3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head

Osteochondral (OC) tissue is a biphasic material comprised of articular cartilage integrated atop subchondral bone. Damage to this tissue is highly problematic, owing to its intrinsic inability to regenerate functional tissue in response to trauma or disease. Further, the function of the tissue is l...

Full description

Saved in:
Bibliographic Details
Published in:Biofabrication Vol. 11; no. 4; p. 044101
Main Authors: Idaszek, Joanna, Costantini, Marco, Karlsen, Tommy A, Jaroszewicz, Jakub, Colosi, Cristina, Testa, Stefano, Fornetti, Ersilia, Bernardini, Sergio, Seta, Martyna, Kasarełło, Kaja, Wrzesień, Robert, Cannata, Stefano, Barbetta, Andrea, Gargioli, Cesare, Brinchman, Jan E, Święszkowski, Wojciech
Format: Journal Article
Language:English
Published: England 01-07-2019
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Osteochondral (OC) tissue is a biphasic material comprised of articular cartilage integrated atop subchondral bone. Damage to this tissue is highly problematic, owing to its intrinsic inability to regenerate functional tissue in response to trauma or disease. Further, the function of the tissue is largely conferred by its compartmentalized zonal microstructure and composition. Current clinical treatments fail to regenerate new tissue that recapitulates this zonal structure. Consequently, regenerated tissue often lacks long-term stability. To address this growing problem, we propose the development of tissue engineered biomaterials that mimic the zonal cartilage organization and extracellular matrix composition through the use of a microfluidic printing head bearing a mixing unit and incorporated into an extrusion-based bioprinter. The system is devised so that multiple bioinks can be delivered either individually or at the same time and rapidly mixed to the extrusion head, and finally deposited through a coaxial nozzle. This enables the deposition of either layers or continuous gradients of chemical, mechanical and biological cues and fabrication of scaffolds with very high shape fidelity and cell viability. Using such a system we bioprinted cell-laden hydrogel constructs recapitulating the layered structure of cartilage, namely, hyaline and calcified cartilage. The construct was assembled out of two bioinks specifically formulated to mimic the extracellular matrices present in the targeted tissues and to ensure the desired biological response of human bone marrow-derived mesenchymal stem cells and human articular chondrocytes. Homogeneous and gradient constructs were thoroughly characterized in vitro with respect to long-term cell viability and expression of hyaline and hypertrophic markers by means of real-time quantitative PCR and immunocytochemical staining. After 21 days of in vitro culture, we observed production of zone-specific matrix. The PCR analysis demonstrated upregulated expression of hypertrophic markers in the homogenous equivalent of calcified cartilage but not in the gradient heterogeneous construct. The regenerative potential was assessed in vivo in a rat model. The histological analysis of surgically damaged rat trochlea revealed beneficial effect of the bioprinted scaffolds on regeneration of OC defect when compared to untreated control.
AbstractList Osteochondral (OC) tissue is a biphasic material comprised of articular cartilage integrated atop subchondral bone. Damage to this tissue is highly problematic, owing to its intrinsic inability to regenerate functional tissue in response to trauma or disease. Further, the function of the tissue is largely conferred by its compartmentalized zonal microstructure and composition. Current clinical treatments fail to regenerate new tissue that recapitulates this zonal structure. Consequently, regenerated tissue often lacks long-term stability. To address this growing problem, we propose the development of tissue engineered biomaterials that mimic the zonal cartilage organization and extracellular matrix composition through the use of a microfluidic printing head bearing a mixing unit and incorporated into an extrusion-based bioprinter. The system is devised so that multiple bioinks can be delivered either individually or at the same time and rapidly mixed to the extrusion head, and finally deposited through a coaxial nozzle. This enables the deposition of either layers or continuous gradients of chemical, mechanical and biological cues and fabrication of scaffolds with very high shape fidelity and cell viability. Using such a system we bioprinted cell-laden hydrogel constructs recapitulating the layered structure of cartilage, namely, hyaline and calcified cartilage. The construct was assembled out of two bioinks specifically formulated to mimic the extracellular matrices present in the targeted tissues and to ensure the desired biological response of human bone marrow-derived mesenchymal stem cells and human articular chondrocytes. Homogeneous and gradient constructs were thoroughly characterized in vitro with respect to long-term cell viability and expression of hyaline and hypertrophic markers by means of real-time quantitative PCR and immunocytochemical staining. After 21 days of in vitro culture, we observed production of zone-specific matrix. The PCR analysis demonstrated upregulated expression of hypertrophic markers in the homogenous equivalent of calcified cartilage but not in the gradient heterogeneous construct. The regenerative potential was assessed in vivo in a rat model. The histological analysis of surgically damaged rat trochlea revealed beneficial effect of the bioprinted scaffolds on regeneration of OC defect when compared to untreated control.
