Holocene environmental and climate evolution of central west Patagonia as reconstructed from lacustrine sediments of Meseta Chile Chico (46.5° S, Chile)

Holocene environmental changes in Patagonia were mostly shaped by fluctuating ice cover recession. Consequently, environmental reconstructions are largely based on discontinuous moraine chronologies from valley deposits. Here, we present a 3 m long continuous sediment record recovered from Laguna Me...

Full description

Saved in:
Bibliographic Details
Published in:Climate of the past Vol. 20; no. 4; pp. 817 - 839
Main Authors: Franco, Carolina, Maldonado, Antonio, Ohlendorf, Christian, Gebhardt, A. Catalina, de Porras, María Eugenia, Nuevo-Delaunay, Amalia, Méndez, César, Zolitschka, Bernd
Format: Journal Article
Language:English
Published: Katlenburg-Lindau Copernicus GmbH 08-04-2024
Copernicus Publications
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Holocene environmental changes in Patagonia were mostly shaped by fluctuating ice cover recession. Consequently, environmental reconstructions are largely based on discontinuous moraine chronologies from valley deposits. Here, we present a 3 m long continuous sediment record recovered from Laguna Meseta (LME), a lake located on Meseta Chile Chico. Its altitude and location relative to the North Patagonian Icefield provide a unique opportunity to reconstruct the glacial history and related environmental dynamics.
AbstractList Holocene environmental changes in Patagonia were mostly shaped by fluctuating ice cover recession. Consequently, environmental reconstructions are largely based on discontinuous moraine chronologies from valley deposits. Here, we present a 3 m long continuous sediment record recovered from Laguna Meseta (LME), a lake located on Meseta Chile Chico. Its altitude and location relative to the North Patagonian Icefield provide a unique opportunity to reconstruct the glacial history and related environmental dynamics.
Holocene environmental changes in Patagonia were mostly shaped by fluctuating ice cover recession. Consequently, environmental reconstructions are largely based on discontinuous moraine chronologies from valley deposits. Here, we present a 3 m long continuous sediment record recovered from Laguna Meseta (LME), a lake located on Meseta Chile Chico. Its altitude and location relative to the North Patagonian Icefield provide a unique opportunity to reconstruct the glacial history and related environmental dynamics. Our radiocarbon chronology constrains sedimentation to the last ∼10 000 years and provides a minimum age for postglacial ice-free lacustrine conditions, due to a westward retreat of the ice cap. Lacustrine productivity reached its maximum at the start of the lake phase and decreased afterwards. Between 5500 and 4600 cal yr BP, a major shift towards allochthonous sediment accumulation occurred, caused by an abrupt increase in clastic deposition from basaltic lithologies of the Meseta Chile Chico. This episode correlates with the precipitation-driven Mid-Holocene glacier advance of Patagonian glaciers and suggests that conditions were colder and/or wetter on Meseta Chile Chico at that time. After 4600 cal yr BP, these conditions continued to supply LME with clastic sediments until a stepped decrease around 900 cal yr BP. Thereupon, lacustrine productivity distinctly increased and stabilized around 300 cal yr BP. Our findings indicate that changes in sedimentation on Meseta Chile Chico were mainly controlled by regional variability in the precipitation. Furthermore, strong correlation between our records and available proxies for oscillations of the Southern Hemisphere Westerly Winds suggest a pronounced climatic control by this prominent wind system for central west Patagonia during the last 10 000 years.
