Holocene environmental and climate evolution of central west Patagonia as reconstructed from lacustrine sediments of Meseta Chile Chico (46.5° S, Chile)
Holocene environmental changes in Patagonia were mostly shaped by fluctuating ice cover recession. Consequently, environmental reconstructions are largely based on discontinuous moraine chronologies from valley deposits. Here, we present a 3 m long continuous sediment record recovered from Laguna Me...
Saved in:
Published in: | Climate of the past Vol. 20; no. 4; pp. 817 - 839 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Katlenburg-Lindau
Copernicus GmbH
08-04-2024
Copernicus Publications |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Holocene environmental changes in Patagonia were mostly shaped by fluctuating ice cover recession. Consequently, environmental reconstructions are largely based on discontinuous moraine chronologies from valley deposits. Here, we present a 3 m long continuous sediment record recovered from Laguna Meseta (LME), a lake located on Meseta Chile Chico. Its altitude and location relative to the North Patagonian Icefield provide a unique opportunity to reconstruct the glacial history and related environmental dynamics. |
---|---|
AbstractList | Holocene environmental changes in Patagonia were mostly shaped by fluctuating ice cover recession. Consequently, environmental reconstructions are largely based on discontinuous moraine chronologies from valley deposits. Here, we present a 3 m long continuous sediment record recovered from Laguna Meseta (LME), a lake located on Meseta Chile Chico. Its altitude and location relative to the North Patagonian Icefield provide a unique opportunity to reconstruct the glacial history and related environmental dynamics. Holocene environmental changes in Patagonia were mostly shaped by fluctuating ice cover recession. Consequently, environmental reconstructions are largely based on discontinuous moraine chronologies from valley deposits. Here, we present a 3 m long continuous sediment record recovered from Laguna Meseta (LME), a lake located on Meseta Chile Chico. Its altitude and location relative to the North Patagonian Icefield provide a unique opportunity to reconstruct the glacial history and related environmental dynamics. Our radiocarbon chronology constrains sedimentation to the last ∼10 000 years and provides a minimum age for postglacial ice-free lacustrine conditions, due to a westward retreat of the ice cap. Lacustrine productivity reached its maximum at the start of the lake phase and decreased afterwards. Between 5500 and 4600 cal yr BP, a major shift towards allochthonous sediment accumulation occurred, caused by an abrupt increase in clastic deposition from basaltic lithologies of the Meseta Chile Chico. This episode correlates with the precipitation-driven Mid-Holocene glacier advance of Patagonian glaciers and suggests that conditions were colder and/or wetter on Meseta Chile Chico at that time. After 4600 cal yr BP, these conditions continued to supply LME with clastic sediments until a stepped decrease around 900 cal yr BP. Thereupon, lacustrine productivity distinctly increased and stabilized around 300 cal yr BP. Our findings indicate that