An improved multimodal approach for non-uniform acoustic waveguides

This paper explores from the point of view of numerical analysis a method for solving the acoustic time-harmonic wave equation in a locally non-uniform 2D waveguide. The multimodal method is based on a spectral description of the acoustic field in each transverse section of the guide, using Fourier-...

Full description

Saved in:
Bibliographic Details
Published in:IMA journal of applied mathematics Vol. 73; no. 4; pp. 668 - 690
Main Authors: Hazard, Christophe, Lunéville, Eric
Format: Journal Article
Language:English
Published: Oxford Oxford University Press 01-08-2008
Oxford Publishing Limited (England)
Oxford University Press (OUP)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper explores from the point of view of numerical analysis a method for solving the acoustic time-harmonic wave equation in a locally non-uniform 2D waveguide. The multimodal method is based on a spectral description of the acoustic field in each transverse section of the guide, using Fourier-like series. In the case of sound-hard boundaries, the weak point of the method lies in the poor convergence of such series due to a poor approximation of the field near the boundaries. A remedy was proposed by Athanassoulis & Belibassakis (1999, J. Fluid Mech., 389, 275–301), where the convergence is improved thanks to the use of enhanced series. The present paper proposes a theoretical analysis of their idea and studies further improvements. For a general model which includes different kinds of non-uniformity (varying cross section, bend and inhomogeneous medium), a hybrid spectral/variational formulation is introduced. Error estimates are provided for a semi-discretized problem which concerns the effect of spectral truncation. These estimates are confirmed by numerical results.
AbstractList This paper explores from the point of view of numerical analysis a method for solving the acoustic time-harmonic wave equation in a locally non-uniform 2D waveguide. The multimodal method is based on a spectral description of the acoustic field in each transverse section of the guide, using Fourier-like series. In the case of sound-hard boundaries, the weak point of the method lies in the poor convergence of such series due to a poor approximation of the field near the boundaries. A remedy was proposed by Athanassoulis & Belibassakis (1999, J. Fluid Mech., 389, 275-301), where the convergence is improved thanks to the use of enhanced series. The present paper proposes a theoretical analysis of their idea and studies further improvements. For a general model which includes different kinds of non-uniformity (varying cross section, bend and inhomogeneous medium), a hybrid spectral/variational formulation is introduced. Error estimates are provided for a semi-discretized problem which concerns the effect of spectral truncation. These estimates are confirmed by numerical results.
This paper explores from the point of view of numerical analysis a method for solving the acoustic time-harmonic wave equation in a locally non-uniform 2D waveguide. The multimodal method is based on a spectral description of the acoustic field in each transverse section of the guide, using Fourier-like series. In the case of sound-hard boundaries, the weak point of the method lies in the poor convergence of such series due to a poor approximation of the field near the boundaries. A remedy was proposed by Athanassoulis & Belibassakis (1999, J. Fluid Mech., 389, 275-301), where the convergence is improved thanks to the use of enhanced series. The present paper proposes a theoretical analysis of their idea and studies further improvements. For a general model which includes different kinds of non-uniformity (varying cross section, bend and inhomogeneous medium), a hybrid spectral/variational formulation is introduced. Error estimates are provided for a semi-discretized problem which concerns the effect of spectral truncation. These estimates are confirmed by numerical results. © The Author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Author Lunéville, Eric
Hazard, Christophe
Author_xml – sequence: 1
  givenname: Christophe
  surname: Hazard
  fullname: Hazard, Christophe
  email: christophe.hazard@ensta.fr
  organization: E-mail: christophe.hazard@ensta.fr
– sequence: 2
  givenname: Eric
  surname: Lunéville
  fullname: Lunéville, Eric
  email: eric.luneville@ensta.fr
  organization: E-mail: eric.luneville@ensta.fr
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20573554$$DView record in Pascal Francis
https://ensta-paris.hal.science/hal-00873082$$DView record in HAL
