3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head
Osteochondral (OC) tissue is a biphasic material comprised of articular cartilage integrated atop subchondral bone. Damage to this tissue is highly problematic, owing to its intrinsic inability to regenerate functional tissue in response to trauma or disease. Further, the function of the tissue is l...
Saved in:
Published in: | Biofabrication Vol. 11; no. 4; p. 044101 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
01-07-2019
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Osteochondral (OC) tissue is a biphasic material comprised of articular cartilage integrated atop subchondral bone. Damage to this tissue is highly problematic, owing to its intrinsic inability to regenerate functional tissue in response to trauma or disease. Further, the function of the tissue is largely conferred by its compartmentalized zonal microstructure and composition. Current clinical treatments fail to regenerate new tissue that recapitulates this zonal structure. Consequently, regenerated tissue often lacks long-term stability. To address this growing problem, we propose the development of tissue engineered biomaterials that mimic the zonal cartilage organization and extracellular matrix composition through the use of a microfluidic printing head bearing a mixing unit and incorporated into an extrusion-based bioprinter. The system is devised so that multiple bioinks can be delivered either individually or at the same time and rapidly mixed to the extrusion head, and finally deposited through a coaxial nozzle. This enables the deposition of either layers or continuous gradients of chemical, mechanical and biological cues and fabrication of scaffolds with very high shape fidelity and cell viability. Using such a system we bioprinted cell-laden hydrogel constructs recapitulating the layered structure of cartilage, namely, hyaline and calcified cartilage. The construct was assembled out of two bioinks specifically formulated to mimic the extracellular matrices present in the targeted tissues and to ensure the desired biological response of human bone marrow-derived mesenchymal stem cells and human articular chondrocytes. Homogeneous and gradient constructs were thoroughly characterized in vitro with respect to long-term cell viability and expression of hyaline and hypertrophic markers by means of real-time quantitative PCR and immunocytochemical staining. After 21 days of in vitro culture, we observed production of zone-specific matrix. The PCR analysis demonstrated upregulated expression of hypertrophic markers in the homogenous equivalent of calcified cartilage but not in the gradient heterogeneous construct. The regenerative potential was assessed in vivo in a rat model. The histological analysis of surgically damaged rat trochlea revealed beneficial effect of the bioprinted scaffolds on regeneration of OC defect when compared to untreated control. |
---|---|
AbstractList | Osteochondral (OC) tissue is a biphasic material comprised of articular cartilage integrated atop subchondral bone. Damage to this tissue is highly problematic, owing to its intrinsic inability to regenerate functional tissue in response to trauma or disease. Further, the function of the tissue is largely conferred by its compartmentalized zonal microstructure and composition. Current clinical treatments fail to regenerate new tissue that recapitulates this zonal structure. Consequently, regenerated tissue often lacks long-term stability. To address this growing problem, we propose the development of tissue engineered biomaterials that mimic the zonal cartilage organization and extracellular matrix composition through the use of a microfluidic printing head bearing a mixing unit and incorporated into an extrusion-based bioprinter. The system is devised so that multiple bioinks can be