Characterization of L-glutamate binding sites in rat spinal cord synaptic membranes: evidence for multiple chloride ion-dependent sites
The effects of various ions on L-glutamate (L-Glu) binding sites (Na+-dependent, Cl(-)-dependent, and Cl(-)-independent) in synaptic plasma membranes (SPM) isolated from rat spinal cord and forebrain were examined. Cl(-)-dependent binding sites were over twofold higher in spinal cord (Bmax = 152 +/-...
Saved in:
Published in: | Journal of neurochemistry Vol. 47; no. 4; p. 1052 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
England
01-10-1986
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effects of various ions on L-glutamate (L-Glu) binding sites (Na+-dependent, Cl(-)-dependent, and Cl(-)-independent) in synaptic plasma membranes (SPM) isolated from rat spinal cord and forebrain were examined. Cl(-)-dependent binding sites were over twofold higher in spinal cord (Bmax = 152 +/- 34 pmol/mg protein) as compared to forebrain SPM (Bmax = 64 +/- 12 pmol/mg protein). Na+-dependent binding, on the other hand, was nearly sixfold less in spinal cord (Bmax = 74 +/- 10 pmol/mg protein) compared to forebrain SPM (408 +/- 26 pmol/mg protein). Uptake of L-Glu (Na+-dependent) was also eightfold less in the P2 fraction from spinal cord relative to forebrain (Vmax of 2.89 and 22.3 pmol/mg protein/min, respectively). The effects of Na+, K+, NH4+, and Ca2+ on L-Glu binding sites were similar in both regions of the CNS. In addition, in spinal cord membranes, Br-, I-, and NO3- were equivalent to Cl- in their capacity to stimulate L-Glu binding, whereas F- and CO3- were less effective. Cl(-)-dependent L-Glu binding in spinal cord membranes consisted of two distinct sites. The predominant site (74% of the total) had characteristics similar to the Cl(-)-dependent binding site in forebrain membranes [i.e., Ki values of 5.7 +/- 1.4 microM and 119 +/- 38 nM for 2-amino-4-phosphonobutyric acid (AP4) and quisqualic acid, (QUIS), respectively]. The other Cl(-)-dependent site was unaffected by AP4 but was blocked by QUIS (Ki = 14.2 +/- 4.8 microM). |
---|---|
ISSN: | 0022-3042 |
DOI: | 10.1111/j.1471-4159.1986.tb00719.x |