Holocene environmental changes in Patagonia were mostly shaped by fluctuating ice cover recession. Consequently, environmental reconstructions are largely based on discontinuous moraine chronologies from valley deposits. Here, we present a 3 m long continuous sediment record recovered from Laguna Meseta (LME), a lake located on Meseta Chile Chico. Its altitude and location relative to the North Patagonian Icefield provide a unique opportunity to reconstruct the glacial history and related environmental dynamics. Our radiocarbon chronology constrains sedimentation to the last ∼10 000  years and provides a minimum age for postglacial ice-free lacustrine conditions, due to a westward retreat of the ice cap. Lacustrine productivity reached its maximum at the start of the lake phase and decreased afterwards. Between 5500 and 4600 cal yr BP, a major shift towards allochthonous sediment accumulation occurred, caused by an abrupt increase in clastic deposition from basaltic lithologies of the Meseta Chile Chico. This episode correlates with the precipitation-driven Mid-Holocene glacier advance of Patagonian glaciers and suggests that conditions were colder and/or wetter on Meseta Chile Chico at that time. After 4600 cal yr BP, these conditions continued to supply LME with clastic sediments until a stepped decrease around 900 cal yr BP. Thereupon, lacustrine productivity distinctly increased and stabilized around 300 cal yr BP. Our findings indicate that changes in sedimentation on Meseta Chile Chico were mainly controlled by regional variability in the precipitation. Furthermore, strong correlation between our records and available proxies for oscillations of the Southern Hemisphere Westerly Winds suggest a pronounced climatic control by this prominent wind system for central west Patagonia during the last 10 000 years.
Holocene environmental changes in Patagonia were mostly shaped by fluctuating ice cover recession. Consequently, environmental reconstructions are largely based on discontinuous moraine chronologies from valley deposits. Here, we present a 3 m long continuous sediment record recovered from Laguna Meseta (LME), a lake located on Meseta Chile Chico. Its altitude and location relative to the North Patagonian Icefield provide a unique opportunity to reconstruct the glacial history and related environmental dynamics.Our radiocarbon chronology constrains sedimentation to the last ∼10000 years and provides a minimum age for postglacial ice-free lacustrine conditions, due to a westward retreat of the ice cap. Lacustrine productivity reached its maximum at the start of the lake phase and decreased afterwards. Between 5500 and 4600 cal yr BP, a major shift towards allochthonous sediment accumulation occurred, caused by an abrupt increase in clastic deposition from basaltic lithologies of the Meseta Chile Chico. This episode correlates with the precipitation-driven Mid-Holocene glacier advance of Patagonian glaciers and suggests that conditions were colder and/or wetter on Meseta Chile Chico at that time. After 4600 cal yr BP, these conditions continued to supply LME with clastic sediments until a stepped decrease around 900 cal yr BP. Thereupon, lacustrine productivity distinctly increased and stabilized around 300 cal yr BP.Our findings indicate that changes in sedimentation on Meseta Chile Chico were mainly controlled by regional variability in the precipitation. Furthermore, strong correlation between our records and available proxies for oscillations of the Southern Hemisphere Westerly Winds suggest a pronounced climatic control by this prominent wind system for central west Patagonia during the last 10 000 years.
Holocene environmental changes in Patagonia were mostly shaped by fluctuating ice cover recession. Consequently, environmental reconstructions are largely based on discontinuous moraine chronologies from valley deposits. Here, we present a 3 m long continuous sediment record recovered from Laguna Meseta (LME), a lake located on Meseta Chile Chico. Its altitude and location relative to the North Patagonian Icefield provide a unique opportunity to reconstruct the glacial history and related environmental dynamics. Our radiocarbon chronology constrains sedimentation to the last â¼10 000 years and provides a minimum age for postglacial ice-free lacustrine conditions, due to a westward retreat of the ice cap. Lacustrine productivity reached its maximum at the start of the lake phase and decreased afterwards. Between 5500 and 4600 cal yr BP, a major shift towards allochthonous sediment accumulation occurred, caused by an abrupt increase in clastic deposition from basaltic lithologies of the Meseta Chile Chico. This episode correlates with the precipitation-driven Mid-Holocene glacier advance of Patagonian glaciers and suggests that conditions were colder and/or wetter on Meseta Chile Chico at that time. After 4600 cal yr BP, these conditions continued to supply LME with clastic sediments until a stepped decrease around 900 cal yr BP. Thereupon, lacustrine productivity distinctly increased and stabilized around 300 cal yr BP. Our findings indicate that changes in sedimentation on Meseta Chile Chico were mainly controlled by regional variability in the precipitation. Furthermore, strong correlation between our records and available proxies for oscillations of the Southern Hemisphere Westerly Winds suggest a pronounced climatic control by this prominent wind system for central west Patagonia during the last 10 000 years.
