Fluorine NMR study of proline-rich sequences using fluoroprolines

Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins' functions. However, the dynamics of proline homopolymers is hard to study by NMR due to a lack of amide protons and small chemical shift dis...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic Resonance : (Göttingen) Vol. 2; no. 2; pp. 795 - 813
Main Authors: Sinnaeve, Davy, Ben Bouzayene, Abir, Ottoy, Emile, Hofman, Gert-Jan, Erdmann, Eva, Linclau, Bruno, Kuprov, Ilya, Martins, José C, Torbeev, Vladimir, Kieffer, Bruno
Format: Journal Article
Language:English
Published: Germany Copernicus GmbH 2021
Groupement Ampere - Copernicus Publications
Copernicus Publications
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins' functions. However, the dynamics of proline homopolymers is hard to study by NMR due to a lack of amide protons and small chemical shift dispersion. Exploiting the spectroscopic properties of fluorinated prolines opens interesting perspectives to address these issues. Fluorinated prolines are already widely used in protein structure engineering - they introduce conformational and dynamical biases - but their use as F NMR reporters of proline conformation has not yet been explored. In this work, we look at model peptides where C -fluorinated prolines with opposite configurations of the chiral C centre have been introduced at two positions in distinct polyproline segments. By looking at the effects of swapping these (4 )-fluoroproline and (4 )-fluoroproline within the polyproline segments, we were able to separate the intrinsic conformational properties of the polyproline sequence from the conformational alterations instilled by fluorination. We assess the fluoroproline F relaxation properties, and we exploit the latter in elucidating binding kinetics to the SH3 (Src homology 3) domain.
AbstractList Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins' functions. However, the dynamics of proline homopolymers is hard to study by NMR due to a lack of amide protons and small chemical shift dispersion. Exploiting the spectroscopic properties of fluorinated prolines opens interesting perspectives to address these issues. Fluorinated prolines are already widely used in protein structure engineering - they introduce conformational and dynamical biases - but their use as F NMR reporters of proline conformation has not yet been explored. In this work, we look at model peptides where C -fluorinated prolines with opposite configurations of the chiral C centre have been introduced at two positions in distinct polyproline segments. By looking at the effects of swapping these (4 )-fluoroproline and (4 )-fluoroproline within the polyproline segments, we were able to separate the intrinsic conformational properties of the polyproline sequence from the conformational alterations instilled by fluorination. We assess the fluoroproline F relaxation properties, and we exploit the latter in elucidating binding kinetics to the SH3 (Src homology 3) domain.
Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins' functions. However, the dynamics of proline homopolymers is hard to study by NMR due to a lack of amide protons and small chemical shift dispersion. Exploiting the spectroscopic properties of fluorinated prolines opens interesting perspectives to address these issues. Fluorinated prolines are already widely used in protein structure engineering – they introduce conformational and dynamical biases – but their use as 19F NMR reporters of proline conformation has not yet been explored. In this work, we look at model peptides where Cγ-fluorinated prolines with opposite configurations of the chiral Cγ centre have been introduced at two positions in distinct polyproline segments. By looking at the effects of swapping these (4R)-fluoroproline and (4S)-fluoroproline within the polyproline segments, we were able to separate the intrinsic conformational properties of the polyproline sequence from the conformational alterations instilled by fluorination. We assess the fluoroproline 19F relaxation properties, and we exploit the latter in elucidating binding kinetics to the SH3 (Src homology 3) domain.
Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins' functions. However, the dynamics of proline homopolymers is hard to study by NMR due to a lack of amide protons and small chemical shift dispersion. Exploiting the spectroscopic properties of fluorinated prolines opens interesting perspectives to address these issues. Fluorinated prolines are already widely used in protein structure engineering – they introduce conformational and dynamical biases – but their use as 19 F NMR reporters of proline conformation has not yet been explored. In this work, we look at model peptides where C γ -fluorinated prolines with opposite configurations of the chiral C γ centre have been introduced at two positions in distinct polyproline segments. By looking at the effects of swapping these (4 R )-fluoroproline and (4 S )-fluoroproline within the polyproline segments, we were able to separate the intrinsic conformational properties of the polyproline sequence from the conformational alterations instilled by fluorination. We assess the fluoroproline 19 F relaxation properties, and we exploit the latter in elucidating binding kinetics to the SH3 (Src homology 3) domain.
Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins' functions. However, the dynamics of proline homopolymers is hard to study by NMR due to a lack of amide protons and small chemical shift dispersion. Exploiting the spectroscopic properties of fluorinated prolines opens interesting perspectives to address these issues. Fluorinated prolines are already widely used in protein structure engineering - they introduce conformational and dynamical biases - but their use as 19F NMR reporters of proline conformation has not yet been explored. In this work, we look at model peptides where Cγ-fluorinated prolines with opposite configurations of the chiral Cγ centre have been introduced at two positions in distinct polyproline segments. By looking at the effects of swapping these (4R)-fluoroproline and (4S)-fluoroproline within the polyproline segments, we were able to separate the intrinsic conformational properties of the polyproline sequence from the conformational alterations instilled by fluorination. We assess the fluoroproline 19F relaxation properties, and we exploit the latter in elucidating binding kinetics to the SH3 (Src homology 3) domain.Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins' functions. However, the dynamics of proline homopolymers is hard to study by NMR due to a lack of amide protons and small chemical shift dispersion. Exploiting the spectroscopic properties of fluorinated prolines opens interesting perspectives to address these issues. Fluorinated prolines are already widely used in protein structure engineering - they introduce conformational and dynamical biases - but their use as 19F NMR reporters of proline conformation has not yet been explored. In this work, we look at model peptides where Cγ-fluorinated prolines with opposite configurations of the chiral Cγ centre have been introduced at two positions in distinct polyproline segments. By looking at the effects of swapping these (4R)-fluoroproline and (4S)-fluoroproline within the polyproline segments, we were able to separate the intrinsic conformational properties of the polyproline sequence from the conformational alterations instilled by fluorination. We assess the fluoroproline 19F relaxation properties, and we exploit the latter in elucidating binding kinetics to the SH3 (Src homology 3) domain.
Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins' functions. However, the dynamics of proline homopolymers is hard to study by NMR due to a lack of amide protons and small chemical shift dispersion. Exploiting the spectroscopic properties of fluorinated prolines opens interesting perspectives to address these issues. Fluorinated prolines are already widely used in protein structure engineering – they introduce conformational and dynamical biases – but their use as 19 F NMR reporters of proline conformation has not yet been explored. In this work, we look at model peptides where C γ -fluorinated prolines with opposite configurations of the chiral C γ centre have been introduced at two positions in distinct polyproline segments. By looking at the effects of swapping these (4 R )-fluoroproline and (4 S )-fluoroproline within the polyproline segments, we were able to separate the intrinsic conformational properties of the polyproline sequence from the conformational alterations instilled by fluorination. We assess the fluoroproline 19 F relaxation properties, and we exploit the latter in elucidating binding kinetics to the SH3 (Src homology 3) domain.
Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins' functions. However, the dynamics of proline homopolymers is hard to study by NMR due to a lack of amide protons and small chemical shift dispersion. Exploiting the spectroscopic properties of fluorinated prolines opens interesting perspectives to address these issues. Fluorinated prolines are already widely used in protein structure engineering – they introduce conformational and dynamical biases – but their use as 19F NMR reporters of proline conformation has not yet been explored. In this work, we look at model peptides where Cγ-fluorinated prolines with opposite configurations of the chiral Cγ centre have been introduced at two positions in distinct polyproline segments. By looking at the effects of swapping these (4R)-fluoroproline and (4S)-fluoroproline within the polyproline segments, we were able to separate the intrinsic conformational properties of the polyproline sequence from the conformational alterations instilled by fluorination. We assess the fluoroproline 19F relaxation properties, and we exploit the latter in elucidating binding kinetics to the SH3 (Src homology 3) domain.