Author Bernardini, Sergio
Testa, Stefano
Barbetta, Andrea
Fornetti, Ersilia
Karlsen, Tommy A
Idaszek, Joanna
Jaroszewicz, Jakub
Cannata, Stefano
Seta, Martyna
Kasarełło, Kaja
Gargioli, Cesare
Costantini, Marco
Brinchman, Jan E
Święszkowski, Wojciech
Colosi, Cristina
Wrzesień, Robert
Author_xml – sequence: 1
  givenname: Joanna
  surname: Idaszek
  fullname: Idaszek, Joanna
  organization: Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
– sequence: 2
  givenname: Marco
  surname: Costantini
  fullname: Costantini, Marco
– sequence: 3
  givenname: Tommy A
  surname: Karlsen
  fullname: Karlsen, Tommy A
– sequence: 4
  givenname: Jakub
  surname: Jaroszewicz
  fullname: Jaroszewicz, Jakub
– sequence: 5
  givenname: Cristina
  surname: Colosi
  fullname: Colosi, Cristina
– sequence: 6
  givenname: Stefano
  surname: Testa
  fullname: Testa, Stefano
– sequence: 7
  givenname: Ersilia
  surname: Fornetti
  fullname: Fornetti, Ersilia
– sequence: 8
  givenname: Sergio
  surname: Bernardini
  fullname: Bernardini, Sergio
– sequence: 9
  givenname: Martyna
  surname: Seta
  fullname: Seta, Martyna
– sequence: 10
  givenname: Kaja
  surname: Kasarełło
  fullname: Kasarełło, Kaja
– sequence: 11
  givenname: Robert
  surname: Wrzesień
  fullname: Wrzesień, Robert
– sequence: 12
  givenname: Stefano
  surname: Cannata
  fullname: Cannata, Stefano
– sequence: 13
  givenname: Andrea
  surname: Barbetta
  fullname: Barbetta, Andrea
– sequence: 14
  givenname: Cesare
  surname: Gargioli
  fullname: Gargioli, Cesare
– sequence: 15
  givenname: Jan E
  surname: Brinchman
  fullname: Brinchman, Jan E
– sequence: 16
  givenname: Wojciech
  surname: Święszkowski
  fullname: Święszkowski, Wojciech
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31151123$$D View this record in MEDLINE/PubMed
BookMark eNo9UElOAzEQtBCIkMCdE_IHhnjJbEcUVikSFzhHXtozBo8d2R6h_IanMhGQU0ndVdXVNUenPnhA6JqSW0qaZknrsilK0pKlkKxi7ARdHEczNE_pg5CqLCt6jmac0pJSxi_QN7_H0oZdtD5b3-FgcL_XMXTgsAo-5TiqnPCXzT1W4BwWXuNBZIhWONxFoS34iWBCxLkHHKEDD1FkG_zBzIzOFbm36tNDSlj1wes4KTUYUBmP6XBU4MGqGIwbrbYKH8P0IPQlOjPCJbj6wwV6f3x4Wz8Xm9enl_XdplArTnJBpeaU83L6uCIS6ppL1UgqSFu3lQIJvCpbA4RJyYxWjQHBGKyUVoc9p2yBbn59d6McQG-nEIOI--1_VewHAYhwBA
CitedBy_id crossref_primary_10_1089_ten_teb_2021_0101
crossref_primary_10_1002_smll_202204498
crossref_primary_10_1089_ten_tea_2019_0298
crossref_primary_10_1088_1758_5090_ab7e75
crossref_primary_10_1088_1758_5090_ac0b9a
crossref_primary_10_1016_j_bios_2022_114626
crossref_primary_10_1016_j_ijbiomac_2024_131281
crossref_primary_10_1039_D0BM01595D
crossref_primary_10_1016_j_reth_2023_09_007
crossref_primary_10_1021_acs_biomac_0c00305
crossref_primary_10_1088_1758_5090_ac61a3
crossref_primary_10_1002_anbr_202000066
crossref_primary_10_1002_adhm_202001434
crossref_primary_10_3390_biomimetics8020260
crossref_primary_10_1016_j_bprint_2020_e00108
crossref_primary_10_3389_fbiom_2023_1279061
crossref_primary_10_1016_j_matdes_2023_111866
crossref_primary_10_1002_admt_202100551
crossref_primary_10_1016_j_bioactmat_2020_10_014
crossref_primary_10_1002_adma_201903975
crossref_primary_10_1152_ajpcell_00124_2020
crossref_primary_10_3389_fbioe_2024_1339916
crossref_primary_10_3390_jfb13040214
crossref_primary_10_1088_1758_5090_abec2c
crossref_primary_10_1016_j_biomaterials_2021_121246
crossref_primary_10_1021_acsengineeringau_4c00001
crossref_primary_10_1021_acsomega_0c05036
