Internet of things driven multilinear regression technique for fertilizer recommendation for precision agriculture

Food instability has been linked to infertility, health issues, accelerated aging, incorrect insulin regulation, and more. Innovative approaches increased food availability and quality. Agriculture environment monitoring systems need IoT and machine learning. IoT sensors provide all necessary data f...

Full description

Saved in:
Bibliographic Details
Published in:SN applied sciences Vol. 5; no. 10; pp. 264 - 9
Main Authors: Kollu, Praveen Kumar, Bangare, Manoj L., Hari Prasad, P. Venkata, Bangare, Pushpa M., Rane, Kantilal Pitambar, Arias-Gonzáles, José Luis, Lalar, Sachin, Shabaz, Mohammad
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01-10-2023
Springer Nature B.V
Springer
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Food instability has been linked to infertility, health issues, accelerated aging, incorrect insulin regulation, and more. Innovative approaches increased food availability and quality. Agriculture environment monitoring systems need IoT and machine learning. IoT sensors provide all necessary data for agriculture production forecast, fertilizer management, smart irrigation, crop monitoring, crop disease diagnosis, and pest control. Precision agriculture may boost crop yields by prescribing the right water-fertilizer-paste ratio. This article presents IOT based fertilizer recommendation system for Smart agriculture. This framework uses IoT devices and sensors to acquire agriculture-related data, and then machine learning is applied to suggest fertilizer in the correct quantity and at the appropriate time. The data acquisition phase collects input data, including soil temperature, moisture, humidity, regions' weather data, and crop details. Features are selected using the Sequential Forward Floating Selection algorithm. Multilinear Regression performs data classification. The performance of SFSS-MLR is compared to Random Forest, C4.5, Naïve Bayes algorithm. SFSS MLR is better in accuracy, precision, recall and F1. The accuracy of SFSS MLR is 99.3 percent. Article Highlights This article presents IOT and multilinear regression enabled fertilizer recommendation system for precision agriculture. Proposed methodology uses Sequential Forward Floating Selection algorithm for feature selection. Multilinear Regression performs data classification The performance of SFSS-MLR is compared to Random Forest, C4.5, Naïve Bayes algorithm. SFSS MLR is better in accuracy, precision, recall and F1. The accuracy of SFSS MLR is 99.3 percent
AbstractList Abstract Food instability has been linked to infertility, health issues, accelerated aging, incorrect insulin regulation, and more. Innovative approaches increased food availability and quality. Agriculture environment monitoring systems need IoT and machine learning. IoT sensors provide all necessary data for agriculture production forecast, fertilizer management, smart irrigation, crop monitoring, crop disease diagnosis, and pest control. Precision agriculture may boost crop yields by prescribing the right water-fertilizer-paste ratio. This article presents IOT based fertilizer recommendation system for Smart agriculture. This framework uses IoT devices and sensors to acquire agriculture-related data, and then machine learning is applied to suggest fertilizer in the correct quantity and at the appropriate time. The data acquisition phase collects input data, including soil temperature, moisture, humidity, regions' weather data, and crop details. Features are selected using the Sequential Forward Floating Selection algorithm. Multilinear Regression performs data classification. The performance of SFSS-MLR is compared to Random Forest, C4.5, Naïve Bayes algorithm. SFSS MLR is better in accuracy, precision, recall and F1. The accuracy of SFSS MLR is 99.3 percent.
Food instability has been linked to infertility, health issues, accelerated aging, incorrect insulin regulation, and more. Innovative approaches increased food availability and quality. Agriculture environment monitoring systems need IoT and machine learning. IoT sensors provide all necessary data for agriculture production forecast, fertilizer management, smart irrigation, crop monitoring, crop disease diagnosis, and pest control. Precision agriculture may boost crop yields by prescribing the right water-fertilizer-paste ratio. This article presents IOT based fertilizer recommendation system for Smart agriculture. This framework uses IoT devices and sensors to acquire agriculture-related data, and then machine learning is applied to suggest fertilizer in the correct quantity and at the appropriate time. The data acquisition phase collects input data, including soil temperature, moisture, humidity, regions' weather data, and crop details. Features are selected using the Sequential Forward Floating Selection algorithm. Multilinear Regression performs data classification. The performance of SFSS-MLR is compared to Random Forest, C4.5, Naïve Bayes algorithm. SFSS MLR is better in accuracy, precision, recall and F1. The accuracy of SFSS MLR is 99.3 percent.