delivered either individually or at the same time and rapidly mixed to the extrusion head, and finally deposited through a coaxial nozzle. This enables the deposition of either layers or continuous gradients of chemical, mechanical and biological cues and fabrication of scaffolds with very high shape fidelity and cell viability. Using such a system we bioprinted cell-laden hydrogel constructs recapitulating the layered structure of cartilage, namely, hyaline and calcified cartilage. The construct was assembled out of two bioinks specifically formulated to mimic the extracellular matrices present in the targeted tissues and to ensure the desired biological response of human bone marrow-derived mesenchymal stem cells and human articular chondrocytes. Homogeneous and gradient constructs were thoroughly characterized in vitro with respect to long-term cell viability and expression of hyaline and hypertrophic markers by means of real-time quantitative PCR and immunocytochemical staining. After 21 days of in vitro culture, we observed production of zone-specific matrix. The PCR analysis demonstrated upregulated expression of hypertrophic markers in the homogenous equivalent of calcified cartilage but not in the gradient heterogeneous construct. The regenerative potential was assessed in vivo in a rat model. The histological analysis of surgically damaged rat trochlea revealed beneficial effect of the bioprinted scaffolds on regeneration of OC defect when compared to untreated control. |
Author | Bernardini, Sergio Testa, Stefano Barbetta, Andrea Fornetti, Ersilia Karlsen, Tommy A Idaszek, Joanna Jaroszewicz, Jakub Cannata, Stefano Seta, Martyna Kasarełło, Kaja Gargioli, Cesare Costantini, Marco Brinchman, Jan E Święszkowski, Wojciech Colosi, Cristina Wrzesień, Robert |
Author_xml | – sequence: 1 givenname: Joanna surname: Idaszek fullname: Idaszek, Joanna organization: Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland – sequence: 2 givenname: Marco surname: Costantini fullname: Costantini, Marco – sequence: 3 givenname: Tommy A surname: Karlsen fullname: Karlsen, Tommy A – sequence: 4 givenname: Jakub surname: Jaroszewicz fullname: Jaroszewicz, Jakub – sequence: 5 givenname: Cristina surname: Colosi fullname: Colosi, Cristina – sequence: 6 givenname: Stefano surname: Testa fullname: Testa, Stefano – sequence: 7 givenname: Ersilia surname: Fornetti fullname: Fornetti, Ersilia – sequence: 8 givenname: Sergio surname: Bernardini fullname: Bernardini, Sergio – sequence: 9 givenname: Martyna surname: Seta fullname: Seta, Martyna – sequence: 10 givenname: Kaja surname: Kasarełło fullname: Kasarełło, Kaja – sequence: 11 givenname: Robert surname: Wrzesień fullname: Wrzesień, Robert – sequence: 12 givenname: Stefano surname: Cannata fullname: Cannata, Stefano – sequence: 13 givenname: Andrea surname: Barbetta fullname: Barbetta, Andrea – sequence: 14 givenname: Cesare surname: Gargioli fullname: Gargioli, Cesare – sequence: 15 givenname: Jan E surname: Brinchman fullname: Brinchman, Jan E – sequence: 16 givenname: Wojciech surname: Święszkowski fullname: Święszkowski, Wojciech |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31151123$$D View this record in MEDLINE/PubMed |
BookMark | eNo9UElOAzEQtBCIkMCdE_IHhnjJbEcUVikSFzhHXtozBo8d2R6h_IanMhGQU0ndVdXVNUenPnhA6JqSW0qaZknrsilK0pKlkKxi7ARdHEczNE_pg5CqLCt6jmac0pJSxi_QN7_H0oZdtD5b3-FgcL_XMXTgsAo-5TiqnPCXzT1W4BwWXuNBZIhWONxFoS34iWBCxLkHHKEDD1FkG_zBzIzOFbm36tNDSlj1wes4KTUYUBmP6XBU4MGqGIwbrbYKH8P0IPQlOjPCJbj6wwV6f3x4Wz8Xm9enl_XdplArTnJBpeaU83L6uCIS6ppL1UgqSFu3lQIJvCpbA4RJyYxWjQHBGKyUVoc9p2yBbn59d6McQG-nEIOI--1_VewHAYhwBA |