Audience Academic
Author Nuevo-Delaunay, Amalia
Méndez, César
Gebhardt, A. Catalina
Zolitschka, Bernd
Maldonado, Antonio
Franco, Carolina
de Porras, María Eugenia
Ohlendorf, Christian
Author_xml – sequence: 1
  fullname: Franco, Carolina
– sequence: 2
  fullname: Maldonado, Antonio
– sequence: 3
  fullname: Ohlendorf, Christian
– sequence: 4
  fullname: Gebhardt, A. Catalina
– sequence: 5
  fullname: de Porras, María Eugenia
– sequence: 6
  fullname: Nuevo-Delaunay, Amalia
– sequence: 7
  fullname: Méndez, César
– sequence: 8
  fullname: Zolitschka, Bernd
BookMark eNptkt9qFTEQxhepYFu99TrgjQX3mL-72ctyqO2BimL1OmST2WMOu8kxyVb7KL6Fz-CTmfWIWiiBTJh882PmY06qIx88VNVzgleCdPy12dcU15K0JVD-qDomkvC6Y4we_fd-Up2ktMOYS9KJ4-r7VRiDAQ8I_K2LwU_gsx6R9haZ0U06l5_bMM7ZBY_CgIo2xyL4Cimj9zrrbfBOI51QBBN8ynE2GSwaYpjQqM1cMq7gE1i3sNMCeQsJskbrz26E5TYBveTNSvz8gW5eHdJnT6vHgx4TPPsTT6tPby4-rq_q63eXm_X5dW047XKZSbZ9ZygIkLIZDAPoe8MayhvdYAyEWCatHKwxlPSC9BQz1jW87QVvWWvZabU5cG3QO7WPZeZ4p4J26ncixK3SMTszgmo0MaJnHWDLOBed1IQyxqVgzBA-yMJ6cWDtY_gyF4fULszRl_YVw4zjTrRY_FNtdYE6P4TiqJlcMuq8lV3pnXBcVKsHVOVYmIphHobi0v2Cs3sFRZPhW97qOSW1ufnwINzEkFKE4e_gBKtlm5TZK4pV2Sa1bBP7BbgevOc
Cites_doi 10.5194/cp-13-879-2017
10.1016/j.yqres.2004.11.002
10.1175/JCLI-D-12-00001.1
10.1016/j.quascirev.2011.10.015
10.5194/cp-11-449-2015
10.1007/s00382-017-4015-0
10.1016/j.quascirev.2021.106810
10.1080/17445647.2017.1351908
10.1038/s41598-018-21836-6
10.1016/j.quascirev.2019.05.029
10.1016/j.quascirev.2007.07.007
10.1016/j.quascirev.2012.06.015
10.1016/j.yqres.2009.01.012
10.1016/j.geomorph.2005.02.003
10.1017/RDC.2020.59
10.1016/j.quascirev.2015.12.021
10.1016/j.quageo.2006.06.001
10.1016/j.lithos.2004.09.024
10.1126/science.1222135
10.1016/j.jsames.2005.07.004
10.1016/j.quascirev.2011.11.008
10.1017/qua.2018.93
10.1016/j.scitotenv.2020.143684
10.1177/095968369400400305
10.5027/andgeoV43n1-a01
10.1007/s004450050193
10.1111/j.0435-3676.2005.00263.x
10.1038/srep02118
10.1016/0967-0637(93)90140-X
10.1017/qua.2021.45
10.1038/ngeo959
10.1111/j.0435-3676.2005.00259.x
10.4067/S0717-73562022005000203
10.1016/j.gloplacha.2004.03.002
10.4067/S0716-02082004000200003
10.1016/j.quascirev.2014.06.026
10.1016/j.earscirev.2019.102996
10.1130/G21144.1
10.1016/j.quascirev.2010.01.020
10.1016/j.epsl.2007.04.040
10.1038/ncomms5375
10.3189/2012JoG12J026
10.1177/0959683607086771
10.5027/andgeoV44n3-a01
10.1016/j.quascirev.2018.10.036
10.1007/978-94-017-9849-5_21
10.2307/519583
10.1016/j.epsl.2020.116077
10.1016/j.quascirev.2010.03.005