changes in sedimentation on Meseta Chile Chico were mainly controlled by regional variability in the precipitation. Furthermore, strong correlation between our records and available proxies for oscillations of the Southern Hemisphere Westerly Winds suggest a pronounced climatic control by this prominent wind system for central west Patagonia during the last 10 000 years. Holocene environmental changes in Patagonia were mostly shaped by fluctuating ice cover recession. Consequently, environmental reconstructions are largely based on discontinuous moraine chronologies from valley deposits. Here, we present a 3 m long continuous sediment record recovered from Laguna Meseta (LME), a lake located on Meseta Chile Chico. Its altitude and location relative to the North Patagonian Icefield provide a unique opportunity to reconstruct the glacial history and related environmental dynamics. Our radiocarbon chronology constrains sedimentation to the last ∼10 000 years and provides a minimum age for postglacial ice-free lacustrine conditions, due to a westward retreat of the ice cap. Lacustrine productivity reached its maximum at the start of the lake phase and decreased afterwards. Between 5500 and 4600 cal yr BP, a major shift towards allochthonous sediment accumulation occurred, caused by an abrupt increase in clastic deposition from basaltic lithologies of the Meseta Chile Chico. This episode correlates with the precipitation-driven Mid-Holocene glacier advance of Patagonian glaciers and suggests that conditions were colder and/or wetter on Meseta Chile Chico at that time. After 4600 cal yr BP, these conditions continued to supply LME with clastic sediments until a stepped decrease around 900 cal yr BP. Thereupon, lacustrine productivity distinctly increased and stabilized around 300 cal yr BP. Our findings indicate that changes in sedimentation on Meseta Chile Chico were mainly controlled by regional variability in the precipitation. Furthermore, strong correlation between our records and available proxies for oscillations of the Southern Hemisphere Westerly Winds suggest a pronounced climatic control by this prominent wind system for central west Patagonia during the last 10 000 years. Holocene environmental changes in Patagonia were mostly shaped by fluctuating ice cover recession. Consequently, environmental reconstructions are largely based on discontinuous moraine chronologies from valley deposits. Here, we present a 3 m long continuous sediment record recovered from Laguna Meseta (LME), a lake located on Meseta Chile Chico. Its altitude and location relative to the North Patagonian Icefield provide a unique opportunity to reconstruct the glacial history and related environmental dynamics.Our radiocarbon chronology constrains sedimentation to the last ∼10000 years and provides a minimum age for postglacial ice-free lacustrine conditions, due to a westward retreat of the ice cap. Lacustrine productivity reached its maximum at the start of the lake phase and decreased afterwards. Between 5500 and 4600 cal yr BP, a major shift towards allochthonous sediment accumulation occurred, caused by an abrupt increase in clastic deposition from basaltic lithologies of the Meseta Chile Chico. This