CitedBy_id | crossref_primary_10_1089_ten_teb_2021_0101 crossref_primary_10_1002_smll_202204498 crossref_primary_10_1089_ten_tea_2019_0298 crossref_primary_10_1088_1758_5090_ab7e75 crossref_primary_10_1088_1758_5090_ac0b9a crossref_primary_10_1016_j_bios_2022_114626 crossref_primary_10_1016_j_ijbiomac_2024_131281 crossref_primary_10_1039_D0BM01595D crossref_primary_10_1016_j_reth_2023_09_007 crossref_primary_10_1021_acs_biomac_0c00305 crossref_primary_10_1088_1758_5090_ac61a3 crossref_primary_10_1002_anbr_202000066 crossref_primary_10_1002_adhm_202001434 crossref_primary_10_3390_biomimetics8020260 crossref_primary_10_1016_j_bprint_2020_e00108 crossref_primary_10_3389_fbiom_2023_1279061 crossref_primary_10_1016_j_matdes_2023_111866 crossref_primary_10_1002_admt_202100551 crossref_primary_10_1016_j_bioactmat_2020_10_014 crossref_primary_10_1002_adma_201903975 crossref_primary_10_1152_ajpcell_00124_2020 crossref_primary_10_3389_fbioe_2024_1339916 crossref_primary_10_3390_jfb13040214 crossref_primary_10_1088_1758_5090_abec2c crossref_primary_10_1016_j_biomaterials_2021_121246 crossref_primary_10_1021_acsengineeringau_4c00001 crossref_primary_10_1021_acsomega_0c05036 crossref_primary_10_1089_ten_tea_2020_0158 crossref_primary_10_1089_ten_tea_2023_29046_abstracts crossref_primary_10_1016_j_actbio_2022_11_014 crossref_primary_10_1002_adfm_202104123 crossref_primary_10_1002_advs_202200050 crossref_primary_10_1186_s13619_021_00104_5 crossref_primary_10_1021_acsomega_3c02600 crossref_primary_10_3390_jfb14060291 crossref_primary_10_3390_bioengineering8090123 crossref_primary_10_1088_1758_5090_aca3d4 crossref_primary_10_1039_D1BM01540K crossref_primary_10_1002_adma_202104730 crossref_primary_10_1007_s13346_023_01437_1 crossref_primary_10_1039_D2BM00109H crossref_primary_10_3389_fbioe_2022_987999 crossref_primary_10_1089_3dp_2022_0111 crossref_primary_10_1002_VIW_20210018 crossref_primary_10_1016_j_talanta_2022_123920 crossref_primary_10_1177_20417314231164765 crossref_primary_10_3390_bioengineering10020213 crossref_primary_10_1155_2020_2487072 crossref_primary_10_1002_advs_202205059 crossref_primary_10_3390_gels7040274 crossref_primary_10_1002_adma_202208852 crossref_primary_10_1038_s43586_021_00073_8 crossref_primary_10_1002_admt_202201244 crossref_primary_10_1016_j_bprint_2022_e00253 crossref_primary_10_1093_rb_rbaa042 crossref_primary_10_3389_fbioe_2021_761861 crossref_primary_10_1002_EXP_20210043 crossref_primary_10_1002_adma_202107038 crossref_primary_10_1002_adhm_202202581 crossref_primary_10_1088_1748_605X_ab9bb0 crossref_primary_10_3390_cells10010002 crossref_primary_10_1016_j_matdes_2020_108766 crossref_primary_10_1016_j_actbio_2022_08_058 crossref_primary_10_1002_adfm_202400888 crossref_primary_10_1021_acs_chemrev_0c00077 crossref_primary_10_1093_rb_rbac105 crossref_primary_10_1002_adfm_202100628 crossref_primary_10_1063_5_0033280 crossref_primary_10_1088_1758_5090_ad467e crossref_primary_10_1016_j_msec_2021_112005 crossref_primary_10_1039_D2BM00709F crossref_primary_10_1177_20417314221133480 crossref_primary_10_1016_j_bioactmat_2022_06_011 crossref_primary_10_1088_1758_5090_ac584c crossref_primary_10_1088_1758_5090_acb73d crossref_primary_10_1111_cpr_13417 crossref_primary_10_1021_acsabm_9b00756 crossref_primary_10_1002_mabi_202300199 crossref_primary_10_1016_j_matchemphys_2022_126930 crossref_primary_10_1088_1758_5090_ac5220 crossref_primary_10_1002_anbr_202100035 crossref_primary_10_1002_mabi_202400125 crossref_primary_10_1016_j_bprint_2021_e00130 crossref_primary_10_1016_j_tibtech_2020_06_005 crossref_primary_10_1007_s42242_020_00119_y crossref_primary_10_1016_j_eng_2022_03_008 crossref_primary_10_1016_j_mtbio_2023_100870 crossref_primary_10_1021_acsbiomaterials_1c00183 crossref_primary_10_1016_j_jpha_2023_12_015 crossref_primary_10_1002_adhm_202100371 crossref_primary_10_1039_C9LC01184F crossref_primary_10_3389_fbioe_2022_828921 crossref_primary_10_1002_adma_202102877 crossref_primary_10_1088_1758_5090_ac23ab crossref_primary_10_1016_j_bprint_2021_e00163 crossref_primary_10_1063_5_0023206 crossref_primary_10_1002_adhm_201901792 