Internet of things driven multilinear regression technique for fertilizer recommendation for precision agriculture
Food instability has been linked to infertility, health issues, accelerated aging, incorrect insulin regulation, and more. Innovative approaches increased food availability and quality. Agriculture environment monitoring systems need IoT and machine learning. IoT sensors provide all necessary data f...
Saved in:
Published in: | SN applied sciences Vol. 5; no. 10; pp. 264 - 9 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Cham
Springer International Publishing
01-10-2023
Springer Nature B.V Springer |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Food instability has been linked to infertility, health issues, accelerated aging, incorrect insulin regulation, and more. Innovative approaches increased food availability and quality. Agriculture environment monitoring systems need IoT and machine learning. IoT sensors provide all necessary data for agriculture production forecast, fertilizer management, smart irrigation, crop monitoring, crop disease diagnosis, and pest control. Precision agriculture may boost crop yields by prescribing the right water-fertilizer-paste ratio. This article presents IOT based fertilizer recommendation system for Smart agriculture. This framework uses IoT devices and sensors to acquire agriculture-related data, and then machine learning is applied to suggest fertilizer in the correct quantity and at the appropriate time. The data acquisition phase collects input data, including soil temperature, moisture, humidity, regions' weather data, and crop details. Features are selected using the Sequential Forward Floating Selection algorithm. Multilinear Regression performs data classification. The performance of SFSS-MLR is compared to Random Forest, C4.5, Naïve Bayes algorithm. SFSS MLR is better in accuracy, precision, recall and F1. The accuracy of SFSS MLR is 99.3 percent.
Article Highlights
This article presents IOT and multilinear regression enabled fertilizer recommendation system for precision agriculture.
Proposed methodology uses Sequential Forward Floating Selection algorithm for feature selection. Multilinear Regression performs data classification
The performance of SFSS-MLR is compared to Random Forest, C4.5, Naïve Bayes algorithm. SFSS MLR is better in accuracy, precision, recall and F1. The accuracy of SFSS MLR is 99.3 percent |
---|---|
AbstractList | Abstract Food instability has been linked to infertility, health issues, accelerated aging, incorrect insulin regulation, and more. Innovative approaches increased food availability and quality. Agriculture environment monitoring systems need IoT and machine learning. IoT sensors provide all necessary data for agriculture production forecast, fertilizer management, smart irrigation, crop monitoring, crop disease diagnosis, and pest control. Precision agriculture may boost crop yields by prescribing the right water-fertilizer-paste ratio. This article presents IOT based fertilizer recommendation system for Smart agriculture. This framework uses IoT devices and sensors to acquire agriculture-related data, and then machine learning is applied to suggest fertilizer in the correct quantity and at the appropriate time. The data acquisition phase collects input data, including soil temperature, moisture, humidity, regions' weather data, and crop details. Features are selected using the Sequential Forward Floating Selection algorithm. Multilinear Regression performs data classification. The performance of SFSS-MLR is compared to Random Forest, C4.5, Naïve Bayes algorithm. SFSS MLR is better in accuracy, precision, recall and F1. The accuracy of SFSS MLR is 99.3 percent. Food instability has