10.1016/j.quascirev.2012.07.017
10.1016/0012-821X(88)90082-9
10.1002/jqs.2847
10.1214/ba/1339616472
10.1016/j.quascirev.2019.105904
10.1016/j.quascirev.2018.09.025
10.1002/1099-1417(200005)15:4<395::AID-JQS535>3.0.CO;2-H
10.3389/feart.2022.833637
10.1177/0959683616678460
10.5194/cp-10-1063-2014
10.5194/cp-8-519-2012
10.1006/qres.1994.1049
10.3389/fevo.2016.00100
10.1007/978-94-017-9849-5_7
10.1017/qua.2018.81
10.1016/j.palaeo.2010.02.011
10.1007/s00300-017-2096-1
10.1016/0033-5894(76)90047-8
10.1016/j.quascirev.2019.01.014
10.3389/fevo.2017.00177
10.1016/j.anthro.2023.103118
10.1016/j.quascirev.2016.03.014
10.1016/j.quascirev.2015.12.010
10.1029/2001PA000727
10.1016/0277-3791(88)90005-4
10.1144/GSL.SP.2006.267.01.04
10.1177/0959683611425545
10.1016/j.palaeo.2007.07.008
10.2307/1552024
10.1016/j.quascirev.2017.10.013
10.1038/nclimate2235
10.1029/2010PA002049
10.1016/j.quascirev.2009.07.011
10.1016/j.earscirev.2020.103152
10.1130/B25177.1
10.3389/feart.2021.813433
10.1038/srep21064
10.1016/j.quascirev.2018.01.011
10.1007/s00445-015-0991-2
10.1093/petrology/27.3.745
10.1007/s00445-007-0148-z
10.4324/9780203505205
10.1016/j.quascirev.2012.10.011
10.1016/j.gloplacha.2006.11.020
ContentType Journal Article
Copyright COPYRIGHT 2024 Copernicus GmbH
2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 Copernicus GmbH
– notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7TG
7TN
7UA
ABUWG
AFKRA
AZQEC
BENPR
BFMQW
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H96
H97
HCIFZ
KL.
L.G
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.5194/cp-20-817-2024
DatabaseName CrossRef
Gale in Context: Science
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Continental Europe Database
ProQuest Central China
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
CrossRef


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1814-9332
EndPage 839
ExternalDocumentID oai_doaj_org_article_6a1c5b39e0d344598a123348533c14f8
A789362140
10_5194_cp_20_817_2024
GeographicLocations Chile
Northern Hemisphere
GeographicLocations_xml – name: Chile
– name: Northern Hemisphere
GroupedDBID 29B
2WC
2XV
3V.
4P2
5GY
5VS
8FE
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ADBBV
AENEX
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BBORY
BCNDV
BENPR
BFMQW
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IEP
ISR
ITC
K6-
KQ8
LK5
M7R
M~E
OK1
P2P
PCBAR
PIMPY
PQQKQ
PROAC
Q2X
RIG
RKB
RNS
TR2
~02
7TG
7TN
7UA
AZQEC
C1K
DWQXO
F1W
H96
H97
KL.
