An improved multimodal approach for non-uniform acoustic waveguides
This paper explores from the point of view of numerical analysis a method for solving the acoustic time-harmonic wave equation in a locally non-uniform 2D waveguide. The multimodal method is based on a spectral description of the acoustic field in each transverse section of the guide, using Fourier-...
Saved in:
Published in: | IMA journal of applied mathematics Vol. 73; no. 4; pp. 668 - 690 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Oxford University Press
01-08-2008
Oxford Publishing Limited (England) Oxford University Press (OUP) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This paper explores from the point of view of numerical analysis a method for solving the acoustic time-harmonic wave equation in a locally non-uniform 2D waveguide. The multimodal method is based on a spectral description of the acoustic field in each transverse section of the guide, using Fourier-like series. In the case of sound-hard boundaries, the weak point of the method lies in the poor convergence of such series due to a poor approximation of the field near the boundaries. A remedy was proposed by Athanassoulis & Belibassakis (1999, J. Fluid Mech., 389, 275–301), where the convergence is improved thanks to the use of enhanced series. The present paper proposes a theoretical analysis of their idea and studies further improvements. For a general model which includes different kinds of non-uniformity (varying cross section, bend and inhomogeneous medium), a hybrid spectral/variational formulation is introduced. Error estimates are provided for a semi-discretized problem which concerns the effect of spectral truncation. These estimates are confirmed by numerical results. |
---|---|
AbstractList | This paper explores from the point of view of numerical analysis a method for solving the acoustic time-harmonic wave equation in a locally non-uniform 2D waveguide. The multimodal method is based on a spectral description of the acoustic field in each transverse section of the guide, using Fourier-like series. In the case of sound-hard boundaries, the weak point of the method lies in the poor convergence of such series due to a poor approximation of the field near the boundaries. A remedy was proposed by Athanassoulis & Belibassakis (1999, J. Fluid Mech., 389, 275-301), where the convergence is improved thanks to the use of enhanced series. The present paper proposes a theoretical analysis of their idea and studies further improvements. For a general model which includes different kinds of non-uniformity (varying cross section, bend and inhomogeneous medium), a hybrid spectral/variational formulation is introduced. Error estimates are provided for a semi-discretized problem which concerns the effect of spectral truncation. These estimates are confirmed by numerical results. This paper explores from the point of view of numerical analysis a method for solving the acoustic time-harmonic wave equation in a locally non-uniform 2D waveguide. The multimodal method is based on a spectral description of the acoustic field in each transverse section of the guide, using Fourier-like series. In the case of sound-hard boundaries, the weak point of the method lies in the poor convergence of such series due to a poor approximation of the field near the boundaries. A remedy was proposed by Athanassoulis & Belibassakis (1999, J. Fluid Mech., 389, 275-301), where the convergence is improved thanks to the use of enhanced series. The present paper proposes a theoretical analysis of their idea and studies further improvements. For a general model which includes different kinds of non-uniformity (varying cross section, bend and inhomogeneous medium), a hybrid spectral/variational formulation is introduced. Error estimates are provided for a semi-discretized problem which concerns the effect of spectral truncation. These estimates are confirmed by numerical results. © The Author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. |
