.002 10.1016/bs.mie.2015.05.014 10.1016/j.jmr.2007.09.014 10.1023/A:1020997118364 10.1016/S0021-9258(19)44350-0 10.3762/bjoc.17.28 10.1002/prot.20449 10.1126/science.aag2355 10.1007/s00726-012-1383-y 10.1021/acs.accounts.8b00192 10.1007/7081_2015_196 10.1021/acs.accounts.7b00226 10.1007/s00214-007-0310-x 10.1021/ja00477a018 10.1002/psc.750 10.1016/j.str.2020.04.008 10.1110/ps.051779806 10.1002/cbic.201402654 10.1016/j.bpj.2016.04.022 10.1038/s41598-020-59446-w 10.1021/acs.macromol.7b01285 |
ContentType | Journal Article |
Copyright | Copyright: © 2021 Davy Sinnaeve et al. 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution Copyright: © 2021 Davy Sinnaeve et al. 2021 |
Copyright_xml | – notice: Copyright: © 2021 Davy Sinnaeve et al. – notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution – notice: Copyright: © 2021 Davy Sinnaeve et al. 2021 |
DBID | NPM AAYXX CITATION 8FE 8FG 8FH ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P P5Z P62 PIMPY PQEST PQQKQ PQUKI PRINS 7X8 1XC VOOES 5PM DOA |
DOI | 10.5194/mr-2-795-2021 |
DatabaseName | PubMed CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Biological Science Collection Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection ProQuest Central Student Technology Collection ProQuest Biological Science Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest One Academic MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2699-0016 |
EndPage | 813 |
ExternalDocumentID | oai_doaj_org_article_81d114f9dce942748159c12a17a4fc70 oai_HAL_hal_03430871v1 10_5194_mr_2_795_2021 37905223 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Agence Nationale de la Recherche (grant nos. ANR-20-CE11-0025 – fundername: ANR-18-CE44-0009-01 – fundername: and ANR-10-INSB-05-01) – fundername: and Métropole Européenne de Lille (MEL) (“PUSH-UP” grant) – fundername: Engineering and Physical Sciences Research Council (EPRSC) (grant no. EPSRC-DTG EP/M50662X/1) – fundername: Research Foundation – Flanders (FWO) (grant no. 3G011015) |
GroupedDBID | AAFWJ ABDBF AFKRA AHGZY ALMA_UNASSIGNED_HOLDINGS ARAPS BBNVY BENPR BGLVJ BHPHI CCPQU GROUPED_DOAJ H13 HCIFZ IAO ISR ITC M7P M~E NPM OK1 PGMZT PIMPY RPM AAYXX CITATION 8FE 8FG 8FH ABUWG AZQEC DWQXO GNUQQ LK8 P62 PQEST PQQKQ PQUKI PRINS 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c4311-ab3cc3a62950fb652ea3fdb4143a75092e24904ae11b5c5d0dcd111b4f5464d73 |
IEDL.DBID | RPM |
ISSN | 2699-0016 |
IngestDate | Tue Oct 22 15:14:37 EDT 2024 Tue Sep 17 21:29:32 EDT 2024 Thu Oct 31 07:28:47 EDT 2024 Sat Oct 26 02:11:38 EDT 2024 Thu Oct 10 18:22:33 EDT 2024 Thu Nov 21 21:31:33 EST 2024 Sat Nov 02 12:30:11 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Fluorine NMR Peptides NMR spectroscopy Proline / analogs & derivatives |
Language | English |
License | Copyright: © 2021 Davy Sinnaeve et al. Attribution: http://creativecommons.org/licenses/by This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4311-ab3cc3a62950fb652ea3fdb4143a75092e24904ae11b5c5d0dcd111b4f5464d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2556-5895 0000-0001-8762-0170 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539733/ |