been linked to infertility, health issues, accelerated aging, incorrect insulin regulation, and more. Innovative approaches increased food availability and quality. Agriculture environment monitoring systems need IoT and machine learning. IoT sensors provide all necessary data for agriculture production forecast, fertilizer management, smart irrigation, crop monitoring, crop disease diagnosis, and pest control. Precision agriculture may boost crop yields by prescribing the right water-fertilizer-paste ratio. This article presents IOT based fertilizer recommendation system for Smart agriculture. This framework uses IoT devices and sensors to acquire agriculture-related data, and then machine learning is applied to suggest fertilizer in the correct quantity and at the appropriate time. The data acquisition phase collects input data, including soil temperature, moisture, humidity, regions' weather data, and crop details. Features are selected using the Sequential Forward Floating Selection algorithm. Multilinear Regression performs data classification. The performance of SFSS-MLR is compared to Random Forest, C4.5, Naïve Bayes algorithm. SFSS MLR is better in accuracy, precision, recall and F1. The accuracy of SFSS MLR is 99.3 percent. Food instability has been linked to infertility, health issues, accelerated aging, incorrect insulin regulation, and more. Innovative approaches increased food availability and quality. Agriculture environment monitoring systems need IoT and machine learning. IoT sensors provide all necessary data for agriculture production forecast, fertilizer management, smart irrigation, crop monitoring, crop disease diagnosis, and pest control. Precision agriculture may boost crop yields by prescribing the right water-fertilizer-paste ratio. This article presents IOT based fertilizer recommendation system for Smart agriculture. This framework uses IoT devices and sensors to acquire agriculture-related data, and then machine learning is applied to suggest fertilizer in the correct quantity and at the appropriate time. The data acquisition phase collects input data, including soil temperature, moisture, humidity, regions' weather data, and crop details. Features are selected using the Sequential Forward Floating Selection algorithm. Multilinear Regression performs data classification. The performance of SFSS-MLR is compared to Random Forest, C4.5, Naïve Bayes algorithm. SFSS MLR is better in accuracy, precision, recall and F1. The accuracy of SFSS MLR is 99.3 percent. Article Highlights This article presents IOT and multilinear regression enabled fertilizer recommendation system for precision agriculture. Proposed methodology uses Sequential Forward Floating Selection algorithm for feature selection. Multilinear Regression performs data classification The performance of SFSS-MLR is compared to Random Forest, C4.5, Naïve Bayes algorithm. SFSS MLR is better in accuracy, precision, recall and F1. The accuracy of SFSS MLR is 99.3 percent Food instability has been linked to infertility, health issues, accelerated aging, incorrect insulin regulation, and more. Innovative approaches increased food availability and quality. Agriculture environment monitoring systems need IoT and machine learning. IoT sensors provide all necessary data for agriculture production forecast, fertilizer management, smart irrigation, crop monitoring, crop disease diagnosis, and pest control. Precision agriculture may boost crop yields by prescribing the right water-fertilizer-paste ratio. This article presents IOT based fertilizer recommendation system for Smart agriculture. This framework uses IoT devices and sensors to acquire agriculture-related data, and then machine learning is applied to suggest