episode correlates with the precipitation-driven Mid-Holocene glacier advance of Patagonian glaciers and suggests that conditions were colder and/or wetter on Meseta Chile Chico at that time. After 4600 cal yr BP, these conditions continued to supply LME with clastic sediments until a stepped decrease around 900 cal yr BP. Thereupon, lacustrine productivity distinctly increased and stabilized around 300 cal yr BP.Our findings indicate that changes in sedimentation on Meseta Chile Chico were mainly controlled by regional variability in the precipitation. Furthermore, strong correlation between our records and available proxies for oscillations of the Southern Hemisphere Westerly Winds suggest a pronounced climatic control by this prominent wind system for central west Patagonia during the last 10 000 years. Holocene environmental changes in Patagonia were mostly shaped by fluctuating ice cover recession. Consequently, environmental reconstructions are largely based on discontinuous moraine chronologies from valley deposits. Here, we present a 3 m long continuous sediment record recovered from Laguna Meseta (LME), a lake located on Meseta Chile Chico. Its altitude and location relative to the North Patagonian Icefield provide a unique opportunity to reconstruct the glacial history and related environmental dynamics. Our radiocarbon chronology constrains sedimentation to the last â¼10 000 years and provides a minimum age for postglacial ice-free lacustrine conditions, due to a westward retreat of the ice cap. Lacustrine productivity reached its maximum at the start of the lake phase and decreased afterwards. Between 5500 and 4600 cal yr BP, a major shift towards allochthonous sediment accumulation occurred, caused by an abrupt increase in clastic deposition from basaltic lithologies of the Meseta Chile Chico. This episode correlates with the precipitation-driven Mid-Holocene glacier advance of Patagonian glaciers and suggests that conditions were colder and/or wetter on Meseta Chile Chico at that time. After 4600 cal yr BP, these conditions continued to supply LME with clastic sediments until a stepped decrease around 900 cal yr BP. Thereupon, lacustrine productivity distinctly increased and stabilized around 300 cal yr BP. Our findings indicate that changes in sedimentation on Meseta Chile Chico were mainly controlled by regional variability in the precipitation. Furthermore, strong correlation between our records and available proxies for oscillations of the Southern Hemisphere Westerly Winds suggest a pronounced climatic control by this prominent wind system for central west Patagonia during the last 10 000 years. |
Audience | Academic |
Author | Nuevo-Delaunay, Amalia Méndez, César Gebhardt, A. Catalina Zolitschka, Bernd Maldonado, Antonio Franco, Carolina de Porras, María Eugenia Ohlendorf, Christian |
Author_xml | – sequence: 1 fullname: Franco, Carolina – sequence: 2 fullname: Maldonado, Antonio – sequence: 3 fullname: Ohlendorf, Christian – sequence: 4 fullname: Gebhardt, A. Catalina – sequence: 5 fullname: de Porras, María Eugenia – sequence: 6 fullname: Nuevo-Delaunay, Amalia – sequence: 7 fullname: Méndez, César – sequence: 8 fullname: Zolitschka, Bernd |