BookMark eNqFkM1P3DAQxS0EEgv0yD2q1IoeAuOP2MlxuwK21UqoXxLiYk0dp2uaxFs72dL_vkZZ7YELF3s8-vnNvHdCDnvfW0LOKVxSqPiV67DD4Wr91APIAzKjQoqcSy4OyQyYYrmoJByTkxgfAYAWCmZkMe8z122C39o668Z2cJ2vsc1wk3po1lnjQ5bm5GPvUtllaPwYB2eyv7i1v0ZX23hGjhpso32zu0_Jj5vr74tlvrq7_bSYr3IjOAw5AzAN4yWUnKUKlQKVDsqKOr1s1ShZ17K2VSVqVGWqLBeNaipeSM5_VvyUfJh019jqTUh2wz_t0enlfKWfewCl4lCyLU3s-4lNNv6MNg66c9HYtsXeJgOaC1byUsgEvn0BPvox9MmHZpQBpVKqBOUTZIKPMdhmP56Cfs5eT9nrKfvEv9uJYjTYNgF74-L-E4NC8aIQibuYOD9uXpXcreDiYJ_2MIbfOi2oCr28f9D3t18_fvl8U-lv_D_dY6Qn
CODEN IJAMDM
CitedBy_id crossref_primary_10_1121_1_4913506
crossref_primary_10_1098_rspa_2013_0448
crossref_primary_10_1177_10812865211018746
crossref_primary_10_1098_rspa_2017_0017
crossref_primary_10_1121_10_0003336
crossref_primary_10_1007_s10665_018_09983_1
crossref_primary_10_1177_10775463221118707
crossref_primary_10_1016_j_wavemoti_2014_04_002
crossref_primary_10_1007_s10665_016_9885_3
crossref_primary_10_1016_j_rinp_2021_104408
crossref_primary_10_1016_j_jfluidstructs_2021_103236
crossref_primary_10_1016_j_wavemoti_2014_11_007
crossref_primary_10_1016_j_euromechflu_2018_04_015
crossref_primary_10_1098_rspa_2013_0186
crossref_primary_10_1098_rspa_2014_0008
crossref_primary_10_1137_16M1094154
crossref_primary_10_1364_JOSAA_32_000979
crossref_primary_10_1016_j_phpro_2010_01_065
ContentType Journal Article
Copyright The Author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2008
2008 INIST-CNRS
The Author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2008
– notice: 2008 INIST-CNRS
– notice: The Author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
IQODW
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
DOI 10.1093/imamat/hxn006
DatabaseName Istex
Pascal-Francis
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Civil Engineering Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Physics
EISSN 1464-3634
EndPage 690
ExternalDocumentID oai_HAL_hal_00873082v1
1527194721
10_1093_imamat_hxn006
20573554
10.1093/imamat/hxn006
ark_67375_HXZ_XGRBQJF9_S
Genre Feature
GroupedDBID -E4
-~X
.2P
.I3
0R~
18M
1TH
29I
4.4
482
48X
5GY
5VS
5WA
6TJ
70D
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
ABDBF
ABDTM
ABEJV
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACUFI
ACUTJ
ACYTK
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ASPBG
ATGXG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BSCLL
BTQHN
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DILTD
DU5
D~K
EBS
EE~
EJD
ESX
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HVGLF
HW0
HZ~
I-F
IOX
J21
JAVBF
KAQDR
KBUDW
KOP
KSI
KSN
M-Z
M43
M49
N9A
NGC
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OCL
ODMLO
OJQWA
OJZSN
OWPYF
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
ROL
ROX
ROZ
RUSNO
RW1
RXO
TJP
TN5
TUS
UPT
WH7
X7H
XOL
YAYTL
YKOAZ
YXANX
ZCG
ZKX
~91
6.Y
8WZ
A6W
AASNB
AAWDT
ABEFU
ABSAR
ABSMQ
ABTAH
ACFRR
ACMRT
ACPQN
ACZBC
AEKPW
AFFNX
AFSHK
AFYAG
AGKRT
AGMDO
AI.
ANFBD
APJGH
AQDSO
ASAOO
ATDFG
ATTQO
CXTWN
DFGAJ
ELUNK
G8K
KC5
MBTAY
O~Y
QBD
RNI
RZF
RZO
T9H
TCN
UQL
VH1
ZY4
08R
AABJS
AABMN
AAESY
AAIYJ
AANRK
AAPBV
ABPTK
ADEIU
ADORX
ADQLU
AIKOY
ALXQX
ANAKG
ARQIP
AUCZF
AZQFJ
BYORX
CASEJ
DPORF
DPPUQ
IQODW
XFK
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
AEHUL
ID FETCH-LOGICAL-c430t-200cf23808320cfa7707a77125dcfae9f76dd6de994da786dee34f7f935633b93
ISSN 0272-4960
IngestDate Tue Oct 15 15:31:45 EDT 2024
Fri Oct 25 04:31:13 EDT 2024
Thu Oct 10 17:34:13 EDT 2024
Fri Nov 22 00:59:32 EST 2024
Sun Oct 22 16:08:27 EDT 2023
Wed Aug 28 03:24:29 EDT 2024
Wed Oct 30 09:36:49 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Fourier series
multimodal decomposition
cross-section method
waveguide
Wave equation
Approximation
Error estimation
Inhomogeneous medium
Acoustic wave
Fourier analysis
Acoustics
Numerical method
Convergence
Truncation
Numerical analysis
Applied mathematics
Language English
License CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c430t-200cf23808320cfa7707a77125dcfae9f76dd6de994da786dee34f7f935633b93
Notes ark:/67375/HXZ-XGRBQJF9-S
istex:487A2FE52D22B49B1C4121017A83DBB3921FA447
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 212011667
PQPubID 30662
PageCount 23
ParticipantIDs hal_primary_oai_HAL_hal_00873082v1
proquest_miscellaneous_34283846
proquest_journals_212011667
crossref_primary_10_1093_imamat_hxn006
pascalfrancis_primary_20573554
oup_primary_10_1093_imamat_hxn006
istex_primary_ark_67375_HXZ_XGRBQJF9_S
PublicationCentury 2000
PublicationDate 2008-08-01
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 08
  year: 2008
  text: 2008-08-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle IMA journal of applied mathematics
PublicationYear 2008
Publisher Oxford University Press
Oxford Publishing Limited (England)
Oxford University Press (OUP)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
– name: Oxford University Press (OUP)
SSID ssj0001570
Score 1.909034
Snippet This paper explores from the point of view of numerical analysis a method for solving the acoustic time-harmonic wave equation in a locally non-uniform 2D...