PMID | 37905223 |
PQID | 2595005194 |
PQPubID | 4734905 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_81d114f9dce942748159c12a17a4fc70 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10539733 hal_primary_oai_HAL_hal_03430871v1 proquest_miscellaneous_2884676474 proquest_journals_2595005194 crossref_primary_10_5194_mr_2_795_2021 pubmed_primary_37905223 |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Göttingen |
PublicationTitle | Magnetic Resonance : (Göttingen) |
PublicationTitleAlternate | Magn Reson (Gott) |
PublicationYear | 2021 |
Publisher | Copernicus GmbH Groupement Ampere - Copernicus Publications Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Groupement Ampere - Copernicus Publications – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref86 ref41 ref85 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref84 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref35 doi: 10.1038/33573 – ident: ref45 doi: 10.1016/j.jmr.2010.12.004 – ident: ref60 doi: 10.1111/j.1399-3011.1994.tb00169.x – ident: ref61 doi: 10.1016/j.jmr.2007.09.002 – ident: ref25 doi: 10.1017/S0033583514000092 – ident: ref49 doi: 10.1051/jphysrad:01937008010039700 – ident: ref56 doi: 10.1002/biot.201400587 – ident: ref3 doi: 10.1002/psc.2836 – ident: ref34 doi: 10.1016/j.jmr.2010.11.008 – ident: ref13 doi: 10.1039/c2cc35347d – ident: ref63 doi: 10.1016/S0076-6879(95)61025-1 – ident: ref19 doi: 10.1021/ja9623119 – ident: ref64 doi: 10.1147/rd.11.0019 – ident: ref27 doi: 10.1038/nprot.2016.079 – ident: ref31 doi: 10.1063/1.4928978 – ident: ref14 doi: 10.1002/mrc.4500 – ident: ref22 doi: 10.1021/ja065173o – ident: ref23 doi: 10.1006/jmra.1995.1063 – ident: ref29 doi: 10.1021/acs.jmedchem.5b00258 – ident: ref32 doi: 10.1039/C8CC01493K – ident: ref80 doi: 10.1021/acs.biochem.8b00787 – ident: ref38 doi: 10.1021/jp073411b – ident: ref5 doi: 10.1073/pnas.0709567104 – ident: ref84 doi: 10.1016/0006-3002(60)90373-5 – ident: ref11 – ident: ref8 doi: 10.1021/j100785a001 – ident: ref48 doi: 10.1126/science.1215802 – ident: ref83 doi: 10.1021/ja507405j – ident: ref16 doi: 10.1021/ct600110u – ident: ref74 doi: 10.4161/idp.24360 – ident: ref37 doi: 10.1002/anie.201606544 – ident: ref68 doi: 10.1021/ja00281a002 – ident: ref66 doi: 10.1039/C1CS15241F – ident: ref78 doi: 10.1021/jacs.0c02263 – ident: ref28 doi: 10.1021/ja00798a046 – ident: ref26 – ident: ref77 doi: 10.1073/pnas.1310414110 – ident: ref6 doi: 10.1038/s41592-019-0334-x – ident: ref47 doi: 10.1096/fj.10-160572 – ident: ref72 doi: 10.1146/annurev.biochem.77.032207.120833 – ident: ref54 doi: 10.1038/s41573-020-00135-8 – ident: ref15 doi: 10.1017/S0033583517000051 – ident: ref44 doi: 10.3762/bjoc.17.40 – ident: ref75 doi: 10.1002/ijch.201600038 – ident: ref39 – ident: ref53 doi: 10.1016/j.ejmech.2019.111826 – ident: ref7 doi: 10.1007/s10858-020-00331-z – ident: ref24 doi: 10.1021/bi00003a021 – ident: ref43 doi: 10.1007/s10858-012-9636-3 – ident: ref51 doi: 10.1007/s10858-019-00268-y – ident: ref33 doi: 10.1021/acs.joc.8b02920 – ident: ref42 doi: 10.1007/978-1-4939-2447-9_22 – ident: ref62 doi: 10.1063/1.1520138 – ident: ref17 doi: 10.1021/ja0166904 – ident: ref41 doi: 10.1016/j.pnmrs.2011.06.003 – ident: ref57 doi: 10.1039/B711844A – ident: ref76 doi: 10.1021/ja510109p – ident: ref73 doi: 10.1016/j.bpj.2020.03.031 – ident: ref52 doi: 10.1021/jp810292n – ident: ref67 doi: 10.1016/j.febslet.2012.04.042 – ident: ref59 doi: 10.1007/s10858-020-00348-4 – ident: ref70 – ident: ref12 doi: 10.1039/b801115j – ident: ref1 doi: 10.1016/j.jmb.2015.11.023 – ident: ref58 doi: 10.1021/jo300044q – ident: ref20 doi: 10.1016/j.jmr.2014.04.002 – ident: ref69 doi: 10.1016/bs.mie.2015.05.014 – ident: ref46 doi: 10.1016/j.jmr.2007.09.014 – ident: ref71 doi: 10.1023/A:1020997118364 – ident: ref10 doi: 10.1016/S0021-9258(19)44350-0 – ident: ref30 doi: 10.3762/bjoc.17.28 – ident: ref81 doi: 10.1002/prot.20449 – ident: ref40 doi: 10.1126/science.aag2355 – ident: ref9 doi: 10.1007/s00726-012-1383-y – ident: ref2 doi: 10.1021/acs.accounts.8b00192 – ident: ref55 doi: 10.1007/7081_2015_196 – ident: ref4 doi: 10.1021/acs.accounts.7b00226 – ident: ref86 doi: 10.1007/s00214-007-0310-x – ident: ref50 doi: 10.1021/ja00477a018 – ident: ref65 doi: 10.1002/psc.750 – ident: ref79 doi: 10.1016/j.str.2020.04.008 – ident: ref36 doi: 10.1110/ps.051779806 – ident: ref18 doi: 10.1002/cbic.201402654 – ident: ref21 doi: 10.1016/j.bpj.2016.04.022 – ident: ref82 doi: 10.1038/s41598-020-59446-w – ident: ref85 doi: 10.1021/acs.macromol.7b01285 |
SSID | ssj0002512060 |
Score | 2.2050674 |
Snippet | Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins'... Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins'... |
SourceID | doaj pubmedcentral hal proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 795 |
SubjectTerms | Amino acids Analytical chemistry Biochemistry, Molecular Biology Chemical equilibrium Chemical Sciences Fluorination Fluorine Homology Life Sciences NMR Nuclear magnetic resonance Peptides Polyproline Population Proline Protein engineering Protein structure Proteins Protons Segments Signal transduction Structural Biology Transfer RNA |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagEhIXRMsrtFQBIW5R_Y5z3EJXPUAPPCRulp8sUputdll-f2ecNGrgwIWr7cTWN7bnG3v0mZC3Ae_ejOKNa4VrpKZt42FaNNzHzI1x1IVydPGlvfhuPpyhTM701BfmhA3ywANwJ8CngLLnLobUSQihDPjfwLhjrZM5tEO0TvWdYAr3YPTaVNNBVBNIijy52jRAJTsF04KzmRMqWv3gWlaYCfk3zfwzW_KO-1k-Jo9G3lgvhvHuk3upPyAPSv5m2D4hi-XlDlPpUn3x6XNdNGPrda6vy5s8qYHNblVPWdM1Jrv_qDN-sh6bbJ-Sb8uzr-_Pm_F1hCaA02eN8yIE4TTvFM1eK56cyNFLIEAOaQBPEFlR6RJjXgUVaQyAJPMyK6llbMUzstev-_SC1FpqiMvAWIxGSb0yrQmyY4FFH1TItCLvbuGy14MIhoXgAXG1VxvLLeBqEdeKnCKYUyPUri4FYFE7WtT-y6IVeQOmmP3jfPHRYhkVEhUM2W_o6ejWUnZcdVsLoZwqnFRW5PVUDesFL0Fcn9Y7aGOQcWnZQpvng2GnrgSqlQFfqoiZmXw2lnlN_3NVNLmBpgKzE-Ll_0DgkDxENIeTniOy92uzS6_I_W3cHZdpfgOn2v7a priority: 102 providerName: Directory of Open Access Journals |