fertilizer in the correct quantity and at the appropriate time. The data acquisition phase collects input data, including soil temperature, moisture, humidity, regions' weather data, and crop details. Features are selected using the Sequential Forward Floating Selection algorithm. Multilinear Regression performs data classification. The performance of SFSS-MLR is compared to Random Forest, C4.5, Naïve Bayes algorithm. SFSS MLR is better in accuracy, precision, recall and F1. The accuracy of SFSS MLR is 99.3 percent.Article HighlightsThis article presents IOT and multilinear regression enabled fertilizer recommendation system for precision agriculture.Proposed methodology uses Sequential Forward Floating Selection algorithm for feature selection. Multilinear Regression performs data classificationThe performance of SFSS-MLR is compared to Random Forest, C4.5, Naïve Bayes algorithm. SFSS MLR is better in accuracy, precision, recall and F1. The accuracy of SFSS MLR is 99.3 percent |
ArticleNumber | 264 |
Author | Arias-Gonzáles, José Luis Lalar, Sachin Bangare, Manoj L. Rane, Kantilal Pitambar Kollu, Praveen Kumar Shabaz, Mohammad Hari Prasad, P. Venkata Bangare, Pushpa M. |
Author_xml | – sequence: 1 givenname: Praveen Kumar surname: Kollu fullname: Kollu, Praveen Kumar organization: Computer Science and Engineering Department, Velagapudi Ramakrishna Siddhartha Engineering College – sequence: 2 givenname: Manoj L. surname: Bangare fullname: Bangare, Manoj L. organization: Department of Information Technology, Smt. Kashibai Navale College of Engineering, Savitribai Phule Pune University – sequence: 3 givenname: P. Venkata surname: Hari Prasad fullname: Hari Prasad, P. Venkata organization: Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation – sequence: 4 givenname: Pushpa M. surname: Bangare fullname: Bangare, Pushpa M. organization: Department of E&TC, Sinhgad College of Engineering, Savitribai Phule Pune University – sequence: 5 givenname: Kantilal Pitambar surname: Rane fullname: Rane, Kantilal Pitambar organization: Department of Electronics and Telecommunications Engineering, Bharati Vidyapeeth College of Engineering – sequence: 6 givenname: José Luis surname: Arias-Gonzáles fullname: Arias-Gonzáles, José Luis organization: University of British Columbia – sequence: 7 givenname: Sachin surname: Lalar fullname: Lalar, Sachin organization: Department of Computer Science and Applications, Kurukshetra University – sequence: 8 givenname: Mohammad surname: Shabaz fullname: Shabaz, Mohammad email: mohammad.shabaz@amu.edu.et organization: Arba Minch University |
BookMark | eNp9kUtrJCEUhSUkkOcfyKpg1pXxVa0uhzCZNASySdZiWdeKTbf2XKsHJr9-rK4h2QUEvdfvHK-cS3KacgJCbhm9Y5Sq70Vy2fGWctHSTmrZ6hNywbtaCqPY6cd5Jc7JTSkbSilXRkgtLgiu0wSYYGpyaKa3mMbSDBj_QGp2h-0UtzGBwwZhRCgl5tRM4N9S_H2AJmRsAuAMvcPM-LzbQRrcNHPz7b724lHlRoy-Gh4QrslZcNsCN__3K_L68PPl_rF9ev61vv_x1HrJzdQaFRTtfO-8YyAG7wIz2nS9lD3jPQNwSvWGe00lX5kQwEnuZRUJ6kE5EFdkvfgO2W3sHuPO4V-bXbTHRsbRujq834INivG6nNKeSuGkG8wgAg-sZ8J0mlavb4vXHnP9epnsJh8w1fEt1yspqWBMVoovlMdcCkL4eJVRO0dll6hsjcoeo7K6isQiKhVOI-Cn9Reqf5ghmz0 |
CitedBy_id | crossref_primary_10_3390_s24082647 |
Cites_doi | 10.1109/TIM.2013.2276487 10.1007/978-3-030-22744-9_51 10.1155/2022/1598796 10.1007/978-981-13-0776-8_34 10.1155/2022/5262294 10.3390/s20113113 10.17762/ijcnis.v13i2.4946 10.17762/ijcnis.v13i2.4969 10.17762/ijcnis.v13i2.4934 10.1016/j.scitotenv.2018.09.185 10.1109/iEECON45304.2019.8938854 10.23919/CISTI.2018.8399320 10.1016/j.proeng.2011.08.1131 10.1002/adma.201806739 10.1155/2022/4518599 10.1007/s42452-020-04005-1 10.1007/s11119-014-9371-8 10.1109/ACCESS.2020.3023648 10.17762/ijcnis.v13i2.5047 10.1016/j.compag.2015.08.011 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. L6V M2P M7S PATMY PCBAR PDBOC PIMPY PQEST PQQKQ PQUKI PTHSS PYCSY Q9U DOA |