L.G
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c429t-9387b9c2e5e886fc3eebbc36246a600e11d38d8fdcc21b51b20339647b54737d3
IEDL.DBID DOA
ISSN 1814-9332
1814-9324
IngestDate Tue Oct 22 14:54:56 EDT 2024
Thu Oct 10 16:23:32 EDT 2024
Tue Nov 19 21:37:18 EST 2024
Tue Nov 12 23:41:36 EST 2024
Sat Sep 28 21:26:27 EDT 2024
Fri Nov 22 02:08:56 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-9387b9c2e5e886fc3eebbc36246a600e11d38d8fdcc21b51b20339647b54737d3
ORCID 0000-0001-8256-0420
0000-0002-3227-0676
0000-0003-2735-7950
OpenAccessLink https://doaj.org/article/6a1c5b39e0d344598a123348533c14f8
PQID 3034095705
PQPubID 105735
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_6a1c5b39e0d344598a123348533c14f8
proquest_journals_3034095705
gale_infotracmisc_A789362140
gale_infotracacademiconefile_A789362140
gale_incontextgauss_ISR_A789362140
crossref_primary_10_5194_cp_20_817_2024
PublicationCentury 2000
PublicationDate 2024-04-08
PublicationDateYYYYMMDD 2024-04-08
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-08
  day: 08
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Climate of the past
PublicationYear 2024
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref14
ref97
ref96
ref11
ref99
ref10
ref98
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref78
ref75
ref74
ref77
ref102
ref76
ref2
ref1
ref71
ref70
ref73
ref72
ref68
ref67
ref69
ref64
ref63
ref66
ref65
ref60
ref62
ref61
References_xml – ident: ref49
  doi: 10.5194/cp-13-879-2017
– ident: ref62
– ident: ref36
  doi: 10.1016/j.yqres.2004.11.002
– ident: ref35
  doi: 10.1175/JCLI-D-12-00001.1
– ident: ref47
  doi: 10.1016/j.quascirev.2011.10.015
– ident: ref2
  doi: 10.5194/cp-11-449-2015
– ident: ref18
  doi: 10.1007/s00382-017-4015-0
– ident: ref9
  doi: 10.1016/j.quascirev.2021.106810
– ident: ref7
  doi: 10.1080/17445647.2017.1351908
– ident: ref71
  doi: 10.1038/s41598-018-21836-6
– ident: ref83
  doi: 10.1016/j.quascirev.2019.05.029
– ident: ref43
  doi: 10.1016/j.quascirev.2007.07.007
– ident: ref30
– ident: ref24
  doi: 10.1016/j.quascirev.2012.06.015
– ident: ref33
  doi: 10.1016/j.yqres.2009.01.012
– ident: ref38
  doi: 10.1016/j.geomorph.2005.02.003
– ident: ref50
  doi: 10.1017/RDC.2020.59
– ident: ref97
  doi: 10.1016/j.quascirev.2015.12.021
– ident: ref27
  doi: 10.1016/j.quageo.2006.06.001
– ident: ref28
  doi: 10.1016/j.lithos.2004.09.024
– ident: ref66
  doi: 10.1126/science.1222135
– ident: ref80
  doi: 10.1016/j.jsames.2005.07.004
– ident: ref82
– ident: ref98
  doi: 10.1016/j.quascirev.2011.11.008
– ident: ref32
  doi: 10.1017/qua.2018.93
– ident: ref78
  doi: 10.1016/j.scitotenv.2020.143684
– ident: ref60
  doi: 10.1177/095968369400400305
– ident: ref91
  doi: 10.5027/andgeoV43n1-a01
– ident: ref74
  doi: 10.1007/s004450050193
– ident: ref96
  doi: 10.1111/j.0435-3676.2005.00263.x
– ident: ref12
  doi: 10.1038/srep02118
– ident: ref72
  doi: 10.1016/0967-0637(93)90140-X