Author Sinnaeve, Davy
Torbeev, Vladimir
Kieffer, Bruno
Hofman, Gert-Jan
Martins, José C
Linclau, Bruno
Kuprov, Ilya
Ottoy, Emile
Ben Bouzayene, Abir
Erdmann, Eva
Author_xml – sequence: 1
  givenname: Davy
  surname: Sinnaeve
  fullname: Sinnaeve, Davy
  organization: CNRS, ERL9002 - Integrative Structural Biology, 59000 Lille, France
– sequence: 2
  givenname: Abir
  surname: Ben Bouzayene
  fullname: Ben Bouzayene, Abir
  organization: Department of Integrative Structural Biology, IGBMC, University of Strasbourg, Inserm U1258, CNRS UMR 7104, 1 rue Laurent Fries, 67404 Illkirch, France
– sequence: 3
  givenname: Emile
  surname: Ottoy
  fullname: Ottoy, Emile
  organization: Department of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, S4, Krijgslaan 281, 9000 Ghent, Belgium
– sequence: 4
  givenname: Gert-Jan
  surname: Hofman
  fullname: Hofman, Gert-Jan
  organization: School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
– sequence: 5
  givenname: Eva
  surname: Erdmann
  fullname: Erdmann, Eva
  organization: Department of Integrative Structural Biology, IGBMC, University of Strasbourg, Inserm U1258, CNRS UMR 7104, 1 rue Laurent Fries, 67404 Illkirch, France
– sequence: 6
  givenname: Bruno
  surname: Linclau
  fullname: Linclau, Bruno
  organization: School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
– sequence: 7
  givenname: Ilya
  surname: Kuprov
  fullname: Kuprov, Ilya
  organization: School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
– sequence: 8
  givenname: José C
  surname: Martins
  fullname: Martins, José C
  organization: Department of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, S4, Krijgslaan 281, 9000 Ghent, Belgium
– sequence: 9
  givenname: Vladimir
  surname: Torbeev
  fullname: Torbeev, Vladimir
  organization: Institut de Science et d'Ingénierie Supramoléculaires (ISIS), International Center for Frontier Research in Chemistry (icFRC), University of Strasbourg, CNRS UMR 7006, 67000 Strasbourg, France
– sequence: 10
  givenname: Bruno
  surname: Kieffer
  fullname: Kieffer, Bruno
  organization: Department of Integrative Structural Biology, IGBMC, University of Strasbourg, Inserm U1258, CNRS UMR 7104, 1 rue Laurent Fries, 67404 Illkirch, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37905223$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03430871$$DView record in HAL