DOI | 10.1007/s42452-023-05484-8 |
DatabaseName | SpringerOpen CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Science Journals (ProQuest Database) Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Agriculture |
EISSN | 2523-3971 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_f712712a78c043a4ad9d3f2f1b139580 10_1007_s42452_023_05484_8 |
GroupedDBID | -EM 2JN 88I AAHNG AAJSJ AAKKN AAYZJ ABDZT ABECU ABFGW ABFTV ABHQN ABJCF ABKCH ABMQK ABTEG ABTMW ABUWG ABXPI ACACY ACBMV ACBRV ACBYP ACIGE ACIPQ ACMLO ACOKC ACTTH ADKNI ADMDM ADURQ ADYFF AEFTE AEJRE AESTI AEVTX AFGXO AFKRA AFNRJ AFQWF AGDGC AGGBP AGJBK AHBXF AILAN AIMYW AITGF AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMKLP ATCPS AXYYD AZQEC BAPOH BENPR BGLVJ BGNMA BHPHI BKSAR C24 C6C CCPQU DWQXO EBLON EBS EJD FINBP FNLPD FSGXE GNUQQ GNWQR GROUPED_DOAJ HCIFZ J-C KB. KOV M2P M4Y M7S NQJWS NU0 OK1 PATMY PCBAR PDBOC PIMPY PTHSS PYCSY RSV SOJ STPWE TSG UOJIU UTJUX VEKWB VFIZW AAYXX CITATION H13 ZMTXR 3V. 7XB 8FE 8FG 8FK D1I L6V PQEST PQQKQ PQUKI Q9U |
ID | FETCH-LOGICAL-c429t-97f705cbaca1e3dcaf19895b44b12b1eea77b92c804269ffea42c47f730ce7ae3 |
IEDL.DBID | DOA |
ISSN | 2523-3963 |
IngestDate | Tue Oct 22 14:44:35 EDT 2024 Mon Nov 04 11:58:44 EST 2024 Fri Nov 22 00:01:56 EST 2024 Sat Dec 16 12:03:30 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Precision agriculture Internet of things Accuracy Machine learning Sensors Fertilizer quantity management SFSS MLR |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-97f705cbaca1e3dcaf19895b44b12b1eea77b92c804269ffea42c47f730ce7ae3 |
OpenAccessLink | https://doaj.org/article/f712712a78c043a4ad9d3f2f1b139580 |
PQID | 2864403114 |
PQPubID | 5758472 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f712712a78c043a4ad9d3f2f1b139580 proquest_journals_2864403114 crossref_primary_10_1007_s42452_023_05484_8 springer_journals_10_1007_s42452_023_05484_8 |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: London |
PublicationTitle | SN applied sciences |
PublicationTitleAbbrev | SN Appl. Sci |
PublicationYear | 2023 |
Publisher | Springer International Publishing Springer Nature B.V Springer |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer |
References | AljarrahIAEffect of image degradation on performance of convolutional neural networksInt J Commun Netw Inf Secur202213221521910.17762/ijcnis.v13i2.4946 ValentiniMdos SantosGBMuller VieiraBMultiple linear regression analysis (MLR) applied for modeling a new WQI equation for monitoring the water quality of Mirim Lagoon, in the state of Rio Grande do Sul—BrazilSN Appl Sci202137010.1007/s42452-020-04005-1 ZamaniASAnandLRaneKPPrabhuPButtarAMPallathadkaHRaghuvanshiADugbakieBNPerformance of machine learning and image processing in plant leaf disease detectionJ Food Qual202220221710.1155/2022/1598796 ZhangFWangFExercise fatigue detection algorithm based on video image information extractionIEEE Access2020819969619970910.1109/ACCESS.2020.3023648 Marques G, Pitarma R (2018) Agricultural environment monitoring system using wireless sensor networks and IoT. In: 2018 13th Iberian conference on information systems and technologies (CISTI), Caceres, Spain, pp 1–6. https://doi.org/10.23919/CISTI.2018.8399320 TurzhanovaKTikhvinskiyVKonshinSSolochshenkoAExperimental performance evaluation of NB-IOT deployment modes in Urban areaInt J Commun Netw Inf Secur202213223023510.17762/ijcnis.v13i2.4969 GutiérrezJVilla-MedinaJFNieto-GaribayAPorta-GándaraMÁAutomated irrigation system using a wireless sensor network and GPRS moduleIEEE Trans Instrum Meas201363116617610.1109/TIM.2013.2276487 OlmsteadALRhodePWLainsPPinillaVConceptual issues for the comparative study of agricultural