– ident: ref84
  doi: 10.1017/qua.2021.45
– ident: ref59
  doi: 10.1038/ngeo959
– ident: ref94
  doi: 10.1111/j.0435-3676.2005.00259.x
– ident: ref77
  doi: 10.4067/S0717-73562022005000203
– ident: ref37
  doi: 10.1016/j.gloplacha.2004.03.002
– ident: ref75
  doi: 10.4067/S0716-02082004000200003
– ident: ref93
  doi: 10.1016/j.quascirev.2014.06.026
– ident: ref8
  doi: 10.1016/j.earscirev.2019.102996
– ident: ref26
  doi: 10.1130/G21144.1
– ident: ref48
  doi: 10.1016/j.quascirev.2010.01.020
– ident: ref58
  doi: 10.1016/j.epsl.2007.04.040
– ident: ref70
  doi: 10.1038/ncomms5375
– ident: ref19
  doi: 10.3189/2012JoG12J026
– ident: ref46
  doi: 10.1177/0959683607086771
– ident: ref100
  doi: 10.5027/andgeoV44n3-a01
– ident: ref95
  doi: 10.1016/j.quascirev.2018.10.036
– ident: ref102
  doi: 10.1007/978-94-017-9849-5_21
– ident: ref14
  doi: 10.2307/519583
– ident: ref55
  doi: 10.1016/j.epsl.2020.116077
– ident: ref53
  doi: 10.1016/j.quascirev.2010.03.005
– ident: ref89
– ident: ref81
– ident: ref56
  doi: 10.1016/j.quascirev.2012.07.017
– ident: ref31
  doi: 10.1016/0012-821X(88)90082-9
– ident: ref76
  doi: 10.1002/jqs.2847
– ident: ref11
  doi: 10.1214/ba/1339616472
– ident: ref44
  doi: 10.1016/j.quascirev.2019.105904
– ident: ref20
  doi: 10.1016/j.quascirev.2018.09.025
– ident: ref79
  doi: 10.1002/1099-1417(200005)15:4<395::AID-JQS535>3.0.CO;2-H
– ident: ref63
  doi: 10.3389/feart.2022.833637
– ident: ref65
  doi: 10.1177/0959683616678460
– ident: ref25
  doi: 10.5194/cp-10-1063-2014
– ident: ref10
  doi: 10.5194/cp-8-519-2012
– ident: ref61
– ident: ref51
  doi: 10.1006/qres.1994.1049
– ident: ref67
  doi: 10.3389/fevo.2016.00100
– ident: ref22
  doi: 10.1007/978-94-017-9849-5_7
– ident: ref101
  doi: 10.1017/qua.2018.81
– ident: ref13
  doi: 10.1016/j.palaeo.2010.02.011
– ident: ref23
– ident: ref34
  doi: 10.1007/s00300-017-2096-1
– ident: ref69
  doi: 10.1016/0033-5894(76)90047-8
– ident: ref73
  doi: 10.1016/j.quascirev.2019.01.014
– ident: ref52
  doi: 10.3389/fevo.2017.00177
– ident: ref68
  doi: 10.1016/j.anthro.2023.103118
– ident: ref92
– ident: ref54
  doi: 10.1016/j.quascirev.2016.03.014
– ident: ref88
  doi: 10.1016/j.quascirev.2015.12.010
– ident: ref57
  doi: 10.1029/2001PA000727
– ident: ref16
  doi: 10.1016/0277-3791(88)90005-4
– ident: ref17
  doi: 10.1144/GSL.SP.2006.267.01.04
– ident: ref29
  doi: 10.1177/0959683611425545
– ident: ref64
  doi: 10.1016/j.palaeo.2007.07.008
– ident: ref3
  doi: 10.2307/1552024
– ident: ref6
  doi: 10.1016/j.quascirev.2017.10.013
– ident: ref1
  doi: 10.1038/nclimate2235
– ident: ref4
– ident: ref15
  doi: 10.1029/2010PA002049
– ident: ref39
  doi: 10.1016/j.quascirev.2009.07.011
– ident: ref21
  doi: 10.1016/j.earscirev.2020.103152
– ident: ref87
  doi: 10.1130/B25177.1
– ident: ref86
  doi: 10.3389/feart.2021.813433
– ident: ref41
  doi: 10.1038/srep21064
– ident: ref85
