Experimental analysis of a microencapsulated PCM slurry as thermal storage system and as heat transfer fluid in laminar flow

A microencapsulated PCM (Phase Change Material) slurry is a dispersion where the PCM, microencapsulated by a polymeric capsule, is dispersed in water. Compared to water, these new fluids have a higher heat capacity during the phase change and a possible enhancement, as a result of this phase change,...

Full description

Saved in:
Bibliographic Details
Published in:Applied thermal engineering Vol. 36; pp. 370 - 377
Main Authors: Delgado, Mónica, Lázaro, Ana, Mazo, Javier, Marín, José María, Zalba, Belén
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-04-2012
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A microencapsulated PCM (Phase Change Material) slurry is a dispersion where the PCM, microencapsulated by a polymeric capsule, is dispersed in water. Compared to water, these new fluids have a higher heat capacity during the phase change and a possible enhancement, as a result of this phase change, in the heat transfer phenomenon. From the literature review, the existing experimental results are found incomplete and contradictory in many cases. For this reason the objective of this investigation is to analyze the heat transfer phenomenon in mPCM slurries, proposing a new methodology, developed by the authors. In this manner, an experimental analysis using a slurry with a 10% weight concentration of paraffin has been conducted to study it as a thermal storage material and as a heat transfer fluid. The results demonstrated an improvement of approximately 25% on the convective heat transfer coefficient when compared to water. ► Experimental analysis of a Phase Change Material slurry compared to water. ► Improvement of the energy stored during the phase change. ► Higher ratio Transported Thermal Energy to Pumping Power during the phase change. ► Better cooling performance. Convective heat transfer coefficients were 25% higher.
AbstractList A microencapsulated PCM (Phase Change Material) slurry is a dispersion where the PCM, microencapsulated by a polymeric capsule, is dispersed in water. Compared to water, these new fluids have a higher heat capacity during the phase change and a possible enhancement, as a result of this phase change, in the heat transfer phenomenon. From the literature review, the existing experimental results are found incomplete and contradictory in many cases. For this reason the objective of this investigation is to analyze the heat transfer phenomenon in mPCM slurries, proposing a new methodology, developed by the authors. In this manner, an experimental analysis using a slurry with a 10% weight concentration of paraffin has been conducted to study it as a thermal storage material and as a heat transfer fluid. The results demonstrated an improvement of approximately 25% on the convective heat transfer coefficient when compared to water.
A microencapsulated PCM (Phase Change Material) slurry is a dispersion where the PCM, microencapsulated by a polymeric capsule, is dispersed in water. Compared to water, these new fluids have a higher heat capacity during the phase change and a possible enhancement, as a result of this phase change, in the heat transfer phenomenon. From the literature review, the existing experimental results are found incomplete and contradictory in many cases. For this reason the objective of this investigation is to analyze the heat transfer phenomenon in mPCM slurries, proposing a new methodology, developed by the authors. In this manner, an experimental analysis using a slurry with a 10% weight concentration of paraffin has been conducted to study it as a thermal storage material and as a heat transfer fluid. The results demonstrated an improvement of approximately 25% on the convective heat transfer coefficient when compared to water. ► Experimental analysis of a Phase Change Material slurry compared to water. ► Improvement of the energy stored during the phase change. ► Higher ratio Transported Thermal Energy to Pumping Power during the phase change. ► Better cooling performance. Convective heat transfer coefficients were 25% higher.