developmentAgriculture and economic developement in europe since 18702009LondonRouledge2751 Marques G, Aleixo D, Pitarma R (2019) Enhanced hydroponic agriculture environmental monitoring: an internet of things approach. In: Computational science–ICCS 2019. Lecture notes in computer science, vol 11538. Springer, Cham. https://doi.org/10.1007/978-3-030-22744-9_51 SeechurnNTMungurAArmoogumSPudaruthSIssues and challenges for network virtualisationInt J Commun Netw Inf Sec2022132206214 KapsiMTsoutsiCPaschalidouAAlbanisTEnvironmental monitoring and risk assessment of pesticide residues in surface waters of the Louros River (N.W. Greece)Sci Total Environ20196502188219810.1016/j.scitotenv.2018.09.185 UlloSLSinhaGRAdvances in smart environment monitoring systems using IoT and sensorsSensors20202011311310.3390/s20113113 AlhussainTAn energy-efficient scheme for IoT networksInt J Commun Netw Inf Secur202213219920510.17762/ijcnis.v13i2.4934 AlqhataniMAMachine learning techniques for malware detection with challenges and future directionsInt J Commun Netw Inf Secur202213225827010.17762/ijcnis.v13i2.5047 DincerCBruchRCosta RamaEFernández AbedulMTMerkoçiAManzAUrbanGAGüderFDisposable sensors in diagnostics, food, and environmental monitoringAdv Mater201931180673910.1002/adma.201806739 CsotoMInformation flow in agriculture through new channels for improved effectivenessJ Agric Inform201012534 HemamaliniVRajarajeswariSNachiyappanSSambathMDeviTSinghBRaghuvanshiAFood quality inspection and grading using efficient image segmentation and machine learning-based systemJ Food Qual202220221610.1155/2022/5262294 Ahmad N, Hussain A, Ullah I, Zaidi BH (2019) IOT based wireless sensor network for precision agriculture. In: 2019 7th International electrical engineering congress (iEECON), IEEE, pp 1–4 ZhuYSongJDongFApplications of wireless sensor network in the agriculture environment monitoringProcedia Eng20111660861410.1016/j.proeng.2011.08.1131 OjhaTMisraSRaghuwanshiNSWireless sensor networks for agriculture: the state-of-the-art in practice and future challengesComput Electron Agric2015118668410.1016/j.compag.2015.08.011 https://www.kaggle.com/datasets/gdabhishek/fertilizer-prediction ZhouQXiaoMLeiLZengJHeWLiCShiYA data-secured intelligent IoT system for agricultural environment monitoringWirel Commun Mobile Comput20222022451859910.1155/2022/4518599 RaziQNathVDesign of a smart embedded system for an agricultural update using the internet of thingsNanoelectronics, circuits and communication systems2019SingaporeSpringer37338210.1007/978-981-13-0776-8_34 AnisiMHAbdul-SalaamGAbdullahAHA survey of wireless sensor network approaches and their energy consumption for monitoring farm fields in precision agriculturePrecis Agric201516221623810.1007/s11119-014-9371-8 RawalSIOT based smart irrigation systemInt J Comput Appl20171598711 5484_CR1 5484_CR2 MH Anisi (5484_CR17) 2015; 16 K Turzhanova (5484_CR10) 2022; 13 5484_CR25 IA Aljarrah (5484_CR9) 2022; 13 Y Zhu (5484_CR4) 2011; 16 AS Zamani (5484_CR8) 2022; 2022 M Valentini (5484_CR24) 2021; 3 MA Alqhatani (5484_CR16) 2022; 13 NT Seechurn (5484_CR12) 2022; 13 M Csoto (5484_CR18) 2010; 1 AL Olmstead (5484_CR15) 2009 Q Razi (5484_CR21) 2019 C Dincer (5484_CR6) 2019; 31 F Zhang (5484_CR23) 2020; 8 M Kapsi (5484_CR7) 2019; 650 V Hemamalini (5484_CR11) 2022; 2022 T Ojha (5484_CR20) 2015; 118 J Gutiérrez (5484_CR22) 2013; 63 T Alhussain (5484_CR14) 2022; 13 S Rawal (5484_CR19) 2017; 159 Q Zhou (5484_CR3) 2022; 2022 SL Ullo (5484_CR5) 2020; 20 5484_CR13 |