BookMark eNpdks1r3DAQxUVJSdIkx16LoZf0oHZGH5Z1KktomsC2hZKchSzLu15sayutA_nvK3e3IclJw9NvnqTRe0eOxjB6Qt4jfJaoxZchUkaVlpQBwzfklJVaUwAsj57VJ-QipQ0AMIkMSjgmJ1xpkIzxU7K47qcQu9EXP3_8LtJuah6L0BbbGPos0ti5dZH8n8mPzqdiSt24Ktq5JRyQdE7etrZP_uKwnpH76293Vzd0-ev77dViSZ3giNTW3DluS6YltHUpmbe8bWqBglslQTPPhAZhPWItnWygcQ3mWrRSlKJR_Izc7n2bYDdmG7vBxkcTbGf-CSGujI27zvXeVJhbRasb57VgSlQotUNmUVnROgXZ6-veazvVg8_YuIu2f2H6cmfs1mYVHgyC5Fpxnh0-7R3Wr_puFksza8AFh0rhA2b28nBaDHmSaWeGLjnf93b0YUqGVZUoVSmUyOjHV-gmTHHMczVM5snB_O2ZonvKxZBS9O3TDRDMTJghGmZyMMwcjMx_eP7cJ_p_DPhfcUezMQ
CitedBy_id crossref_primary_10_3389_fchem_2022_886382
crossref_primary_10_5194_mr_4_111_2023
crossref_primary_10_1021_acs_chemrev_4c00007
crossref_primary_10_1021_acs_biochem_2c00717
Cites_doi 10.1038/33573
10.1016/j.jmr.2010.12.004
10.1111/j.1399-3011.1994.tb00169.x
10.1016/j.jmr.2007.09.002
10.1017/S0033583514000092
10.1051/jphysrad:01937008010039700
10.1002/biot.201400587
10.1002/psc.2836
10.1016/j.jmr.2010.11.008
10.1039/c2cc35347d
10.1016/S0076-6879(95)61025-1
10.1021/ja9623119
10.1147/rd.11.0019
10.1038/nprot.2016.079
10.1063/1.4928978
10.1002/mrc.4500
10.1021/ja065173o
10.1006/jmra.1995.1063
10.1021/acs.jmedchem.5b00258
10.1039/C8CC01493K
10.1021/acs.biochem.8b00787
10.1021/jp073411b
10.1073/pnas.0709567104
10.1016/0006-3002(60)90373-5
10.1021/j100785a001
10.1126/science.1215802
10.1021/ja507405j
10.1021/ct600110u
10.4161/idp.24360
10.1002/anie.201606544
10.1021/ja00281a002
10.1039/C1CS15241F
10.1021/jacs.0c02263
10.1021/ja00798a046
10.1073/pnas.1310414110
10.1038/s41592-019-0334-x
10.1096/fj.10-160572
10.1146/annurev.biochem.77.032207.120833
10.1038/s41573-020-00135-8
10.1017/S0033583517000051
10.3762/bjoc.17.40
10.1002/ijch.201600038
10.1016/j.ejmech.2019.111826
10.1007/s10858-020-00331-z
10.1021/bi00003a021
10.1007/s10858-012-9636-3
10.1007/s10858-019-00268-y
10.1021/acs.joc.8b02920
10.1007/978-1-4939-2447-9_22
10.1063/1.1520138
10.1021/ja0166904
10.1016/j.pnmrs.2011.06.003
10.1039/B711844A
10.1021/ja510109p
10.1016/j.bpj.2020.03.031
10.1021/jp810292n
10.1016/j.febslet.2012.04.042
10.1007/s10858-020-00348-4
10.1039/b801115j
10.1016/j.jmb.2015.11.023
10.1021/jo300044q
10.1016/j.jmr.2014.04.002
10.1016/bs.mie.2015.05.014
10.1016/j.jmr.2007.09.014
10.1023/A:1020997118364
10.1016/S0021-9258(19)44350-0
10.3762/bjoc.17.28
10.1002/prot.20449
10.1126/science.aag2355
10.1007/s00726-012-1383-y
10.1021/acs.accounts.8b00192
10.1007/7081_2015_196
10.1021/acs.accounts.7b00226
10.1007/s00214-007-0310-x
10.1021/ja00477a018
10.1002/psc.750
10.1016/j.str.2020.04.008
10.1110/ps.051779806
10.1002/cbic.201402654
10.1016/j.bpj.2016.04.022
10.1038/s41598-020-59446-w
10.1021/acs.macromol.7b01285
ContentType Journal Article
Copyright Copyright: © 2021 Davy Sinnaeve et al.
2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright: © 2021 Davy Sinnaeve et al. 2021
Copyright_xml – notice: Copyright: © 2021 Davy Sinnaeve et al.
– notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
– notice: Copyright: © 2021 Davy Sinnaeve et al. 2021
DBID NPM
AAYXX
CITATION
8FE
8FG
8FH
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
1XC
VOOES
5PM
DOA
DOI 10.5194/mr-2-795-2021
DatabaseName PubMed
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Biological Science Collection
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
ProQuest Central Student
Technology Collection
ProQuest Biological Science Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest One Academic
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef

MEDLINE - Academic

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2699-0016
EndPage 813
ExternalDocumentID oai_doaj_org_article_81d114f9dce942748159c12a17a4fc70
oai_HAL_hal_03430871v1
10_5194_mr_2_795_2021
37905223
Genre Journal Article
GrantInformation_xml – fundername: Agence Nationale de la Recherche (grant nos. ANR-20-CE11-0025
– fundername: ANR-18-CE44-0009-01
– fundername: and ANR-10-INSB-05-01)
– fundername: and Métropole Européenne de Lille (MEL) (“PUSH-UP” grant)
– fundername: Engineering and Physical Sciences Research Council (EPRSC) (grant no. EPSRC-DTG EP/M50662X/1)
– fundername: Research Foundation – Flanders (FWO) (grant no. 3G011015)
GroupedDBID AAFWJ
ABDBF
AFKRA
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
GROUPED_DOAJ
H13
HCIFZ
IAO
ISR
ITC
M7P
M~E
NPM
OK1
PGMZT
PIMPY
RPM
AAYXX
CITATION
8FE
8FG
8FH
ABUWG
AZQEC
DWQXO
GNUQQ
LK8
P62
PQEST
PQQKQ
PQUKI
PRINS
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c4311-ab3cc3a62950fb652ea3fdb4143a75092e24904ae11b5c5d0dcd111b4f5464d73
IEDL.DBID RPM
ISSN 2699-0016
IngestDate Tue Oct 22 15:14:37 EDT 2024
Tue Sep 17 21:29:32 EDT 2024
Thu Oct 31 07:28:47 EDT 2024
Sat Oct 26 02:11:38 EDT 2024
Thu Oct 10 18:22:33 EDT 2024
Thu Nov 21 21:31:33 EST 2024
Sat Nov 02 12:30:11 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Fluorine NMR
Peptides
NMR spectroscopy
Proline / analogs & derivatives
Language English
License Copyright: © 2021 Davy Sinnaeve et al.
Attribution: http://creativecommons.org/licenses/by
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4311-ab3cc3a62950fb652ea3fdb4143a75092e24904ae11b5c5d0dcd111b4f5464d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2556-5895
0000-0001-8762-0170
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539733/
PMID 37905223
PQID 2595005194
PQPubID 4734905
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_81d114f9dce942748159c12a17a4fc70
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10539733
hal_primary_oai_HAL_hal_03430871v1
proquest_miscellaneous_2884676474
proquest_journals_2595005194
crossref_primary_10_5194_mr_2_795_2021
pubmed_primary_37905223
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Göttingen
PublicationTitle Magnetic Resonance : (Göttingen)
PublicationTitleAlternate Magn Reson (Gott)
PublicationYear 2021
Publisher Copernicus GmbH
Groupement Ampere - Copernicus Publications
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Groupement Ampere - Copernicus Publications
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref86
ref41
ref85
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref35
  doi: 10.1038/33573
– ident: ref45
  doi: 10.1016/j.jmr.2010.12.004
– ident: ref60
  doi: 10.1111/j.1399-3011.1994.tb00169.x
– ident: ref61
  doi: 10.1016/j.jmr.2007.09.002
– ident: ref25
  doi: 10.1017/S0033583514000092
– ident: ref49
  doi: 10.1051/jphysrad:01937008010039700
– ident: ref56
  doi: 10.1002/biot.201400587
– ident: ref3