BookMark | eNptkt9qFTEQxhepYFu99TrgjQX3mL-72ctyqO2BimL1OmST2WMOu8kxyVb7KL6Fz-CTmfWIWiiBTJh882PmY06qIx88VNVzgleCdPy12dcU15K0JVD-qDomkvC6Y4we_fd-Up2ktMOYS9KJ4-r7VRiDAQ8I_K2LwU_gsx6R9haZ0U06l5_bMM7ZBY_CgIo2xyL4Cimj9zrrbfBOI51QBBN8ynE2GSwaYpjQqM1cMq7gE1i3sNMCeQsJskbrz26E5TYBveTNSvz8gW5eHdJnT6vHgx4TPPsTT6tPby4-rq_q63eXm_X5dW047XKZSbZ9ZygIkLIZDAPoe8MayhvdYAyEWCatHKwxlPSC9BQz1jW87QVvWWvZabU5cG3QO7WPZeZ4p4J26ncixK3SMTszgmo0MaJnHWDLOBed1IQyxqVgzBA-yMJ6cWDtY_gyF4fULszRl_YVw4zjTrRY_FNtdYE6P4TiqJlcMuq8lV3pnXBcVKsHVOVYmIphHobi0v2Cs3sFRZPhW97qOSW1ufnwINzEkFKE4e_gBKtlm5TZK4pV2Sa1bBP7BbgevOc |
Cites_doi | 10.5194/cp-13-879-2017 10.1016/j.yqres.2004.11.002 10.1175/JCLI-D-12-00001.1 10.1016/j.quascirev.2011.10.015 10.5194/cp-11-449-2015 10.1007/s00382-017-4015-0 10.1016/j.quascirev.2021.106810 10.1080/17445647.2017.1351908 10.1038/s41598-018-21836-6 10.1016/j.quascirev.2019.05.029 10.1016/j.quascirev.2007.07.007 10.1016/j.quascirev.2012.06.015 10.1016/j.yqres.2009.01.012 10.1016/j.geomorph.2005.02.003 10.1017/RDC.2020.59 10.1016/j.quascirev.2015.12.021 10.1016/j.quageo.2006.06.001 10.1016/j.lithos.2004.09.024 10.1126/science.1222135 10.1016/j.jsames.2005.07.004 10.1016/j.quascirev.2011.11.008 10.1017/qua.2018.93 10.1016/j.scitotenv.2020.143684 10.1177/095968369400400305 10.5027/andgeoV43n1-a01 10.1007/s004450050193 10.1111/j.0435-3676.2005.00263.x 10.1038/srep02118 10.1016/0967-0637(93)90140-X 10.1017/qua.2021.45 10.1038/ngeo959 10.1111/j.0435-3676.2005.00259.x 10.4067/S0717-73562022005000203 10.1016/j.gloplacha.2004.03.002 10.4067/S0716-02082004000200003 10.1016/j.quascirev.2014.06.026 10.1016/j.earscirev.2019.102996 10.1130/G21144.1 10.1016/j.quascirev.2010.01.020 10.1016/j.epsl.2007.04.040 10.1038/ncomms5375 10.3189/2012JoG12J026 10.1177/0959683607086771 10.5027/andgeoV44n3-a01 10.1016/j.quascirev.2018.10.036 10.1007/978-94-017-9849-5_21 10.2307/519583 10.1016/j.epsl.2020.116077 10.1016/j.quascirev.2010.03.005 10.1016/j.quascirev.2012.07.017 10.1016/0012-821X(88)90082-9 10.1002/jqs.2847 10.1214/ba/1339616472 10.1016/j.quascirev.2019.105904 10.1016/j.quascirev.2018.09.025 10.1002/1099-1417(200005)15:4<395::AID-JQS535>3.0.CO;2-H 10.3389/feart.2022.833637 10.1177/0959683616678460 10.5194/cp-10-1063-2014 10.5194/cp-8-519-2012 10.1006/qres.1994.1049 10.3389/fevo.2016.00100 10.1007/978-94-017-9849-5_7 10.1017/qua.2018.81 10.1016/j.palaeo.2010.02.011 10.1007/s00300-017-2096-1 10.1016/0033-5894(76)90047-8 10.1016/j.quascirev.2019.01.014 10.3389/fevo.2017.00177 10.1016/j.anthro.2023.103118 10.1016/j.quascirev.2016.03.014 10.1016/j.quascirev.2015.12.010 10.1029/2001PA000727 10.1016/0277-3791(88)90005-4 10.1144/GSL.SP.2006.267.01.04 10.1177/0959683611425545 10.1016/j.palaeo.2007.07.008 10.2307/1552024 10.1016/j.quascirev.2017.10.013 10.1038/nclimate2235 10.1029/2010PA002049 10.1016/j.quascirev.2009.07.011 10.1016/j.earscirev.2020.103152 10.1130/B25177.1 10.3389/feart.2021.813433 10.1038/srep21064 10.1016/j.quascirev.2018.01.011 10.1007/s00445-015-0991-2 10.1093/petrology/27.3.745 10.1007/s00445-007-0148-z 10.4324/9780203505205 10.1016/j.quascirev.2012.10.011 10.1016/j.gloplacha.2006.11.020 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 Copernicus GmbH 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 Copernicus GmbH – notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7TG 7TN 7UA ABUWG AFKRA AZQEC BENPR BFMQW BHPHI BKSAR C1K CCPQU DWQXO F1W H96 H97 HCIFZ KL. L.G PCBAR PIMPY PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.5194/cp-20-817-2024 |