Food instability has been linked to infertility, health issues, accelerated aging, incorrect insulin regulation, and more. Innovative approaches increased food availability and quality. Agriculture environment monitoring systems need IoT and machine learning. IoT sensors provide all necessary data for agriculture production forecast, fertilizer management, smart irrigation, crop monitoring, crop disease diagnosis, and pest control. Precision agriculture may boost crop yields by prescribing the right water-fertilizer-paste ratio. This article presents IOT based fertilizer recommendation system for Smart agriculture. This framework uses IoT devices and sensors to acquire agriculture-related data, and then machine learning is applied to suggest fertilizer in the correct quantity and at the appropriate time. The data acquisition phase collects input data, including soil temperature, moisture, humidity, regions' weather data, and crop details. Features are selected using the Sequential Forward Floating Selection algorithm. Multilinear Regression performs data classification. The performance of SFSS-MLR is compared to Random Forest, C4.5, Naïve Bayes algorithm. SFSS MLR is better in accuracy, precision, recall and F1. The accuracy of SFSS MLR is 99.3 percent. Article Highlights This article presents IOT and multilinear regression enabled fertilizer recommendation system for precision agriculture. Proposed methodology uses Sequential Forward Floating Selection algorithm for feature selection. Multilinear Regression performs data classification The performance of SFSS-MLR is compared to Random Forest, C4.5, Naïve Bayes algorithm. SFSS MLR is better in accuracy, precision, recall and F1. The accuracy of SFSS MLR is 99.3 percent
Food instability has been linked to infertility, health issues, accelerated aging, incorrect insulin regulation, and more. Innovative approaches increased food availability and quality. Agriculture environment monitoring systems need IoT and machine learning. IoT sensors provide all necessary data for agriculture production forecast, fertilizer management, smart irrigation, crop monitoring, crop disease diagnosis, and pest control. Precision agriculture may boost crop yields by prescribing the right water-fertilizer-paste ratio. This article presents IOT based fertilizer recommendation system for Smart agriculture. This framework uses IoT devices and sensors to acquire agriculture-related data, and then machine learning is applied to suggest fertilizer in the correct quantity and at the appropriate time. The data acquisition phase collects input data, including soil temperature, moisture, humidity, regions' weather data, and crop details. Features are selected using the Sequential Forward Floating Selection algorithm. Multilinear Regression performs data classification. The performance of SFSS-MLR is compared to Random Forest, C4.5, Naïve Bayes algorithm. SFSS MLR is better in accuracy, precision, recall and F1. The accuracy of SFSS MLR is 99.3 percent.Article HighlightsThis article presents IOT and multilinear regression enabled fertilizer recommendation system for precision agriculture.Proposed methodology uses Sequential Forward Floating Selection algorithm for feature selection. Multilinear Regression performs data classificationThe performance of SFSS-MLR is compared to Random Forest, C4.5, Naïve Bayes algorithm. SFSS MLR is better in accuracy, precision, recall and F1. The accuracy of SFSS MLR is 99.3 percent
ArticleNumber 264
Author Arias-Gonzáles, José Luis
Lalar, Sachin
Bangare, Manoj L.
Rane, Kantilal Pitambar
Kollu, Praveen Kumar
Shabaz, Mohammad
Hari Prasad, P. Venkata
Bangare, Pushpa M.