Author | Lunéville, Eric Hazard, Christophe |
Author_xml | – sequence: 1 givenname: Christophe surname: Hazard fullname: Hazard, Christophe email: christophe.hazard@ensta.fr organization: E-mail: christophe.hazard@ensta.fr – sequence: 2 givenname: Eric surname: Lunéville fullname: Lunéville, Eric email: eric.luneville@ensta.fr organization: E-mail: eric.luneville@ensta.fr |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20573554$$DView record in Pascal Francis https://ensta-paris.hal.science/hal-00873082$$DView record in HAL |
BookMark | eNqFkM1P3DAQxS0EEgv0yD2q1IoeAuOP2MlxuwK21UqoXxLiYk0dp2uaxFs72dL_vkZZ7YELF3s8-vnNvHdCDnvfW0LOKVxSqPiV67DD4Wr91APIAzKjQoqcSy4OyQyYYrmoJByTkxgfAYAWCmZkMe8z122C39o668Z2cJ2vsc1wk3po1lnjQ5bm5GPvUtllaPwYB2eyv7i1v0ZX23hGjhpso32zu0_Jj5vr74tlvrq7_bSYr3IjOAw5AzAN4yWUnKUKlQKVDsqKOr1s1ShZ17K2VSVqVGWqLBeNaipeSM5_VvyUfJh019jqTUh2wz_t0enlfKWfewCl4lCyLU3s-4lNNv6MNg66c9HYtsXeJgOaC1byUsgEvn0BPvox9MmHZpQBpVKqBOUTZIKPMdhmP56Cfs5eT9nrKfvEv9uJYjTYNgF74-L-E4NC8aIQibuYOD9uXpXcreDiYJ_2MIbfOi2oCr28f9D3t18_fvl8U-lv_D_dY6Qn |
CODEN | IJAMDM |
CitedBy_id | crossref_primary_10_1121_1_4913506 crossref_primary_10_1098_rspa_2013_0448 crossref_primary_10_1177_10812865211018746 crossref_primary_10_1098_rspa_2017_0017 crossref_primary_10_1121_10_0003336 crossref_primary_10_1007_s10665_018_09983_1 crossref_primary_10_1177_10775463221118707 crossref_primary_10_1016_j_wavemoti_2014_04_002 crossref_primary_10_1007_s10665_016_9885_3 crossref_primary_10_1016_j_rinp_2021_104408 crossref_primary_10_1016_j_jfluidstructs_2021_103236 crossref_primary_10_1016_j_wavemoti_2014_11_007 crossref_primary_10_1016_j_euromechflu_2018_04_015 crossref_primary_10_1098_rspa_2013_0186 crossref_primary_10_1098_rspa_2014_0008 crossref_primary_10_1137_16M1094154 crossref_primary_10_1364_JOSAA_32_000979 crossref_primary_10_1016_j_phpro_2010_01_065 |
ContentType | Journal Article |
Copyright | The Author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2008 2008 INIST-CNRS The Author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2008 – notice: 2008 INIST-CNRS – notice: The Author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL IQODW AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 1XC |
DOI | 10.1093/imamat/hxn006 |
DatabaseName | Istex Pascal-Francis CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Physics |
EISSN | 1464-3634 |
EndPage | 690 |
ExternalDocumentID | oai_HAL_hal_00873082v1 1527194721 10_1093_imamat_hxn006 20573554 10.1093/imamat/hxn006 ark_67375_HXZ_XGRBQJF9_S |
Genre | Feature |
GroupedDBID | -E4 -~X .2P .I3 0R~ 18M 1TH 29I 4.4 482 48X 5GY 5VS 5WA 6TJ 70D AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP ABDBF ABDTM ABEJV ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACUFI ACUTJ ACYTK ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFXEN AGINJ AGKEF AGQXC AGSYK AHXPO AIAGR AIJHB AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ASPBG ATGXG AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BSCLL BTQHN CAG CDBKE COF CS3 CZ4 DAKXR DILTD DU5 D~K EBS EE~ EJD ESX F9B FEDTE FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HVGLF HW0 HZ~ I-F IOX J21 JAVBF KAQDR KBUDW KOP KSI KSN M-Z M43 M49 N9A NGC NMDNZ NOMLY NU- NVLIB O0~ O9- OCL ODMLO OJQWA OJZSN OWPYF P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y R44 RD5 RIG ROL ROX ROZ RUSNO RW1 RXO TJP TN5 TUS UPT WH7 X7H XOL YAYTL YKOAZ YXANX ZCG ZKX ~91 6.Y 8WZ A6W AASNB AAWDT ABEFU ABSAR ABSMQ ABTAH ACFRR ACMRT ACPQN ACZBC AEKPW AFFNX AFSHK AFYAG AGKRT AGMDO AI. ANFBD APJGH AQDSO ASAOO ATDFG ATTQO CXTWN DFGAJ ELUNK G8K KC5 MBTAY O~Y QBD RNI RZF RZO T9H TCN UQL VH1 ZY4 08R AABJS AABMN AAESY AAIYJ AANRK AAPBV ABPTK ADEIU ADORX ADQLU AIKOY ALXQX ANAKG ARQIP AUCZF AZQFJ BYORX CASEJ DPORF DPPUQ IQODW XFK AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 1XC AEHUL |
ID | FETCH-LOGICAL-c430t-200cf23808320cfa7707a77125dcfae9f76dd6de994da786dee34f7f935633b93 |