References_xml | – volume: 13 start-page: 206 issue: 2 year: 2022 ident: 5484_CR12 publication-title: Int J Commun Netw Inf Sec contributor: fullname: NT Seechurn – volume: 63 start-page: 166 issue: 1 year: 2013 ident: 5484_CR22 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2013.2276487 contributor: fullname: J Gutiérrez – ident: 5484_CR2 doi: 10.1007/978-3-030-22744-9_51 – volume: 1 start-page: 2534 year: 2010 ident: 5484_CR18 publication-title: J Agric Inform contributor: fullname: M Csoto – ident: 5484_CR25 – volume: 2022 start-page: 1 year: 2022 ident: 5484_CR8 publication-title: J Food Qual doi: 10.1155/2022/1598796 contributor: fullname: AS Zamani – start-page: 373 volume-title: Nanoelectronics, circuits and communication systems year: 2019 ident: 5484_CR21 doi: 10.1007/978-981-13-0776-8_34 contributor: fullname: Q Razi – volume: 2022 start-page: 1 year: 2022 ident: 5484_CR11 publication-title: J Food Qual doi: 10.1155/2022/5262294 contributor: fullname: V Hemamalini – volume: 20 start-page: 3113 issue: 11 year: 2020 ident: 5484_CR5 publication-title: Sensors doi: 10.3390/s20113113 contributor: fullname: SL Ullo – volume: 13 start-page: 215 issue: 2 year: 2022 ident: 5484_CR9 publication-title: Int J Commun Netw Inf Secur doi: 10.17762/ijcnis.v13i2.4946 contributor: fullname: IA Aljarrah – volume: 13 start-page: 230 issue: 2 year: 2022 ident: 5484_CR10 publication-title: Int J Commun Netw Inf Secur doi: 10.17762/ijcnis.v13i2.4969 contributor: fullname: K Turzhanova – volume: 13 start-page: 199 issue: 2 year: 2022 ident: 5484_CR14 publication-title: Int J Commun Netw Inf Secur doi: 10.17762/ijcnis.v13i2.4934 contributor: fullname: T Alhussain – volume: 650 start-page: 2188 year: 2019 ident: 5484_CR7 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.09.185 contributor: fullname: M Kapsi – ident: 5484_CR13 doi: 10.1109/iEECON45304.2019.8938854 – ident: 5484_CR1 doi: 10.23919/CISTI.2018.8399320 – volume: 16 start-page: 608 year: 2011 ident: 5484_CR4 publication-title: Procedia Eng doi: 10.1016/j.proeng.2011.08.1131 contributor: fullname: Y Zhu – volume: 159 start-page: 7 issue: 8 year: 2017 ident: 5484_CR19 publication-title: Int J Comput Appl contributor: fullname: S Rawal – volume: 31 start-page: 1806739 year: 2019 ident: 5484_CR6 publication-title: Adv Mater doi: 10.1002/adma.201806739 contributor: fullname: C Dincer – volume: 2022 start-page: 4518599 year: 2022 ident: 5484_CR3 publication-title: Wirel Commun Mobile Comput doi: 10.1155/2022/4518599 contributor: fullname: Q Zhou – volume: 3 start-page: 70 year: 2021 ident: 5484_CR24 publication-title: SN Appl Sci doi: 10.1007/s42452-020-04005-1 contributor: fullname: M Valentini – volume: 16 start-page: 216 issue: 2 year: 2015 ident: 5484_CR17 publication-title: Precis Agric doi: 10.1007/s11119-014-9371-8 contributor: fullname: MH Anisi – start-page: 27 volume-title: Agriculture and economic developement in europe since 1870 year: 2009 ident: 5484_CR15 contributor: fullname: AL Olmstead – volume: 8 start-page: 199696 year: 2020 ident: 5484_CR23 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3023648 contributor: fullname: F Zhang – volume: 13 start-page: 258 issue: 2 year: 2022 ident: 5484_CR16 publication-title: Int J Commun Netw Inf Secur doi: 10.17762/ijcnis.v13i2.5047 contributor: fullname: MA Alqhatani – volume: 118 start-page: 66 year: 2015 ident: 5484_CR20 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2015.08.011 contributor: fullname: T Ojha |
SSID | ssj0002793483 ssib051670015 ssib054396270 |
Score | 2.2995718 |
Snippet | Food instability has been linked to infertility, health issues, accelerated aging, incorrect insulin regulation, and more. Innovative approaches increased food... Abstract Food instability has been linked to infertility, health issues, accelerated aging, incorrect insulin regulation, and more. Innovative approaches... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 264 |