Author_xml – sequence: 1
  givenname: Praveen Kumar
  surname: Kollu
  fullname: Kollu, Praveen Kumar
  organization: Computer Science and Engineering Department, Velagapudi Ramakrishna Siddhartha Engineering College
– sequence: 2
  givenname: Manoj L.
  surname: Bangare
  fullname: Bangare, Manoj L.
  organization: Department of Information Technology, Smt. Kashibai Navale College of Engineering, Savitribai Phule Pune University
– sequence: 3
  givenname: P. Venkata
  surname: Hari Prasad
  fullname: Hari Prasad, P. Venkata
  organization: Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation
– sequence: 4
  givenname: Pushpa M.
  surname: Bangare
  fullname: Bangare, Pushpa M.
  organization: Department of E&TC, Sinhgad College of Engineering, Savitribai Phule Pune University
– sequence: 5
  givenname: Kantilal Pitambar
  surname: Rane
  fullname: Rane, Kantilal Pitambar
  organization: Department of Electronics and Telecommunications Engineering, Bharati Vidyapeeth College of Engineering
– sequence: 6
  givenname: José Luis
  surname: Arias-Gonzáles
  fullname: Arias-Gonzáles, José Luis
  organization: University of British Columbia
– sequence: 7
  givenname: Sachin
  surname: Lalar
  fullname: Lalar, Sachin
  organization: Department of Computer Science and Applications, Kurukshetra University
– sequence: 8
  givenname: Mohammad
  surname: Shabaz
  fullname: Shabaz, Mohammad
  email: mohammad.shabaz@amu.edu.et
  organization: Arba Minch University
BookMark eNp9kUtrJCEUhSUkkOcfyKpg1pXxVa0uhzCZNASySdZiWdeKTbf2XKsHJr9-rK4h2QUEvdfvHK-cS3KacgJCbhm9Y5Sq70Vy2fGWctHSTmrZ6hNywbtaCqPY6cd5Jc7JTSkbSilXRkgtLgiu0wSYYGpyaKa3mMbSDBj_QGp2h-0UtzGBwwZhRCgl5tRM4N9S_H2AJmRsAuAMvcPM-LzbQRrcNHPz7b724lHlRoy-Gh4QrslZcNsCN__3K_L68PPl_rF9ev61vv_x1HrJzdQaFRTtfO-8YyAG7wIz2nS9lD3jPQNwSvWGe00lX5kQwEnuZRUJ6kE5EFdkvfgO2W3sHuPO4V-bXbTHRsbRujq834INivG6nNKeSuGkG8wgAg-sZ8J0mlavb4vXHnP9epnsJh8w1fEt1yspqWBMVoovlMdcCkL4eJVRO0dll6hsjcoeo7K6isQiKhVOI-Cn9Reqf5ghmz0
CitedBy_id crossref_primary_10_3390_s24082647
Cites_doi 10.1109/TIM.2013.2276487
10.1007/978-3-030-22744-9_51
10.1155/2022/1598796
10.1007/978-981-13-0776-8_34
10.1155/2022/5262294
10.3390/s20113113
10.17762/ijcnis.v13i2.4946
10.17762/ijcnis.v13i2.4969
10.17762/ijcnis.v13i2.4934
10.1016/j.scitotenv.2018.09.185
10.1109/iEECON45304.2019.8938854
10.23919/CISTI.2018.8399320
10.1016/j.proeng.2011.08.1131
10.1002/adma.201806739
10.1155/2022/4518599
10.1007/s42452-020-04005-1
10.1007/s11119-014-9371-8
10.1109/ACCESS.2020.3023648
10.17762/ijcnis.v13i2.5047
10.1016/j.compag.2015.08.011
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
L6V
M2P
M7S
PATMY
PCBAR
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
DOA
DOI 10.1007/s42452-023-05484-8
DatabaseName SpringerOpen
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Science Journals (ProQuest Database)
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 2523-3971
EndPage 9
ExternalDocumentID oai_doaj_org_article_f712712a78c043a4ad9d3f2f1b139580
10_1007_s42452_023_05484_8
GroupedDBID -EM
2JN
88I
AAHNG
AAJSJ
AAKKN
AAYZJ
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJCF
ABKCH
ABMQK
ABTEG
ABTMW
ABUWG
ABXPI
ACACY
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACMLO
ACOKC
ACTTH
ADKNI
ADMDM
ADURQ
ADYFF
AEFTE
AEJRE
AESTI
AEVTX
AFGXO
AFKRA
AFNRJ
AFQWF
AGDGC
AGGBP
AGJBK
AHBXF
AILAN
AIMYW
AITGF
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ATCPS
AXYYD
AZQEC
BAPOH
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
C24
C6C
CCPQU
DWQXO
EBLON
EBS
EJD
FINBP
FNLPD
FSGXE
GNUQQ
GNWQR
GROUPED_DOAJ
HCIFZ
J-C
KB.