  doi: 10.1002/psc.2836
– ident: ref34
  doi: 10.1016/j.jmr.2010.11.008
– ident: ref13
  doi: 10.1039/c2cc35347d
– ident: ref63
  doi: 10.1016/S0076-6879(95)61025-1
– ident: ref19
  doi: 10.1021/ja9623119
– ident: ref64
  doi: 10.1147/rd.11.0019
– ident: ref27
  doi: 10.1038/nprot.2016.079
– ident: ref31
  doi: 10.1063/1.4928978
– ident: ref14
  doi: 10.1002/mrc.4500
– ident: ref22
  doi: 10.1021/ja065173o
– ident: ref23
  doi: 10.1006/jmra.1995.1063
– ident: ref29
  doi: 10.1021/acs.jmedchem.5b00258
– ident: ref32
  doi: 10.1039/C8CC01493K
– ident: ref80
  doi: 10.1021/acs.biochem.8b00787
– ident: ref38
  doi: 10.1021/jp073411b
– ident: ref5
  doi: 10.1073/pnas.0709567104
– ident: ref84
  doi: 10.1016/0006-3002(60)90373-5
– ident: ref11
– ident: ref8
  doi: 10.1021/j100785a001
– ident: ref48
  doi: 10.1126/science.1215802
– ident: ref83
  doi: 10.1021/ja507405j
– ident: ref16
  doi: 10.1021/ct600110u
– ident: ref74
  doi: 10.4161/idp.24360
– ident: ref37
  doi: 10.1002/anie.201606544
– ident: ref68
  doi: 10.1021/ja00281a002
– ident: ref66
  doi: 10.1039/C1CS15241F
– ident: ref78
  doi: 10.1021/jacs.0c02263
– ident: ref28
  doi: 10.1021/ja00798a046
– ident: ref26
– ident: ref77
  doi: 10.1073/pnas.1310414110
– ident: ref6
  doi: 10.1038/s41592-019-0334-x
– ident: ref47
  doi: 10.1096/fj.10-160572
– ident: ref72
  doi: 10.1146/annurev.biochem.77.032207.120833
– ident: ref54
  doi: 10.1038/s41573-020-00135-8
– ident: ref15
  doi: 10.1017/S0033583517000051
– ident: ref44
  doi: 10.3762/bjoc.17.40
– ident: ref75
  doi: 10.1002/ijch.201600038
– ident: ref39
– ident: ref53
  doi: 10.1016/j.ejmech.2019.111826
– ident: ref7
  doi: 10.1007/s10858-020-00331-z
– ident: ref24
  doi: 10.1021/bi00003a021
– ident: ref43
  doi: 10.1007/s10858-012-9636-3
– ident: ref51
  doi: 10.1007/s10858-019-00268-y
– ident: ref33
  doi: 10.1021/acs.joc.8b02920
– ident: ref42
  doi: 10.1007/978-1-4939-2447-9_22
– ident: ref62
  doi: 10.1063/1.1520138
– ident: ref17
  doi: 10.1021/ja0166904
– ident: ref41
  doi: 10.1016/j.pnmrs.2011.06.003
– ident: ref57
  doi: 10.1039/B711844A
– ident: ref76
  doi: 10.1021/ja510109p
– ident: ref73
  doi: 10.1016/j.bpj.2020.03.031
– ident: ref52
  doi: 10.1021/jp810292n
– ident: ref67
  doi: 10.1016/j.febslet.2012.04.042
– ident: ref59
  doi: 10.1007/s10858-020-00348-4
– ident: ref70
– ident: ref12
  doi: 10.1039/b801115j
– ident: ref1
  doi: 10.1016/j.jmb.2015.11.023
– ident: ref58
  doi: 10.1021/jo300044q
– ident: ref20
  doi: 10.1016/j.jmr.2014.04.002
– ident: ref69
  doi: 10.1016/bs.mie.2015.05.014
– ident: ref46
  doi: 10.1016/j.jmr.2007.09.014
– ident: ref71
  doi: 10.1023/A:1020997118364
– ident: ref10
  doi: 10.1016/S0021-9258(19)44350-0
– ident: ref30
  doi: 10.3762/bjoc.17.28
– ident: ref81
  doi: 10.1002/prot.20449
– ident: ref40
  doi: 10.1126/science.aag2355
– ident: ref9
  doi: 10.1007/s00726-012-1383-y
– ident: ref2
  doi: 10.1021/acs.accounts.8b00192
– ident: ref55
  doi: 10.1007/7081_2015_196
– ident: ref4
  doi: 10.1021/acs.accounts.7b00226
– ident: ref86
  doi: 10.1007/s00214-007-0310-x
– ident: ref50
  doi: 10.1021/ja00477a018
– ident: ref65
  doi: 10.1002/psc.750
– ident: ref79
  doi: 10.1016/j.str.2020.04.008
– ident: ref36
  doi: 10.1110/ps.051779806
– ident: ref18
  doi: 10.1002/cbic.201402654
– ident: ref21
  doi: 10.1016/j.bpj.2016.04.022
– ident: ref82
  doi: 10.1038/s41598-020-59446-w
– ident: ref85
  doi: 10.1021/acs.macromol.7b01285
SSID ssj0002512060
Score 2.2050674
Snippet Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins'...
Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins'...
SourceID doaj
pubmedcentral
hal
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 795
SubjectTerms Amino acids
Analytical chemistry
Biochemistry, Molecular Biology
Chemical equilibrium
Chemical Sciences
Fluorination
Fluorine
Homology
Life Sciences
NMR
Nuclear magnetic resonance
Peptides
Polyproline
Population
Proline
Protein engineering
Protein structure
Proteins
Protons
Segments
Signal transduction
Structural Biology
Transfer RNA
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagEhIXRMsrtFQBIW5R_Y5z3EJXPUAPPCRulp8sUputdll-f2ecNGrgwIWr7cTWN7bnG3v0mZC3Ae_ejOKNa4VrpKZt42FaNNzHzI1x1IVydPGlvfhuPpyhTM701BfmhA3ywANwJ8CngLLnLobUSQihDPjfwLhjrZM5tEO0TvWdYAr3YPTaVNNBVBNIijy52jRAJTsF04KzmRMqWv3gWlaYCfk3zfwzW_KO-1k-Jo9G3lgvhvHuk3upPyAPSv5m2D4hi-XlDlPpUn3x6XNdNGPrda6vy5s8qYHNblVPWdM1Jrv_qDN-sh6bbJ-Sb8uzr-_Pm_F1hCaA02eN8yIE4TTvFM1eK56cyNFLIEAOaQBPEFlR6RJjXgUVaQyAJPMyK6llbMUzstev-_SC1FpqiMvAWIxGSb0yrQmyY4FFH1TItCLvbuGy14MIhoXgAXG1VxvLLeBqEdeKnCKYUyPUri4FYFE7WtT-y6IVeQOmmP3jfPHRYhkVEhUM2W_o6ejWUnZcdVsLoZwqnFRW5PVUDesFL0Fcn9Y7aGOQcWnZQpvng2GnrgSqlQFfqoiZmXw2lnlN_3NVNLmBpgKzE-Ll_0DgkDxENIeTniOy92uzS6_I_W3cHZdpfgOn2v7a
  priority: 102
  providerName: Directory of Open Access Journals
Title Fluorine NMR study of proline-rich sequences using fluoroprolines
URI https://www.ncbi.nlm.nih.gov/pubmed/37905223
https://www.proquest.com/docview/2595005194
https://www.proquest.com/docview/2884676474
https://hal.science/hal-03430871
https://pubmed.ncbi.nlm.nih.gov/PMC10539733
https://doaj.org/article/81d114f9dce942748159c12a17a4fc70
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbYSkhcEOW5UKqAEDd3_U5y3JaueqAV4iFxs2zH6VbqJqvdbn8_M06yauDGNXHiaGbs-cb-8pmQTwH33gotqMulo8qwnHoICyp8VYuicMyFtHTxI7_6XXw5R5kcM_wLk0j7wd-cNLerk-ZmmbiV61WYDTyx2bfLM8AEkEalnE3IBMDhgxod51_M2MywTlATAIqarTYUYGSpISQEHyWgpNMPaWWJLMh_IebfTMkHqWfxjDztMWM2777tkDyKzXPyOHE3w_YFmS9ud0iji9nV5fcs6cVmbZ2t03k8kcJEt8z2jOkMie7XWY2PtH2T7Uvya3H-8-yC9icj0AAJn1PnZQjSGVFqVnujRXSyrrwC8OMQAogIVRVTLnLuddAVq0IFk5pXtVZGVbl8RQ6atolvSGaUgZoMHMVZpZjXRV4EVfLAKx90qNmUfB7MZdedAIaFwgHtalcbKyzY1aJdp-QUjblvhLrV6UK7uba99yygYyjA6hIMWiooiAtAU4ELx3On6pBDbx_BFaN3XMy_WrzGpEL1Qn4PPR0NnrL9iNtaKON0wqNqSj7sb8NYwQ0Q18R2B20KRFtG5dDmdefYfVcSlcoAK01JMXL56FvGdyA8kx73EI5v___Rd-QJ2rBb2zkiB3ebXXxPJttqd5xWCY5TiP8BXrn_nw