Title | Fluorine NMR study of proline-rich sequences using fluoroprolines |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37905223 https://www.proquest.com/docview/2595005194 https://www.proquest.com/docview/2884676474 https://hal.science/hal-03430871 https://pubmed.ncbi.nlm.nih.gov/PMC10539733 https://doaj.org/article/81d114f9dce942748159c12a17a4fc70 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbYSkhcEOW5UKqAEDd3_U5y3JaueqAV4iFxs2zH6VbqJqvdbn8_M06yauDGNXHiaGbs-cb-8pmQTwH33gotqMulo8qwnHoICyp8VYuicMyFtHTxI7_6XXw5R5kcM_wLk0j7wd-cNLerk-ZmmbiV61WYDTyx2bfLM8AEkEalnE3IBMDhgxod51_M2MywTlATAIqarTYUYGSpISQEHyWgpNMPaWWJLMh_IebfTMkHqWfxjDztMWM2777tkDyKzXPyOHE3w_YFmS9ud0iji9nV5fcs6cVmbZ2t03k8kcJEt8z2jOkMie7XWY2PtH2T7Uvya3H-8-yC9icj0AAJn1PnZQjSGVFqVnujRXSyrrwC8OMQAogIVRVTLnLuddAVq0IFk5pXtVZGVbl8RQ6atolvSGaUgZoMHMVZpZjXRV4EVfLAKx90qNmUfB7MZdedAIaFwgHtalcbKyzY1aJdp-QUjblvhLrV6UK7uba99yygYyjA6hIMWiooiAtAU4ELx3On6pBDbx_BFaN3XMy_WrzGpEL1Qn4PPR0NnrL9iNtaKON0wqNqSj7sb8NYwQ0Q18R2B20KRFtG5dDmdefYfVcSlcoAK01JMXL56FvGdyA8kx73EI5v___Rd-QJ2rBb2zkiB3ebXXxPJttqd5xWCY5TiP8BXrn_nw |
link.rule.ids | 230,315,729,782,786,866,887,2106,4028,27932,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbYEIKXjd8UBgSEeMtqO3biPHY_qiLaCsGQeLNsx1knrUnVrvz93DlJtbC3vcZOHPnufN_ZX74Q8sXh2ZuSPDZZYmKR0iy24BYxt0XJlTLUuLB18Sub_1Fn5yiTk3bfwgTSvrNXx9X18ri6WgRu5Wrphh1PbPhjdgqYANJokgz3yEMIWEpvVem4AmPOpiltJDUBoojhch0DkMwlOAVnvRQUlPohsSyQB3kXZP7PlbyVfMaH933tp-SghZvRqGl_Rh746jl5FGifbvOCjMbXW2Tg-Wg--xkFqdmoLqNV-JWPj2GNXEQ7snWEHPnLqMRb6rbL5iX5PT6_OJ3E7U8VYgdYgcXGJs4lJuW5pKVNJfcmKQsrADcZRA_cQ0FGhfGMWelkQQtXwHpoRSlFKooseUX2q7ryb0iUihTKObAxo4WgVqpMOZEzxwrrpCvpgHzt5lmvGu0MDTUHGkQv15prMIhGgwzICVph1wklr8OFen2p2xnUAKyhditzsEQuoJZWAMQc44ZlRpQug9E-gw17z5iMphqv0USg8CH7CyMddSbWbbBuNFSAMkBZMSCfds0QZnh2Yipfb6GPQqCWigz6vG48YjdUgiJnALMGRPV8pfcu_RZwkSDl3bnE2_vf-pE8nlzMpnr6bf79HXmC89lsER2R_Zv11r8ne5ti-yFEyD-6rRRx |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoEYhLy5uFAgEhbmlsx86jt-1jVUS7qnhI3Cw_4m6lbrLa7fL7mXGSVQO3cnUmceQZe75xvnwm5JPFb2-F5LHOUx2LjOaxgbCIuXGeF4Wm2oati-_59FdxfIIyOQf9vzCBtG_N1X59Pd-vr2aBW7mY26TniSUX50eACSCNpmmycD7ZIvdh0lJ-q1LHVRjzNs1oK6sJMEUk82UMYLKUEBicDdJQUOuH5DJDLuS_QPNvvuStBDTZ_Z9Xf0x2OtgZjVubJ-ReVT8lDwL9066ekfHkeo1MvCqann-LguRs1PhoEY70qWJYK2fRhnQdIVf-MvJ4S9OZrJ6Tn5OTH0encXe4QmwBM7BYm9TaVGe8lNSbTPJKp94ZAfhJI4rgFRRmVOiKMSOtdNRZB-uiEV6KTLg8fUG266auXpEoExmUdeBrRp2gRhZ5YUXJLHPGSuvpiHzux1otWg0NBbUHOkXNl4orcIpCp4zIIXpiY4TS16GhWV6qbhQVAGyo4XwJ3igF1NQFADLLuGa5Ft7m0NtH8OPgGafjM4VtNBUogMh-Q097vZtVN2lXCipBGSCtGJEPm8sw3fAbiq6rZg02BQK2TORg87KNik1XKYqdAdwakWIQL4N3GV6BMAmS3n1YvL77re_Jw4vjiTr7Mv36hjzC4Wx3ivbI9s1yXb0lWyu3fhcmyR92Exbx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluorine+NMR+study+of+proline-rich+sequences+using+fluoroprolines&rft.jtitle=Magnetic+Resonance+%3A+%28G%C3%B6ttingen%29&rft.au=Sinnaeve%2C+Davy&rft.au=Ben+Bouzayene%2C+Abir&rft.au=Ottoy%2C+Emile&rft.au=Hofman%2C+Gert-Jan&rft.date=2021&rft.issn=2699-0016&rft.eissn=2699-0016&rft.volume=2&rft.issue=2&rft.spage=795&rft_id=info:doi/10.5194%2Fmr-2-795-2021&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2699-0016&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2699-0016&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2699-0016&client=summon |