KOV
M2P
M4Y
M7S
NQJWS
NU0
OK1
PATMY
PCBAR
PDBOC
PIMPY
PTHSS
PYCSY
RSV
SOJ
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
AAYXX
CITATION
H13
ZMTXR
3V.
7XB
8FE
8FG
8FK
D1I
L6V
PQEST
PQQKQ
PQUKI
Q9U
ID FETCH-LOGICAL-c429t-97f705cbaca1e3dcaf19895b44b12b1eea77b92c804269ffea42c47f730ce7ae3
IEDL.DBID DOA
ISSN 2523-3963
IngestDate Tue Oct 22 14:44:35 EDT 2024
Mon Nov 04 11:58:44 EST 2024
Fri Nov 22 00:01:56 EST 2024
Sat Dec 16 12:03:30 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Precision agriculture
Internet of things
Accuracy
Machine learning
Sensors
Fertilizer quantity management
SFSS MLR
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-97f705cbaca1e3dcaf19895b44b12b1eea77b92c804269ffea42c47f730ce7ae3
OpenAccessLink https://doaj.org/article/f712712a78c043a4ad9d3f2f1b139580
PQID 2864403114
PQPubID 5758472
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_f712712a78c043a4ad9d3f2f1b139580
proquest_journals_2864403114
crossref_primary_10_1007_s42452_023_05484_8
springer_journals_10_1007_s42452_023_05484_8
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: London
PublicationTitle SN applied sciences
PublicationTitleAbbrev SN Appl. Sci
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References AljarrahIAEffect of image degradation on performance of convolutional neural networksInt J Commun Netw Inf Secur202213221521910.17762/ijcnis.v13i2.4946
ValentiniMdos SantosGBMuller VieiraBMultiple linear regression analysis (MLR) applied for modeling a new WQI equation for monitoring the water quality of Mirim Lagoon, in the state of Rio Grande do Sul—BrazilSN Appl Sci202137010.1007/s42452-020-04005-1
ZamaniASAnandLRaneKPPrabhuPButtarAMPallathadkaHRaghuvanshiADugbakieBNPerformance of machine learning and image processing in plant leaf disease detectionJ Food Qual202220221710.1155/2022/1598796
ZhangFWangFExercise fatigue detection algorithm based on video image information extractionIEEE Access2020819969619970910.1109/ACCESS.2020.3023648
Marques G, Pitarma R (2018) Agricultural environment monitoring system using wireless sensor networks and IoT. In: 2018 13th Iberian conference on information systems and technologies (CISTI), Caceres, Spain, pp 1–6. https://doi.org/10.23919/CISTI.2018.8399320
TurzhanovaKTikhvinskiyVKonshinSSolochshenkoAExperimental performance evaluation of NB-IOT deployment modes in Urban areaInt J Commun Netw Inf Secur202213223023510.17762/ijcnis.v13i2.4969
GutiérrezJVilla-MedinaJFNieto-GaribayAPorta-GándaraMÁAutomated irrigation system using a wireless sensor network and GPRS moduleIEEE Trans Instrum Meas201363116617610.1109/TIM.2013.2276487
OlmsteadALRhodePWLainsPPinillaVConceptual issues for the comparative study of agricultural developmentAgriculture and economic developement in europe since 18702009LondonRouledge2751