link.rule.ids 230,315,729,782,786,866,887,2106,4028,27932,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbYEIKXjd8UBgSEeMtqO3biPHY_qiLaCsGQeLNsx1knrUnVrvz93DlJtbC3vcZOHPnufN_ZX74Q8sXh2ZuSPDZZYmKR0iy24BYxt0XJlTLUuLB18Sub_1Fn5yiTk3bfwgTSvrNXx9X18ri6WgRu5Wrphh1PbPhjdgqYANJokgz3yEMIWEpvVem4AmPOpiltJDUBoojhch0DkMwlOAVnvRQUlPohsSyQB3kXZP7PlbyVfMaH933tp-SghZvRqGl_Rh746jl5FGifbvOCjMbXW2Tg-Wg--xkFqdmoLqNV-JWPj2GNXEQ7snWEHPnLqMRb6rbL5iX5PT6_OJ3E7U8VYgdYgcXGJs4lJuW5pKVNJfcmKQsrADcZRA_cQ0FGhfGMWelkQQtXwHpoRSlFKooseUX2q7ryb0iUihTKObAxo4WgVqpMOZEzxwrrpCvpgHzt5lmvGu0MDTUHGkQv15prMIhGgwzICVph1wklr8OFen2p2xnUAKyhditzsEQuoJZWAMQc44ZlRpQug9E-gw17z5iMphqv0USg8CH7CyMddSbWbbBuNFSAMkBZMSCfds0QZnh2Yipfb6GPQqCWigz6vG48YjdUgiJnALMGRPV8pfcu_RZwkSDl3bnE2_vf-pE8nlzMpnr6bf79HXmC89lsER2R_Zv11r8ne5ti-yFEyD-6rRRx
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoEYhLy5uFAgEhbmlsx86jt-1jVUS7qnhI3Cw_4m6lbrLa7fL7mXGSVQO3cnUmceQZe75xvnwm5JPFb2-F5LHOUx2LjOaxgbCIuXGeF4Wm2oati-_59FdxfIIyOQf9vzCBtG_N1X59Pd-vr2aBW7mY26TniSUX50eACSCNpmmycD7ZIvdh0lJ-q1LHVRjzNs1oK6sJMEUk82UMYLKUEBicDdJQUOuH5DJDLuS_QPNvvuStBDTZ_Z9Xf0x2OtgZjVubJ-ReVT8lDwL9066ekfHkeo1MvCqann-LguRs1PhoEY70qWJYK2fRhnQdIVf-MvJ4S9OZrJ6Tn5OTH0encXe4QmwBM7BYm9TaVGe8lNSbTPJKp94ZAfhJI4rgFRRmVOiKMSOtdNRZB-uiEV6KTLg8fUG266auXpEoExmUdeBrRp2gRhZ5YUXJLHPGSuvpiHzux1otWg0NBbUHOkXNl4orcIpCp4zIIXpiY4TS16GhWV6qbhQVAGyo4XwJ3igF1NQFADLLuGa5Ft7m0NtH8OPgGafjM4VtNBUogMh-Q097vZtVN2lXCipBGSCtGJEPm8sw3fAbiq6rZg02BQK2TORg87KNik1XKYqdAdwakWIQL4N3GV6BMAmS3n1YvL77re_Jw4vjiTr7Mv36hjzC4Wx3ivbI9s1yXb0lWyu3fhcmyR92Exbx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluorine+NMR+study+of+proline-rich+sequences+using+fluoroprolines&rft.jtitle=Magnetic+Resonance+%3A+%28G%C3%B6ttingen%29&rft.au=Sinnaeve%2C+Davy&rft.au=Ben+Bouzayene%2C+Abir&rft.au=Ottoy%2C+Emile&rft.au=Hofman%2C+Gert-Jan&rft.date=2021&rft.issn=2699-0016&rft.eissn=2699-0016&rft.volume=2&rft.issue=2&rft.spage=795&rft_id=info:doi/10.5194%2Fmr-2-795-2021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2699-0016&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2699-0016&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2699-0016&client=summon