crossref_primary_10_1089_ten_tea_2020_0158
crossref_primary_10_1089_ten_tea_2023_29046_abstracts
crossref_primary_10_1016_j_actbio_2022_11_014
crossref_primary_10_1002_adfm_202104123
crossref_primary_10_1002_advs_202200050
crossref_primary_10_1186_s13619_021_00104_5
crossref_primary_10_1021_acsomega_3c02600
crossref_primary_10_3390_jfb14060291
crossref_primary_10_3390_bioengineering8090123
crossref_primary_10_1088_1758_5090_aca3d4
crossref_primary_10_1039_D1BM01540K
crossref_primary_10_1002_adma_202104730
crossref_primary_10_1007_s13346_023_01437_1
crossref_primary_10_1039_D2BM00109H
crossref_primary_10_3389_fbioe_2022_987999
crossref_primary_10_1089_3dp_2022_0111
crossref_primary_10_1002_VIW_20210018
crossref_primary_10_1016_j_talanta_2022_123920
crossref_primary_10_1177_20417314231164765
crossref_primary_10_3390_bioengineering10020213
crossref_primary_10_1155_2020_2487072
crossref_primary_10_1002_advs_202205059
crossref_primary_10_3390_gels7040274
crossref_primary_10_1002_adma_202208852
crossref_primary_10_1038_s43586_021_00073_8
crossref_primary_10_1002_admt_202201244
crossref_primary_10_1016_j_bprint_2022_e00253
crossref_primary_10_1093_rb_rbaa042
crossref_primary_10_3389_fbioe_2021_761861
crossref_primary_10_1002_EXP_20210043
crossref_primary_10_1002_adma_202107038
crossref_primary_10_1002_adhm_202202581
crossref_primary_10_1088_1748_605X_ab9bb0
crossref_primary_10_3390_cells10010002
crossref_primary_10_1016_j_matdes_2020_108766
crossref_primary_10_1016_j_actbio_2022_08_058
crossref_primary_10_1002_adfm_202400888
crossref_primary_10_1021_acs_chemrev_0c00077
crossref_primary_10_1093_rb_rbac105
crossref_primary_10_1002_adfm_202100628
crossref_primary_10_1063_5_0033280
crossref_primary_10_1088_1758_5090_ad467e
crossref_primary_10_1016_j_msec_2021_112005
crossref_primary_10_1039_D2BM00709F
crossref_primary_10_1177_20417314221133480
crossref_primary_10_1016_j_bioactmat_2022_06_011
crossref_primary_10_1088_1758_5090_ac584c
crossref_primary_10_1088_1758_5090_acb73d
crossref_primary_10_1111_cpr_13417
crossref_primary_10_1021_acsabm_9b00756
crossref_primary_10_1002_mabi_202300199
crossref_primary_10_1016_j_matchemphys_2022_126930
crossref_primary_10_1088_1758_5090_ac5220
crossref_primary_10_1002_anbr_202100035
crossref_primary_10_1002_mabi_202400125
crossref_primary_10_1016_j_bprint_2021_e00130
crossref_primary_10_1016_j_tibtech_2020_06_005
crossref_primary_10_1007_s42242_020_00119_y
crossref_primary_10_1016_j_eng_2022_03_008
crossref_primary_10_1016_j_mtbio_2023_100870
crossref_primary_10_1021_acsbiomaterials_1c00183
crossref_primary_10_1016_j_jpha_2023_12_015
crossref_primary_10_1002_adhm_202100371
crossref_primary_10_1039_C9LC01184F
crossref_primary_10_3389_fbioe_2022_828921
crossref_primary_10_1002_adma_202102877
crossref_primary_10_1088_1758_5090_ac23ab
crossref_primary_10_1016_j_bprint_2021_e00163
crossref_primary_10_1063_5_0023206
crossref_primary_10_1002_adhm_201901792
crossref_primary_10_1002_admt_201901044
crossref_primary_10_1016_j_ijbiomac_2023_126194
crossref_primary_10_1002_adhm_202000208
crossref_primary_10_1089_ten_teb_2020_0112
crossref_primary_10_2139_ssrn_4134999
crossref_primary_10_1039_C9FO01332F
crossref_primary_10_1002_mame_202300272
crossref_primary_10_1021_acsabm_3c00093
crossref_primary_10_1007_s00604_021_04790_5
crossref_primary_10_1002_adma_202300912
crossref_primary_10_1002_mabi_202300457
crossref_primary_10_1089_ten_tea_2021_0022