Marques G, Aleixo D, Pitarma R (2019) Enhanced hydroponic agriculture environmental monitoring: an internet of things approach. In: Computational science–ICCS 2019. Lecture notes in computer science, vol 11538. Springer, Cham. https://doi.org/10.1007/978-3-030-22744-9_51
SeechurnNTMungurAArmoogumSPudaruthSIssues and challenges for network virtualisationInt J Commun Netw Inf Sec2022132206214
KapsiMTsoutsiCPaschalidouAAlbanisTEnvironmental monitoring and risk assessment of pesticide residues in surface waters of the Louros River (N.W. Greece)Sci Total Environ20196502188219810.1016/j.scitotenv.2018.09.185
UlloSLSinhaGRAdvances in smart environment monitoring systems using IoT and sensorsSensors20202011311310.3390/s20113113
AlhussainTAn energy-efficient scheme for IoT networksInt J Commun Netw Inf Secur202213219920510.17762/ijcnis.v13i2.4934
AlqhataniMAMachine learning techniques for malware detection with challenges and future directionsInt J Commun Netw Inf Secur202213225827010.17762/ijcnis.v13i2.5047
DincerCBruchRCosta RamaEFernández AbedulMTMerkoçiAManzAUrbanGAGüderFDisposable sensors in diagnostics, food, and environmental monitoringAdv Mater201931180673910.1002/adma.201806739
CsotoMInformation flow in agriculture through new channels for improved effectivenessJ Agric Inform201012534
HemamaliniVRajarajeswariSNachiyappanSSambathMDeviTSinghBRaghuvanshiAFood quality inspection and grading using efficient image segmentation and machine learning-based systemJ Food Qual202220221610.1155/2022/5262294
Ahmad N, Hussain A, Ullah I, Zaidi BH (2019) IOT based wireless sensor network for precision agriculture. In: 2019 7th International electrical engineering congress (iEECON), IEEE, pp 1–4
ZhuYSongJDongFApplications of wireless sensor network in the agriculture environment monitoringProcedia Eng20111660861410.1016/j.proeng.2011.08.1131
OjhaTMisraSRaghuwanshiNSWireless sensor networks for agriculture: the state-of-the-art in practice and future challengesComput Electron Agric2015118668410.1016/j.compag.2015.08.011
https://www.kaggle.com/datasets/gdabhishek/fertilizer-prediction
ZhouQXiaoMLeiLZengJHeWLiCShiYA data-secured intelligent IoT system for agricultural environment monitoringWirel Commun Mobile Comput20222022451859910.1155/2022/4518599
RaziQNathVDesign of a smart embedded system for an agricultural update using the internet of thingsNanoelectronics, circuits and communication systems2019SingaporeSpringer37338210.1007/978-981-13-0776-8_34
AnisiMHAbdul-SalaamGAbdullahAHA survey of wireless sensor network approaches and their energy consumption for monitoring farm fields in precision agriculturePrecis Agric201516221623810.1007/s11119-014-9371-8
RawalSIOT based smart irrigation systemInt J Comput Appl20171598711
5484_CR1
5484_CR2
MH Anisi (5484_CR17) 2015; 16
K Turzhanova (5484_CR10) 2022; 13
5484_CR25
IA Aljarrah (5484_CR9) 2022; 13
Y Zhu (5484_CR4) 2011; 16
AS Zamani (5484_CR8) 2022; 2022