ISSN | 0272-4960 |
IngestDate | Tue Oct 15 15:31:45 EDT 2024 Fri Oct 25 04:31:13 EDT 2024 Thu Oct 10 17:34:13 EDT 2024 Fri Nov 22 00:59:32 EST 2024 Sun Oct 22 16:08:27 EDT 2023 Wed Aug 28 03:24:29 EDT 2024 Wed Oct 30 09:36:49 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Fourier series multimodal decomposition cross-section method waveguide Wave equation Approximation Error estimation Inhomogeneous medium Acoustic wave Fourier analysis Acoustics Numerical method Convergence Truncation Numerical analysis Applied mathematics |
Language | English |
License | CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c430t-200cf23808320cfa7707a77125dcfae9f76dd6de994da786dee34f7f935633b93 |
Notes | ark:/67375/HXZ-XGRBQJF9-S istex:487A2FE52D22B49B1C4121017A83DBB3921FA447 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 212011667 |
PQPubID | 30662 |
PageCount | 23 |
ParticipantIDs | hal_primary_oai_HAL_hal_00873082v1 proquest_miscellaneous_34283846 proquest_journals_212011667 crossref_primary_10_1093_imamat_hxn006 pascalfrancis_primary_20573554 oup_primary_10_1093_imamat_hxn006 istex_primary_ark_67375_HXZ_XGRBQJF9_S |
PublicationCentury | 2000 |
PublicationDate | 2008-08-01 |
PublicationDateYYYYMMDD | 2008-08-01 |
PublicationDate_xml | – month: 08 year: 2008 text: 2008-08-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | IMA journal of applied mathematics |
PublicationYear | 2008 |
Publisher | Oxford University Press Oxford Publishing Limited (England) Oxford University Press (OUP) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) – name: Oxford University Press (OUP) |
SSID | ssj0001570 |
Score | 1.909034 |
Snippet | This paper explores from the point of view of numerical analysis a method for solving the acoustic time-harmonic wave equation in a locally non-uniform 2D... |
SourceID | hal proquest crossref pascalfrancis oup istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 668 |
SubjectTerms | Acoustics cross-section method Engineering Sciences Exact sciences and technology Fourier analysis Fourier series Mathematical analysis Mathematics Mechanics multimodal decomposition Numerical Analysis Partial differential equations Physics Sciences and techniques of general use waveguide |
Title | An improved multimodal approach for non-uniform acoustic waveguides |
URI | https://api.istex.fr/ark:/67375/HXZ-XGRBQJF9-S/fulltext.pdf https://www.proquest.com/docview/212011667 https://search.proquest.com/docview/34283846 https://ensta-paris.hal.science/hal-00873082 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELba9QWEED-1MBgBIV6msDR24uQxGx1lYkiwgSpeLCdx2ISaTW1TJv567mLHaZmA8cCL5bqWk_jO58_2-TtCXpQwqwNOUF4u48JjTOVeFsXMGxaZiuMyY7yJGTk-5u8n8esRG_V6dbvqt2X_VdJQBrLGm7P_IG3bKBRAHmQOKUgd0mvJPa3w5uPsfAlIsvEWnJ4XyAdguMMbt0JY8nt1hXeypjtgEZuAXjvf5VJ9rc8K41RoAOvbo3SVXUIa0Dq1bK_zzob9kNpPviMssO4-daVP5Jd49bC1v2s7DrH1d1v86SbjiuEKeOCxRMcJeKW0YWUR82hkNi6N5dVBTIyGsRUzGulQO2ZGjnRA0SvGXhNhnU0lfC5kTi8r3_-FVtusc35Tt08GAdgnMI-DdG90-NlO4cOQ68058yGGnBUa2dVN7OoG1sBM_xRdaQc4Oi_b65K3LuQcxlqpg6Rcme8bEHNyh9w2qw831Wpzl_RUdY_cPOqEeZ_sp5XbKpDbKZDbKpALYnFXFMhtFcjtFOgB-XQwOtkfeybShpcz6i9wAOUlgDfA4wHkJOc-hwTAbwG_VFLyCCOPqSRhheQx5BRlJS8TGkaUZgl9SDbgyWqTuHyY55wrxkOlWKGo9KliYR4j72CSBcwhL9suExeaUEVoRwgqdN8K3bcOeQ4dausgDfo4fSewDHkUkWZpOYTWmv621eTsG7oq8lCMJ1_E5M3HvQ-HB4k4dsgzEMjfnri9Ji5bO0DWUMDdDtlq5SfM0JsLwH54mBlxhzy1_4KNxoM3WSkQgaDIaghA_9E1XmKL3OjG3GOysZjV6gnpz4t622jpT2_ysxQ |
link.rule.ids | 230,315,782,786,887,27933,27934 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+multimodal+approach+for+non-uniform+acoustic+waveguides&rft.jtitle=IMA+journal+of+applied+mathematics&rft.au=Hazard%2C+Christophe&rft.au=Lun%C3%A9ville%2C+Eric&rft.date=2008-08-01&rft.pub=Oxford+University+Press&rft.issn=0272-4960&rft.eissn=1464-3634&rft.volume=73&rft.issue=4&rft.spage=668&rft.epage=690&rft_id=info:doi/10.1093%2Fimamat%2Fhxn006&rft.externalDocID=10.1093%2Fimamat%2Fhxn006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4960&client=summon |