Human myosin-Vc is a novel class V myosin expressed in epithelial cells

Class V myosins are one of the most ancient and widely distributed groups of the myosin superfamily and are hypothesized to function as motors for actin-dependent organelle transport. We report the discovery and initial characterization of a novel member of this family, human myosin-Vc (Myo5c). The...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cell science Vol. 115; no. Pt 5; pp. 991 - 1004
Main Authors: Rodriguez, Olga C, Cheney, Richard E
Format: Journal Article
Language:English
Published: England 01-03-2002
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Class V myosins are one of the most ancient and widely distributed groups of the myosin superfamily and are hypothesized to function as motors for actin-dependent organelle transport. We report the discovery and initial characterization of a novel member of this family, human myosin-Vc (Myo5c). The Myo5c protein sequence shares approximately 50% overall identity with the two other class V myosins in vertebrates, myosin-Va (Myo5a) and myosin-Vb (Myo5b). Systematic analysis of the mRNA and protein distribution of these myosins indicates that Myo5a is most abundant in brain, whereas Myo5b and Myo5c are expressed chiefly in non-neuronal tissues. Myo5c is particularly abundant in epithelial and glandular tissues including pancreas, prostate, mammary, stomach, colon and lung. Immunolocalization in colon and exocrine pancreas indicates that Myo5c is expressed chiefly in epithelial cells. A dominant negative approach using a GFP-Myo5c tail construct in HeLa cells reveals that the Myo5c tail selectively colocalizes with and perturbs a membrane compartment containing the transferrin receptor and rab8. Transferrin also accumulates in this compartment, suggesting that Myo5c is involved in transferrin trafficking. As a class V myosin of epithelial cells, Myo5c is likely to power actin-based membrane trafficking in many physiologically crucial tissues of the human body.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.115.5.991