M Valentini (5484_CR24) 2021; 3
MA Alqhatani (5484_CR16) 2022; 13
NT Seechurn (5484_CR12) 2022; 13
M Csoto (5484_CR18) 2010; 1
AL Olmstead (5484_CR15) 2009
Q Razi (5484_CR21) 2019
C Dincer (5484_CR6) 2019; 31
F Zhang (5484_CR23) 2020; 8
M Kapsi (5484_CR7) 2019; 650
V Hemamalini (5484_CR11) 2022; 2022
T Ojha (5484_CR20) 2015; 118
J Gutiérrez (5484_CR22) 2013; 63
T Alhussain (5484_CR14) 2022; 13
S Rawal (5484_CR19) 2017; 159
Q Zhou (5484_CR3) 2022; 2022
SL Ullo (5484_CR5) 2020; 20
5484_CR13
References_xml – volume: 13
  start-page: 206
  issue: 2
  year: 2022
  ident: 5484_CR12
  publication-title: Int J Commun Netw Inf Sec
  contributor:
    fullname: NT Seechurn
– volume: 63
  start-page: 166
  issue: 1
  year: 2013
  ident: 5484_CR22
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2013.2276487
  contributor:
    fullname: J Gutiérrez
– ident: 5484_CR2
  doi: 10.1007/978-3-030-22744-9_51
– volume: 1
  start-page: 2534
  year: 2010
  ident: 5484_CR18
  publication-title: J Agric Inform
  contributor:
    fullname: M Csoto
– ident: 5484_CR25
– volume: 2022
  start-page: 1
  year: 2022
  ident: 5484_CR8
  publication-title: J Food Qual
  doi: 10.1155/2022/1598796
  contributor:
    fullname: AS Zamani
– start-page: 373
  volume-title: Nanoelectronics, circuits and communication systems
  year: 2019
  ident: 5484_CR21
  doi: 10.1007/978-981-13-0776-8_34
  contributor:
    fullname: Q Razi
– volume: 2022
  start-page: 1
  year: 2022
  ident: 5484_CR11
  publication-title: J Food Qual
  doi: 10.1155/2022/5262294
  contributor:
    fullname: V Hemamalini
– volume: 20
  start-page: 3113
  issue: 11
  year: 2020
  ident: 5484_CR5
  publication-title: Sensors
  doi: 10.3390/s20113113
  contributor:
    fullname: SL Ullo
– volume: 13
  start-page: 215
  issue: 2
  year: 2022
  ident: 5484_CR9
  publication-title: Int J Commun Netw Inf Secur
  doi: 10.17762/ijcnis.v13i2.4946
  contributor:
    fullname: IA Aljarrah
– volume: 13
  start-page: 230
  issue: 2
  year: 2022
  ident: 5484_CR10
  publication-title: Int J Commun Netw Inf Secur
  doi: 10.17762/ijcnis.v13i2.4969
  contributor:
    fullname: K Turzhanova
– volume: 13
  start-page: 199
  issue: 2
  year: 2022
  ident: 5484_CR14
  publication-title: Int J Commun Netw Inf Secur
  doi: 10.17762/ijcnis.v13i2.4934
  contributor:
    fullname: T Alhussain
– volume: 650
  start-page: 2188
  year: 2019
  ident: 5484_CR7
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.09.185
  contributor:
    fullname: M Kapsi
– ident: 5484_CR13
  doi: 10.1109/iEECON45304.2019.8938854
– ident: 5484_CR1
  doi: 10.23919/CISTI.2018.8399320
– volume: 16
  start-page: 608
  year: 2011
  ident: 5484_CR4
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2011.08.1131
  contributor:
    fullname: Y Zhu
– volume: 159
  start-page: 7
  issue: 8
  year: 2017
  ident: 5484_CR19