SourceID hal
proquest
crossref
pascalfrancis
oup
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 668
SubjectTerms Acoustics
cross-section method
Engineering Sciences
Exact sciences and technology
Fourier analysis
Fourier series
Mathematical analysis
Mathematics
Mechanics
multimodal decomposition
Numerical Analysis
Partial differential equations
Physics
Sciences and techniques of general use
waveguide
Title An improved multimodal approach for non-uniform acoustic waveguides
URI https://api.istex.fr/ark:/67375/HXZ-XGRBQJF9-S/fulltext.pdf
https://www.proquest.com/docview/212011667
https://search.proquest.com/docview/34283846
https://ensta-paris.hal.science/hal-00873082
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELba9QWEED-1MBgBIV6msDR24uQxGx1lYkiwgSpeLCdx2ISaTW1TJv567mLHaZmA8cCL5bqWk_jO58_2-TtCXpQwqwNOUF4u48JjTOVeFsXMGxaZiuMyY7yJGTk-5u8n8esRG_V6dbvqt2X_VdJQBrLGm7P_IG3bKBRAHmQOKUgd0mvJPa3w5uPsfAlIsvEWnJ4XyAdguMMbt0JY8nt1hXeypjtgEZuAXjvf5VJ9rc8K41RoAOvbo3SVXUIa0Dq1bK_zzob9kNpPviMssO4-daVP5Jd49bC1v2s7DrH1d1v86SbjiuEKeOCxRMcJeKW0YWUR82hkNi6N5dVBTIyGsRUzGulQO2ZGjnRA0SvGXhNhnU0lfC5kTi8r3_-FVtusc35Tt08GAdgnMI-DdG90-NlO4cOQ68058yGGnBUa2dVN7OoG1sBM_xRdaQc4Oi_b65K3LuQcxlqpg6Rcme8bEHNyh9w2qw831Wpzl_RUdY_cPOqEeZ_sp5XbKpDbKZDbKpALYnFXFMhtFcjtFOgB-XQwOtkfeybShpcz6i9wAOUlgDfA4wHkJOc-hwTAbwG_VFLyCCOPqSRhheQx5BRlJS8TGkaUZgl9SDbgyWqTuHyY55wrxkOlWKGo9KliYR4j72CSBcwhL9suExeaUEVoRwgqdN8K3bcOeQ4dausgDfo4fSewDHkUkWZpOYTWmv621eTsG7oq8lCMJ1_E5M3HvQ-HB4k4dsgzEMjfnri9Ji5bO0DWUMDdDtlq5SfM0JsLwH54mBlxhzy1_4KNxoM3WSkQgaDIaghA_9E1XmKL3OjG3GOysZjV6gnpz4t622jpT2_ysxQ
link.rule.ids 230,315,782,786,887,27933,27934
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+multimodal+approach+for+non-uniform+acoustic+waveguides&rft.jtitle=IMA+journal+of+applied+mathematics&rft.au=Hazard%2C+Christophe&rft.au=Lun%C3%A9ville%2C+Eric&rft.date=2008-08-01&rft.pub=Oxford+University+Press&rft.issn=0272-4960&rft.eissn=1464-3634&rft.volume=73&rft.issue=4&rft.spage=668&rft.epage=690&rft_id=info:doi/10.1093%2Fimamat%2Fhxn006&rft.externalDocID=10.1093%2Fimamat%2Fhxn006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4960&client=summon