crossref_primary_10_1002_admt_201901044 crossref_primary_10_1016_j_ijbiomac_2023_126194 crossref_primary_10_1002_adhm_202000208 crossref_primary_10_1089_ten_teb_2020_0112 crossref_primary_10_2139_ssrn_4134999 crossref_primary_10_1039_C9FO01332F crossref_primary_10_1002_mame_202300272 crossref_primary_10_1021_acsabm_3c00093 crossref_primary_10_1007_s00604_021_04790_5 crossref_primary_10_1002_adma_202300912 crossref_primary_10_1002_mabi_202300457 crossref_primary_10_1089_ten_tea_2021_0022 crossref_primary_10_1021_acsbiomaterials_1c01145 crossref_primary_10_1021_acsbiomaterials_0c00753 crossref_primary_10_1039_C9SM01945F crossref_primary_10_2139_ssrn_4174909 crossref_primary_10_1016_j_bprint_2021_e00159 crossref_primary_10_1016_j_bioactmat_2020_08_020 crossref_primary_10_1016_j_bprint_2021_e00156 crossref_primary_10_1007_s10439_022_03060_6 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1088/1758-5090/ab2622 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1758-5090 |
ExternalDocumentID | 31151123 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 4.4 5B3 5PX 5VS 7.M AAGCD AAJIO AATNI ABJNI ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CGR CJUJL CRLBU CUY CVF DU5 EBS ECM EDWGO EIF EJD EQZZN F5P IJHAN IOP IZVLO KOT M45 MV1 N5L NPM PJBAE RIN RNS ROL RPA SY9 W28 |
ID | FETCH-LOGICAL-c430t-1bd3133575860be773bc8b1a09796cebe3659fe02bb2fdc8fea22e4cdc796c312 |
IngestDate | Sat Sep 28 08:31:33 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c430t-1bd3133575860be773bc8b1a09796cebe3659fe02bb2fdc8fea22e4cdc796c312 |
PMID | 31151123 |
ParticipantIDs | pubmed_primary_31151123 |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biofabrication |
PublicationTitleAlternate | Biofabrication |
PublicationYear | 2019 |
SSID | ssj0065561 |
Score | 2.5684407 |
Snippet | Osteochondral (OC) tissue is a biphasic material comprised of articular cartilage integrated atop subchondral bone. Damage to this tissue is highly... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 044101 |
SubjectTerms | Animals Bioprinting Cartilage, Articular - drug effects Cartilage, Articular - pathology Chondrogenesis - drug effects Humans Hydrogels - pharmacology Implants, Experimental Ink Male Mesenchymal Stem Cells - cytology Mesenchymal Stem Cells - drug effects Microfluidics - instrumentation Printing, Three-Dimensional Rats, Wistar Regeneration - drug effects |
Title | 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31151123 |
Volume | 11 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Li9RAEICbGQVZD-JzfVMHb0PYpDuTx1F3RhZBL47gbelXxjA7yTKzg-z8Gn-qVZ10klkR9eAlhDRpitRHdXWlqpqxNwoXIbT7BC-nptqpDLIoNQFXMsxNbBPtzgY8-5x--prN5vF8NPKdPfpn_1XT-Ax1TZWz_6DtblJ8gPeoc7yi1vH6V3oXs4kqawrX-YTmb9dmUy8t9QFp28W2JW0UtHc_D9BrdaJNlhuXAXa17bMP7dI1pvaOJYXrA8qRXzkbicazMlTjb6zrgrxzoQc5WVOeX3GxK02pJ50waPgPzgV9V9aFVJs2bNhRauR2b1dNbF9WVZ9LVJMrizOVbZWRrrv1Qm4u2ljSol6vr_sQ7QeJfsDefi_1vskKXu3UMNThqqt8qMM25hl3NwHSFR7Y72jAaTwwxiG6es3rv6wTaFspZOGnowVR8aSpkB5Acrl2lFBHIvRLxZ9Hb_Tu9kNjNkZPjJz104_eT0joYNL2xzmKc9IJc9KIcsTu-NdvbHmc67O4z-61exZ428D2gI1s9ZDdHXSyfMR-iBkMsIO6AI8d9NgBYQeEHSB24LGDDjtA7ACxgyF2NNkhduCxgwY7cNiBhCF20AlD2D1mX97PF6dnQXv4R6BjEV4FkTIiEgJ3E1kSKpumQulMRWhB0jzRaHpEMs0LG3KleGF0VljJuY210TQuIv6E3arqyj5lwKdG0EEIaWR5rJVUQqppZhIVyjyP0_AZO24-7_ll0-Hl3H_4578decGOekJfstsFmg_7io23ZvfaqfknaYOX9g |
link.rule.ids | 782 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+bioprinting+of+hydrogel+constructs+with+cell+and+material+gradients+for+the+regeneration+of+full-thickness+chondral+defect+using+a+microfluidic+printing+head&rft.jtitle=Biofabrication&rft.au=Idaszek%2C+Joanna&rft.au=Costantini%2C+Marco&rft.au=Karlsen%2C+Tommy+A&rft.au=Jaroszewicz%2C+Jakub&rft.date=2019-07-01&rft.eissn=1758-5090&rft.volume=11&rft.issue=4&rft.spage=044101&rft_id=info:doi/10.1088%2F1758-5090%2Fab2622&rft_id=info%3Apmid%2F31151123&rft_id=info%3Apmid%2F31151123&rft.externalDocID=31151123 |