  publication-title: Int J Comput Appl
  contributor:
    fullname: S Rawal
– volume: 31
  start-page: 1806739
  year: 2019
  ident: 5484_CR6
  publication-title: Adv Mater
  doi: 10.1002/adma.201806739
  contributor:
    fullname: C Dincer
– volume: 2022
  start-page: 4518599
  year: 2022
  ident: 5484_CR3
  publication-title: Wirel Commun Mobile Comput
  doi: 10.1155/2022/4518599
  contributor:
    fullname: Q Zhou
– volume: 3
  start-page: 70
  year: 2021
  ident: 5484_CR24
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-020-04005-1
  contributor:
    fullname: M Valentini
– volume: 16
  start-page: 216
  issue: 2
  year: 2015
  ident: 5484_CR17
  publication-title: Precis Agric
  doi: 10.1007/s11119-014-9371-8
  contributor:
    fullname: MH Anisi
– start-page: 27
  volume-title: Agriculture and economic developement in europe since 1870
  year: 2009
  ident: 5484_CR15
  contributor:
    fullname: AL Olmstead
– volume: 8
  start-page: 199696
  year: 2020
  ident: 5484_CR23
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3023648
  contributor:
    fullname: F Zhang
– volume: 13
  start-page: 258
  issue: 2
  year: 2022
  ident: 5484_CR16
  publication-title: Int J Commun Netw Inf Secur
  doi: 10.17762/ijcnis.v13i2.5047
  contributor:
    fullname: MA Alqhatani
– volume: 118
  start-page: 66
  year: 2015
  ident: 5484_CR20
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2015.08.011
  contributor:
    fullname: T Ojha
SSID ssj0002793483
ssib051670015
ssib054396270
Score 2.2995718
Snippet Food instability has been linked to infertility, health issues, accelerated aging, incorrect insulin regulation, and more. Innovative approaches increased food...
Abstract Food instability has been linked to infertility, health issues, accelerated aging, incorrect insulin regulation, and more. Innovative approaches...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 264
SubjectTerms Agricultural production
Agriculture
Algorithms
Applied and Technical Physics
Chemistry/Food Science
Classification
Crop diseases
Crop yield
Crops
Data acquisition
Digital agriculture
Earth Sciences
Engineering
Environment
Fertilizer quantity management
Fertilizers
Food availability
Food quality
Infertility
Insulin
Internet of Things
Learning algorithms
Machine learning
Materials Science
Meteorological data
Moisture effects
Monitoring
Monitoring systems
Pest control
Plant diseases
Precision agriculture
Precision farming
Recall
Recommender systems
Regression
Sensors
SFSS MLR
Soil moisture
Soil temperature
Weathering
Title Internet of things driven multilinear regression technique for fertilizer recommendation for precision agriculture
URI https://link.springer.com/article/10.1007/s42452-023-05484-8
https://www.proquest.com/docview/2864403114
https://doaj.org/article/f712712a78c043a4ad9d3f2f1b139580