DatabaseName | CrossRef Gale in Context: Science Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Continental Europe Database ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Continental Europe Database ProQuest Central China Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1814-9332 |
EndPage | 839 |
ExternalDocumentID | oai_doaj_org_article_6a1c5b39e0d344598a123348533c14f8 A789362140 10_5194_cp_20_817_2024 |
GeographicLocations | Chile Northern Hemisphere |
GeographicLocations_xml | – name: Chile – name: Northern Hemisphere |
GroupedDBID | 29B 2WC 2XV 3V. 4P2 5GY 5VS 8FE 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ADBBV AENEX AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS BBORY BCNDV BENPR BFMQW BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD GROUPED_DOAJ H13 HCIFZ IAO IEA IEP ISR ITC K6- KQ8 LK5 M7R M~E OK1 P2P PCBAR PIMPY PQQKQ PROAC Q2X RIG RKB RNS TR2 ~02 7TG 7TN 7UA AZQEC C1K DWQXO F1W H96 H97 KL. L.G PQEST PQUKI PRINS |
ID | FETCH-LOGICAL-c429t-9387b9c2e5e886fc3eebbc36246a600e11d38d8fdcc21b51b20339647b54737d3 |
IEDL.DBID | DOA |
ISSN | 1814-9332 1814-9324 |
IngestDate | Tue Oct 22 14:54:56 EDT 2024 Thu Oct 10 16:23:32 EDT 2024 Tue Nov 19 21:37:18 EST 2024 Tue Nov 12 23:41:36 EST 2024 Sat Sep 28 21:26:27 EDT 2024 Fri Nov 22 02:08:56 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-9387b9c2e5e886fc3eebbc36246a600e11d38d8fdcc21b51b20339647b54737d3 |
ORCID | 0000-0001-8256-0420 0000-0002-3227-0676 0000-0003-2735-7950 |
OpenAccessLink | https://doaj.org/article/6a1c5b39e0d344598a123348533c14f8 |
PQID | 3034095705 |
PQPubID | 105735 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6a1c5b39e0d344598a123348533c14f8 proquest_journals_3034095705 gale_infotracmisc_A789362140 gale_infotracacademiconefile_A789362140 gale_incontextgauss_ISR_A789362140 crossref_primary_10_5194_cp_20_817_2024 |
PublicationCentury | 2000 |
PublicationDate | 2024-04-08 |
PublicationDateYYYYMMDD | 2024-04-08 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Climate of the past |
PublicationYear | 2024 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref14 ref97 ref96 ref11 ref99 ref10 ref98 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref78 ref75 ref74 ref77 ref102 ref76 ref2 ref1 ref71 ref70 ref73 ref72 ref68 ref67 ref69 ref64 ref63 ref66 ref65 ref60 ref62 ref61 |
References_xml | – ident: ref49 doi: 10.5194/cp-13-879-2017 – ident: ref62 – ident: ref36 doi: 10.1016/j.yqres.2004.11.002 – ident: ref35 doi: 10.1175/JCLI-D-12-00001.1 – ident: ref47 doi: 10.1016/j.quascirev.2011.10.015 – ident: ref2 doi: 10.5194/cp-11-449-2015 – ident: ref18 doi: 10.1007/s00382-017-4015-0 – ident: ref9 doi: 10.1016/j.quascirev.2021.106810 – ident: ref7 doi: 10.1080/17445647.2017.1351908 – ident: ref71 doi: 10.1038/s41598-018-21836-6 – ident: ref83 doi: 10.1016/j.quascirev.2019.05.029 – ident: ref43 doi: 10.1016/j.quascirev.2007.07.007 – ident: ref30 – ident: ref24 doi: 10.1016/j.quascirev.2012.06.015 – ident: ref33 doi: 