crossref_primary_10_1021_acsbiomaterials_1c01145
crossref_primary_10_1021_acsbiomaterials_0c00753
crossref_primary_10_1039_C9SM01945F
crossref_primary_10_2139_ssrn_4174909
crossref_primary_10_1016_j_bprint_2021_e00159
crossref_primary_10_1016_j_bioactmat_2020_08_020
crossref_primary_10_1016_j_bprint_2021_e00156
crossref_primary_10_1007_s10439_022_03060_6
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1088/1758-5090/ab2622
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
EISSN 1758-5090
ExternalDocumentID 31151123
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
4.4
5B3
5PX
5VS
7.M
AAGCD
AAJIO
AATNI
ABJNI
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CGR
CJUJL
CRLBU
CUY
CVF
DU5
EBS
ECM
EDWGO
EIF
EJD
EQZZN
F5P
IJHAN
IOP
IZVLO
KOT
M45
MV1
N5L
NPM
PJBAE
RIN
RNS
ROL
RPA
SY9
W28
ID FETCH-LOGICAL-c430t-1bd3133575860be773bc8b1a09796cebe3659fe02bb2fdc8fea22e4cdc796c312
IngestDate Sat Sep 28 08:31:33 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c430t-1bd3133575860be773bc8b1a09796cebe3659fe02bb2fdc8fea22e4cdc796c312
PMID 31151123
ParticipantIDs pubmed_primary_31151123
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biofabrication
PublicationTitleAlternate Biofabrication
PublicationYear 2019
SSID ssj0065561
Score 2.5684407
Snippet Osteochondral (OC) tissue is a biphasic material comprised of articular cartilage integrated atop subchondral bone. Damage to this tissue is highly...
SourceID pubmed
SourceType Index Database
StartPage 044101
SubjectTerms Animals
Bioprinting
Cartilage, Articular - drug effects
Cartilage, Articular - pathology
Chondrogenesis - drug effects
Humans
Hydrogels - pharmacology
Implants, Experimental
Ink
Male
Mesenchymal Stem Cells - cytology
Mesenchymal Stem Cells - drug effects
Microfluidics - instrumentation
Printing, Three-Dimensional
Rats, Wistar
Regeneration - drug effects
Title 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head
URI https://www.ncbi.nlm.nih.gov/pubmed/31151123
Volume 11
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Li9RAEICbGQVZD-JzfVMHb0PYpDuTx1F3RhZBL47gbelXxjA7yTKzg-z8Gn-qVZ10klkR9eAlhDRpitRHdXWlqpqxNwoXIbT7BC-nptqpDLIoNQFXMsxNbBPtzgY8-5x--prN5vF8NPKdPfpn_1XT-Ax1TZWz_6DtblJ8gPeoc7yi1vH6V3oXs4kqawrX-YTmb9dmUy8t9QFp28W2JW0UtHc_D9BrdaJNlhuXAXa17bMP7dI1pvaOJYXrA8qRXzkbicazMlTjb6zrgrxzoQc5WVOeX3GxK02pJ50waPgPzgV9V9aFVJs2bNhRauR2b1dNbF9WVZ9LVJMrizOVbZWRrrv1Qm4u2ljSol6vr_sQ7QeJfsDefi_1vskKXu3UMNThqqt8qMM25hl3NwHSFR7Y72jAaTwwxiG6es3rv6wTaFspZOGnowVR8aSpkB5Acrl2lFBHIvRLxZ9Hb_Tu9kNjNkZPjJz104_eT0joYNL2xzmKc9IJc9KIcsTu-NdvbHmc67O4z-61exZ428D2gI1s9ZDdHXSyfMR-iBkMsIO6AI8d9NgBYQeEHSB24LGDDjtA7ACxgyF2NNkhduCxgwY7cNiBhCF20AlD2D1mX97PF6dnQXv4R6BjEV4FkTIiEgJ3E1kSKpumQulMRWhB0jzRaHpEMs0LG3KleGF0VljJuY210TQuIv6E3arqyj5lwKdG0EEIaWR5rJVUQqppZhIVyjyP0_AZO24-7_ll0-Hl3H_4578decGOekJfstsFmg_7io23ZvfaqfknaYOX9g
link.rule.ids 782
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+bioprinting+of+hydrogel+constructs+with+cell+and+material+gradients+for+the+regeneration+of+full-thickness+chondral+defect+using+a+microfluidic+printing+head&rft.jtitle=Biofabrication&rft.au=Idaszek%2C+Joanna&rft.au=Costantini%2C+Marco&rft.au=Karlsen%2C+Tommy+A&rft.au=Jaroszewicz%2C+Jakub&rft.date=2019-07-01&rft.eissn=1758-5090&rft.volume=11&rft.issue=4&rft.spage=044101&rft_id=info:doi/10.1088%2F1758-5090%2Fab2622&rft_id=info%3Apmid%2F31151123&rft_id=info%3Apmid%2F31151123&rft.externalDocID=31151123