  doi: 10.1016/j.quascirev.2018.01.011
– ident: ref99
  doi: 10.1007/s00445-015-0991-2
– ident: ref5
  doi: 10.1093/petrology/27.3.745
– ident: ref90
  doi: 10.1007/s00445-007-0148-z
– ident: ref42
  doi: 10.4324/9780203505205
– ident: ref40
  doi: 10.1016/j.quascirev.2012.10.011
– ident: ref45
  doi: 10.1016/j.gloplacha.2006.11.020
SSID ssj0048195
Score 2.4113586
Snippet Holocene environmental changes in Patagonia were mostly shaped by fluctuating ice cover recession. Consequently, environmental reconstructions are largely...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 817
SubjectTerms Allochthonous deposits
Archives & records
Carbon 14
Climate
Climate control
Climatic evolution
Environmental aspects
Environmental changes
Glacial drift
Glacial periods
Glaciers
Holocene
Holocene glaciation
Ice caps
Ice cover
Ice fields
Ice sheets
Lacustrine sedimentation
Lacustrine sediments
Lakes
Moraines
Oscillations
Precipitation
Precipitation variability
Productivity
Radiocarbon dating
Sediment
Sedimentation
Sediments
Sediments (Geology)
Southern Hemisphere
Spatial variations
Topography
Valleys
Vegetation
Westerlies
Winds
Title Holocene environmental and climate evolution of central west Patagonia as reconstructed from lacustrine sediments of Meseta Chile Chico (46.5° S, Chile)
URI https://www.proquest.com/docview/3034095705
https://doaj.org/article/6a1c5b39e0d344598a123348533c14f8
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagJy6IX7FQkIUQPxKhie3EzrGUVsuhCLEgcbPssY0qVcmKtJy58gy8BM_Ao_AkzNjZij0gLlw2u_HIcjyTmW_Wns-MPXIGuph6zE6SV5USylQYdxItF4Jsgkyyo3rn5Uq_-WheHRJNzsVRX7QnrNADl4nb61wDrZd9rINUqu2NQ18rFUYZCY1Kpcy37jbJVPHBilaHKNUyjaoQoahC14hoRe3BGi0DB6TxItRWOMqs_X_zzTngHF1jV2ekyPfLCK-zS3G4wRbHCHLHz_m_cP6YH5yeIOLMv26y70v8Aui7-B_Va9iDGwKHLIgtX2ZT42Pi88ZMTmwJ_K2j9anhxHE38ZwmF2rZGDiVoPBTB_mMD-x-woCXK-Ook-M4xTPHiSI50ieM_KnqXrQ_f_z6-m31vDQ8u8U-HB2-P1hW89kLFWCEOsNJM9r3IGIbjekSyBi9B4x2qnOIkWKDejTBpAAgGt82XtRSUlWrp8OMdZC32c4wDvEO472AXkvfNDph7qkRgXTSq144o53uRViwJxsV2HWh2LCYmpCyLKytqC0qy5KyFuwlaehCiqix8w00GDsbjP2XwSzYQ9KvJfKLgXbXfHLn02Rfr97ZfY3orROYc-KYZqE0oibAzcUK-ETEl7UlubsliW8nbDdvzMjO3mGyCBswrW513d79H090j12h2cn7icwu20HriPfZ5SmcP8hvxW87qA3W
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Holocene+environmental+and+climate+evolution+of+central+west+Patagonia+as+reconstructed+from+lacustrine+sediments+of+Meseta+Chile+Chico+%2846.5%C2%B0+S%2C+Chile%29&rft.jtitle=Climate+of+the+past&rft.au=Franco%2C+Carolina&rft.au=Maldonado%2C+Antonio&rft.au=Ohlendorf%2C+Christian&rft.au=Gebhardt%2C+A+Catalina&rft.date=2024-04-08&rft.pub=Copernicus+GmbH&rft.issn=1814-9324&rft.eissn=1814-9332&rft.volume=20&rft.issue=4&rft.spage=817&rft.epage=839&rft_id=info:doi/10.5194%2Fcp-20-817-2024&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1814-9332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1814-9332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1814-9332&client=summon