10.1016/j.yqres.2009.01.012 – ident: ref38 doi: 10.1016/j.geomorph.2005.02.003 – ident: ref50 doi: 10.1017/RDC.2020.59 – ident: ref97 doi: 10.1016/j.quascirev.2015.12.021 – ident: ref27 doi: 10.1016/j.quageo.2006.06.001 – ident: ref28 doi: 10.1016/j.lithos.2004.09.024 – ident: ref66 doi: 10.1126/science.1222135 – ident: ref80 doi: 10.1016/j.jsames.2005.07.004 – ident: ref82 – ident: ref98 doi: 10.1016/j.quascirev.2011.11.008 – ident: ref32 doi: 10.1017/qua.2018.93 – ident: ref78 doi: 10.1016/j.scitotenv.2020.143684 – ident: ref60 doi: 10.1177/095968369400400305 – ident: ref91 doi: 10.5027/andgeoV43n1-a01 – ident: ref74 doi: 10.1007/s004450050193 – ident: ref96 doi: 10.1111/j.0435-3676.2005.00263.x – ident: ref12 doi: 10.1038/srep02118 – ident: ref72 doi: 10.1016/0967-0637(93)90140-X – ident: ref84 doi: 10.1017/qua.2021.45 – ident: ref59 doi: 10.1038/ngeo959 – ident: ref94 doi: 10.1111/j.0435-3676.2005.00259.x – ident: ref77 doi: 10.4067/S0717-73562022005000203 – ident: ref37 doi: 10.1016/j.gloplacha.2004.03.002 – ident: ref75 doi: 10.4067/S0716-02082004000200003 – ident: ref93 doi: 10.1016/j.quascirev.2014.06.026 – ident: ref8 doi: 10.1016/j.earscirev.2019.102996 – ident: ref26 doi: 10.1130/G21144.1 – ident: ref48 doi: 10.1016/j.quascirev.2010.01.020 – ident: ref58 doi: 10.1016/j.epsl.2007.04.040 – ident: ref70 doi: 10.1038/ncomms5375 – ident: ref19 doi: 10.3189/2012JoG12J026 – ident: ref46 doi: 10.1177/0959683607086771 – ident: ref100 doi: 10.5027/andgeoV44n3-a01 – ident: ref95 doi: 10.1016/j.quascirev.2018.10.036 – ident: ref102 doi: 10.1007/978-94-017-9849-5_21 – ident: ref14 doi: 10.2307/519583 – ident: ref55 doi: 10.1016/j.epsl.2020.116077 – ident: ref53 doi: 10.1016/j.quascirev.2010.03.005 – ident: ref89 – ident: ref81 – ident: ref56 doi: 10.1016/j.quascirev.2012.07.017 – ident: ref31 doi: 10.1016/0012-821X(88)90082-9 – ident: ref76 doi: 10.1002/jqs.2847 – ident: ref11 doi: 10.1214/ba/1339616472 – ident: ref44 doi: 10.1016/j.quascirev.2019.105904 – ident: ref20 doi: 10.1016/j.quascirev.2018.09.025 – ident: ref79 doi: 10.1002/1099-1417(200005)15:4<395::AID-JQS535>3.0.CO;2-H – ident: ref63 doi: 10.3389/feart.2022.833637 – ident: ref65 doi: 10.1177/0959683616678460 – ident: ref25 doi: 10.5194/cp-10-1063-2014 – ident: ref10 doi: 10.5194/cp-8-519-2012 – ident: ref61 – ident: ref51 doi: 10.1006/qres.1994.1049 – ident: ref67 doi: 10.3389/fevo.2016.00100 – ident: ref22 doi: 10.1007/978-94-017-9849-5_7 – ident: ref101 doi: 10.1017/qua.2018.81 – ident: ref13 doi: 10.1016/j.palaeo.2010.02.011 – ident: ref23 – ident: ref34 doi: 10.1007/s00300-017-2096-1 – ident: ref69 doi: 10.1016/0033-5894(76)90047-8 – ident: ref73 doi: 10.1016/j.quascirev.2019.01.014 – ident: ref52 doi: 10.3389/fevo.2017.00177 – ident: ref68 doi: 10.1016/j.anthro.2023.103118 – ident: ref92 – ident: ref54 doi: 10.1016/j.quascirev.2016.03.014 – ident: ref88 doi: 10.1016/j.quascirev.2015.12.010 – ident: ref57 doi: 10.1029/2001PA000727 – ident: ref16 doi: 10.1016/0277-3791(88)90005-4 – ident: ref17 doi: 10.1144/GSL.SP.2006.267.01.04 – ident: ref29 doi: 10.1177/0959683611425545 – ident: ref64 doi: 10.1016/j.palaeo.2007.07.008 – ident: ref3 doi: 10.2307/1552024 – ident: ref6 doi: 10.1016/j.quascirev.2017.10.013 – ident: ref1 doi: 