SubjectTerms | Agricultural production Agriculture Algorithms Applied and Technical Physics Chemistry/Food Science Classification Crop diseases Crop yield Crops Data acquisition Digital agriculture Earth Sciences Engineering Environment Fertilizer quantity management Fertilizers Food availability Food quality Infertility Insulin Internet of Things Learning algorithms Machine learning Materials Science Meteorological data Moisture effects Monitoring Monitoring systems Pest control Plant diseases Precision agriculture Precision farming Recall Recommender systems Regression Sensors SFSS MLR Soil moisture Soil temperature Weathering |
Title | Internet of things driven multilinear regression technique for fertilizer recommendation for precision agriculture |
URI | https://link.springer.com/article/10.1007/s42452-023-05484-8 https://www.proquest.com/docview/2864403114 https://doaj.org/article/f712712a78c043a4ad9d3f2f1b139580 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxELVaTuVQUQoiFJAP3FqL2GvH3iNtE-XEBZB6s_wxjkA0QUu48Os79jqBIKFekPa0tiXv-K1nxjN-Q8hpkkoFLgMLzkUmFU_MRR8Z4llA0sloyEcD00t98cf8HmeanHWpr5wT1tMD94I7S5oLfJw2YSgbJ11sY5NE4h5tF2V6b304euFMIZIUz7dPnhWdQrU7EhWZtyXc1jaycHQK9MQYtjb1Rk25V5fDgYKhOmM41EhmNrRWIfffsEhfBVGLbprskM_VqKTn_cd8IR9gvku2X1ANfiVdf_QHS7pIdFmKddLY5a2OlpzCbG26jnYw6xNj53TN7krRrqUp51_f3TxB7oMo_Qu1GlNpve9qqR7qZl1l84A9cj0ZX_2aslpvgQXUSkvW6qSHKngXHIcmBpdyQpXyUnouPAdwWvtWBJP9rjYlcFIEiYOaYQDtoNknW_PFHA4IjQ6HoOWGe63MJloLsVXJiOA9j6PUDsj3lTztfU-rYdcEykX6FqVvi_StGZCfWeTrnpkSu7xAoNgKFPs_oAzI0WrBbP1PH6wwOD_c17gckB-rRXxufntKh-8xpW_kU65e3-cGHpGtZfcIx-TjQ3w8KXD-BwRZ8_4 |
link.rule.ids | 315,782,786,866,2106,27933,27934,48344,48347,49649,49652 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxQxDLbo9gA98EYsFMiBG0TaZDJN5lhoq0WUXihSe4rycFYg2K2m2wu_HieTWSiCA0hzmiSjTOzYTmx_BniZVNsGoQIPzkWuWpG4iz5y4meJSSejMV8NzD_qkzNzcJhhctSYC1Oi3UeXZJHUm2S37KOTnHQMJzPDKG62YDujncsJbO-fnZ8fjHzUipx7UtXcl-Jc6xpVEDklnbt4Q0xX82f-_OFrOqpA-V-zP39zmRZNdHTn__7hLtyulifbH1jlHtzA5X3Y-QWP8AH0w_0grtkqsXWp6Mlin-UhK4GH2SR1PetxMUTPLtkGApaR8ctSDtL--vk75j40o29YSzaV1ou-1vNhbtFXyA98CJ-ODk_fznktysADqa4173TSszZ4F5zAJgaXctRV65XyQnqB6LT2nQwmH866lNApGRQNamYBtcPmEUyWqyU-BhYdDSHzjgSyynZch7Frk5HBexH3UjeFVyMZ7MWAvWE3KMtlJS2tpC0rac0U3mRKbXpm3OzyYtUvbN2GNmkh6XHahJlqnHKxi02SSXiyhFszm8LuSGdbN_OllYbmR8JPqCm8Hun6s_nvU3ryb91fwM356Ydje_zu5P1TuJUL2w9hg7swWfdX-Ay2LuPV88rtPwCij_lk |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RVkJw4F2xtIAP3MDq2nGwc2zZropAFRIgtSfLzxWoZFdpeuHXM3acQBEcEFJOsR059tjz2TPzDcCLKOraMeGoM8ZTUbNIjbeeojzzEGVUMqSrgZOP8vRMLY4TTc4UxZ-93UeT5BDTkFia2v5g4-PBFPiW7HWcor6hCDmUoGoLdtK1GB6_dg7Pzs8Xo0zVLMWhFJX3NRvamkpkdk6OZzBaoQCWWJo_f_iavsq0_tew6G_m06yVlnf__3_uwZ2CSMnhIEL34UZoH8DtX3gKH0I33BuGnqwj6XOmT-K7tE-S7JCYoKrpSBdWg1dtSyZqWIKgmMTkvH3x5XtIdbB330JJ5ZRLN13J80PMqitUIOERfF4ef3pzQkuyBupQpfW0kVHOa2eNMyxU3pmYvLFqK4Rl3LIQjJS24U6lQ1sTYzCCO4GNqrkL0oRqF7bbdRseA_EGmyDsw41aJHzXBN_UUXFnLfOvYzODl-OU6M3AyaEn9uU8khpHUueR1GoGR2nWppqJTzu_WHcrXZanjpJxfIxUbi4qI4xvfBV5ZBYRcq3mM9gf51yXRX6pucL-4abIxAxejXP8s_jvXXryb9Wfw80Pi6V-__b03R7cSvnuB2_Cfdjuu6vwFLYu_dWzIvg_AGuQAlU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Internet+of+things+driven+multilinear+regression+technique+for+fertilizer+recommendation+for+precision+agriculture&rft.jtitle=SN+applied+sciences&rft.au=Kollu%2C+Praveen+Kumar&rft.au=Bangare%2C+Manoj+L.&rft.au=Hari+Prasad%2C+P.+Venkata&rft.au=Bangare%2C+Pushpa+M.&rft.date=2023-10-01&rft.pub=Springer+International+Publishing&rft.issn=2523-3963&rft.eissn=2523-3971&rft.volume=5&rft.issue=10&rft_id=info:doi/10.1007%2Fs42452-023-05484-8&rft.externalDocID=10_1007_s42452_023_05484_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2523-3963&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2523-3963&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2523-3963&client=summon |