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxELVaTuVQUQoiFJAP3FqL2GvH3iNtE-XEBZB6s_wxjkA0QUu48Os79jqBIKFekPa0tiXv-K1nxjN-Q8hpkkoFLgMLzkUmFU_MRR8Z4llA0sloyEcD00t98cf8HmeanHWpr5wT1tMD94I7S5oLfJw2YSgbJ11sY5NE4h5tF2V6b304euFMIZIUz7dPnhWdQrU7EhWZtyXc1jaycHQK9MQYtjb1Rk25V5fDgYKhOmM41EhmNrRWIfffsEhfBVGLbprskM_VqKTn_cd8IR9gvku2X1ANfiVdf_QHS7pIdFmKddLY5a2OlpzCbG26jnYw6xNj53TN7krRrqUp51_f3TxB7oMo_Qu1GlNpve9qqR7qZl1l84A9cj0ZX_2aslpvgQXUSkvW6qSHKngXHIcmBpdyQpXyUnouPAdwWvtWBJP9rjYlcFIEiYOaYQDtoNknW_PFHA4IjQ6HoOWGe63MJloLsVXJiOA9j6PUDsj3lTztfU-rYdcEykX6FqVvi_StGZCfWeTrnpkSu7xAoNgKFPs_oAzI0WrBbP1PH6wwOD_c17gckB-rRXxufntKh-8xpW_kU65e3-cGHpGtZfcIx-TjQ3w8KXD-BwRZ8_4
link.rule.ids 315,782,786,866,2106,27933,27934,48344,48347,49649,49652
linkProvider Directory of Open Access Journals
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxQxDLbo9gA98EYsFMiBG0TaZDJN5lhoq0WUXihSe4rycFYg2K2m2wu_HieTWSiCA0hzmiSjTOzYTmx_BniZVNsGoQIPzkWuWpG4iz5y4meJSSejMV8NzD_qkzNzcJhhctSYC1Oi3UeXZJHUm2S37KOTnHQMJzPDKG62YDujncsJbO-fnZ8fjHzUipx7UtXcl-Jc6xpVEDklnbt4Q0xX82f-_OFrOqpA-V-zP39zmRZNdHTn__7hLtyulifbH1jlHtzA5X3Y-QWP8AH0w_0grtkqsXWp6Mlin-UhK4GH2SR1PetxMUTPLtkGApaR8ctSDtL--vk75j40o29YSzaV1ou-1vNhbtFXyA98CJ-ODk_fznktysADqa4173TSszZ4F5zAJgaXctRV65XyQnqB6LT2nQwmH866lNApGRQNamYBtcPmEUyWqyU-BhYdDSHzjgSyynZch7Frk5HBexH3UjeFVyMZ7MWAvWE3KMtlJS2tpC0rac0U3mRKbXpm3OzyYtUvbN2GNmkh6XHahJlqnHKxi02SSXiyhFszm8LuSGdbN_OllYbmR8JPqCm8Hun6s_nvU3ryb91fwM356Ydje_zu5P1TuJUL2w9hg7swWfdX-Ay2LuPV88rtPwCij_lk
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RVkJw4F2xtIAP3MDq2nGwc2zZropAFRIgtSfLzxWoZFdpeuHXM3acQBEcEFJOsR059tjz2TPzDcCLKOraMeGoM8ZTUbNIjbeeojzzEGVUMqSrgZOP8vRMLY4TTc4UxZ-93UeT5BDTkFia2v5g4-PBFPiW7HWcor6hCDmUoGoLdtK1GB6_dg7Pzs8Xo0zVLMWhFJX3NRvamkpkdk6OZzBaoQCWWJo_f_iavsq0_tew6G_m06yVlnf__3_uwZ2CSMnhIEL34UZoH8DtX3gKH0I33BuGnqwj6XOmT-K7tE-S7JCYoKrpSBdWg1dtSyZqWIKgmMTkvH3x5XtIdbB330JJ5ZRLN13J80PMqitUIOERfF4ef3pzQkuyBupQpfW0kVHOa2eNMyxU3pmYvLFqK4Rl3LIQjJS24U6lQ1sTYzCCO4GNqrkL0oRqF7bbdRseA_EGmyDsw41aJHzXBN_UUXFnLfOvYzODl-OU6M3AyaEn9uU8khpHUueR1GoGR2nWppqJTzu_WHcrXZanjpJxfIxUbi4qI4xvfBV5ZBYRcq3mM9gf51yXRX6pucL-4abIxAxejXP8s_jvXXryb9Wfw80Pi6V-__b03R7cSvnuB2_Cfdjuu6vwFLYu_dWzIvg_AGuQAlU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Internet+of+things+driven+multilinear+regression+technique+for+fertilizer+recommendation+for+precision+agriculture&rft.jtitle=SN+applied+sciences&rft.au=Kollu%2C+Praveen+Kumar&rft.au=Bangare%2C+Manoj+L.&rft.au=Hari+Prasad%2C+P.+Venkata&rft.au=Bangare%2C+Pushpa+M.&rft.date=2023-10-01&rft.pub=Springer+International+Publishing&rft.issn=2523-3963&rft.eissn=2523-3971&rft.volume=5&rft.issue=10&rft_id=info:doi/10.1007%2Fs42452-023-05484-8&rft.externalDocID=10_1007_s42452_023_05484_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2523-3963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2523-3963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2523-3963&client=summon