10.1038/nclimate2235 – ident: ref4 – ident: ref15 doi: 10.1029/2010PA002049 – ident: ref39 doi: 10.1016/j.quascirev.2009.07.011 – ident: ref21 doi: 10.1016/j.earscirev.2020.103152 – ident: ref87 doi: 10.1130/B25177.1 – ident: ref86 doi: 10.3389/feart.2021.813433 – ident: ref41 doi: 10.1038/srep21064 – ident: ref85 doi: 10.1016/j.quascirev.2018.01.011 – ident: ref99 doi: 10.1007/s00445-015-0991-2 – ident: ref5 doi: 10.1093/petrology/27.3.745 – ident: ref90 doi: 10.1007/s00445-007-0148-z – ident: ref42 doi: 10.4324/9780203505205 – ident: ref40 doi: 10.1016/j.quascirev.2012.10.011 – ident: ref45 doi: 10.1016/j.gloplacha.2006.11.020 |
SSID | ssj0048195 |
Score | 2.4113586 |
Snippet | Holocene environmental changes in Patagonia were mostly shaped by fluctuating ice cover recession. Consequently, environmental reconstructions are largely... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 817 |
SubjectTerms | Allochthonous deposits Archives & records Carbon 14 Climate Climate control Climatic evolution Environmental aspects Environmental changes Glacial drift Glacial periods Glaciers Holocene Holocene glaciation Ice caps Ice cover Ice fields Ice sheets Lacustrine sedimentation Lacustrine sediments Lakes Moraines Oscillations Precipitation Precipitation variability Productivity Radiocarbon dating Sediment Sedimentation Sediments Sediments (Geology) Southern Hemisphere Spatial variations Topography Valleys Vegetation Westerlies Winds |
Title | Holocene environmental and climate evolution of central west Patagonia as reconstructed from lacustrine sediments of Meseta Chile Chico (46.5° S, Chile) |
URI | https://www.proquest.com/docview/3034095705 https://doaj.org/article/6a1c5b39e0d344598a123348533c14f8 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagJy6IX7FQkIUQPxKhie3EzrGUVsuhCLEgcbPssY0qVcmKtJy58gy8BM_Ao_AkzNjZij0gLlw2u_HIcjyTmW_Wns-MPXIGuph6zE6SV5USylQYdxItF4Jsgkyyo3rn5Uq_-WheHRJNzsVRX7QnrNADl4nb61wDrZd9rINUqu2NQ18rFUYZCY1Kpcy37jbJVPHBilaHKNUyjaoQoahC14hoRe3BGi0DB6TxItRWOMqs_X_zzTngHF1jV2ekyPfLCK-zS3G4wRbHCHLHz_m_cP6YH5yeIOLMv26y70v8Aui7-B_Va9iDGwKHLIgtX2ZT42Pi88ZMTmwJ_K2j9anhxHE38ZwmF2rZGDiVoPBTB_mMD-x-woCXK-Ook-M4xTPHiSI50ieM_KnqXrQ_f_z6-m31vDQ8u8U-HB2-P1hW89kLFWCEOsNJM9r3IGIbjekSyBi9B4x2qnOIkWKDejTBpAAgGt82XtRSUlWrp8OMdZC32c4wDvEO472AXkvfNDph7qkRgXTSq144o53uRViwJxsV2HWh2LCYmpCyLKytqC0qy5KyFuwlaehCiqix8w00GDsbjP2XwSzYQ9KvJfKLgXbXfHLn02Rfr97ZfY3orROYc-KYZqE0oibAzcUK-ETEl7UlubsliW8nbDdvzMjO3mGyCBswrW513d79H090j12h2cn7icwu20HriPfZ5SmcP8hvxW87qA3W |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Holocene+environmental+and+climate+evolution+of+central+west+Patagonia+as+reconstructed+from+lacustrine+sediments+of+Meseta+Chile+Chico+%2846.5%C2%B0+S%2C+Chile%29&rft.jtitle=Climate+of+the+past&rft.au=Franco%2C+Carolina&rft.au=Maldonado%2C+Antonio&rft.au=Ohlendorf%2C+Christian&rft.au=Gebhardt%2C+A+Catalina&rft.date=2024-04-08&rft.pub=Copernicus+GmbH&rft.issn=1814-9324&rft.eissn=1814-9332&rft.volume=20&rft.issue=4&rft.spage=817&rft.epage=839&rft_id=info:doi/10.5194%2Fcp-20-817-2024&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1814-9332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1814-9332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1814-9332&client=summon |