Author Marín, José María
Delgado, Mónica
Lázaro, Ana
Zalba, Belén
Mazo, Javier
Author_xml – sequence: 1
  givenname: Mónica
  surname: Delgado
  fullname: Delgado, Mónica
  email: modelgra@gmail.com, monica@unizar.es
– sequence: 2
  givenname: Ana
  surname: Lázaro
  fullname: Lázaro, Ana
– sequence: 3
  givenname: Javier
  surname: Mazo
  fullname: Mazo, Javier
– sequence: 4
  givenname: José María
  surname: Marín
  fullname: Marín, José María
– sequence: 5
  givenname: Belén
  surname: Zalba
  fullname: Zalba, Belén
BookMark eNqNkDFv2zAQhTmkQOI0_4FDhix2SZGWQqBLYdhNgBTt0MzCWTwmNChK5VFtDeTHh4K9dOt0wL137_C-BbuIQ0TGbqVYSSHrT4cVjGPIr5h6CBhfVpWQskgrsRYX7EqqtVlqJeUlWxAdhJDVfaOv2Nv274jJ9xgzBA4RwpE88cFx4L3v0oCxg5GmABkt_7H5xilMKR05ED8_45SHBC_I6UgZ-xJiZ_UVIfOcIJLDxF2YvOU-8gC9jzAvhj8f2QcHgfDmPK_Z8277c_OwfPr-9XHz5WnZ6crkZaVlo8Eo6-QelBKu1lbqujaNcmCk0p0zaCw2wmjRiOp-v9cGhbXSCItaqGt2d8od0_BrQspt76nDECDiMFFbAJparXUti_XzyVqqEyV07VjoQDoW0-yr20P7L-h2Bj2rBXQ5353OsdT57TG11PmCEK1P2OXWDv7_gt4BuF6ViQ
CitedBy_id crossref_primary_10_1016_j_seta_2022_102084
crossref_primary_10_1016_j_applthermaleng_2016_05_159
crossref_primary_10_1016_j_pecs_2015_10_003
crossref_primary_10_1016_j_rser_2019_109312
crossref_primary_10_1016_j_applthermaleng_2012_04_027
crossref_primary_10_1007_s10854_017_6756_2
crossref_primary_10_1016_j_applthermaleng_2018_08_093
crossref_primary_10_1016_j_enconman_2017_12_002
crossref_primary_10_1016_j_tsep_2022_101315
crossref_primary_10_1016_j_est_2022_105826
crossref_primary_10_1016_j_energy_2021_120128
crossref_primary_10_1016_j_est_2021_103247
crossref_primary_10_1016_j_energy_2023_129617
crossref_primary_10_1016_j_energy_2015_04_071
crossref_primary_10_1016_j_est_2022_105797
crossref_primary_10_3390_ma15196719
crossref_primary_10_1016_j_applthermaleng_2022_119158
crossref_primary_10_4028_www_scientific_net_AMR_1070_1072_422
crossref_primary_10_1016_j_applthermaleng_2014_11_059
crossref_primary_10_1016_j_applthermaleng_2021_116588
crossref_primary_10_1016_j_enbuild_2015_06_063
crossref_primary_10_1016_j_applthermaleng_2018_10_056
crossref_primary_10_1016_j_applthermaleng_2019_114862
crossref_primary_10_1016_j_tsep_2023_102381
crossref_primary_10_1016_j_apenergy_2012_11_019
crossref_primary_10_1016_j_scitotenv_2013_12_013
crossref_primary_10_1016_j_applthermaleng_2024_123253
crossref_primary_10_1016_j_energy_2022_126479
crossref_primary_10_1002_ceat_202200114
crossref_primary_10_1016_j_rser_2014_07_179
crossref_primary_10_1016_j_ijheatmasstransfer_2013_10_030
crossref_primary_10_1016_j_enbuild_2014_01_017
crossref_primary_10_1016_j_ijheatmasstransfer_2013_10_034
crossref_primary_10_1016_j_est_2019_100821
crossref_primary_10_1016_j_ijheatmasstransfer_2016_04_020
crossref_primary_10_1177_1687814017728228
crossref_primary_10_6000_1929_6002_2013_02_04_5
crossref_primary_10_1016_j_icheatmasstransfer_2017_12_014
crossref_primary_10_1016_j_rser_2014_07_191
crossref_primary_10_1016_j_ijrefrig_2016_10_008
crossref_primary_10_1007_s11082_024_06964_w
crossref_primary_10_1016_j_icheatmasstransfer_2021_105788
crossref_primary_10_1016_j_energy_2024_131123
crossref_primary_10_1016_j_apenergy_2012_11_007
crossref_primary_10_1007_s11431_022_2022_4
crossref_primary_10_1016_j_enconman_2015_07_043
crossref_primary_10_1016_j_rser_2021_111313
crossref_primary_10_1088_1742_6596_525_1_012023
crossref_primary_10_1016_j_solener_2022_04_050
crossref_primary_10_2139_ssrn_4140994
crossref_primary_10_1016_j_nanoen_2024_109309
crossref_primary_10_1016_j_applthermaleng_2015_07_056
crossref_primary_10_1016_j_egypro_2014_12_397
crossref_primary_10_3390_en9080652
crossref_primary_10_1007_s13369_021_05526_6
crossref_primary_10_1016_j_applthermaleng_2015_12_051
crossref_primary_10_1016_j_enconman_2013_12_026
crossref_primary_10_1016_j_energy_2018_10_137
crossref_primary_10_1016_j_applthermaleng_2013_06_008
crossref_primary_10_1016_j_applthermaleng_2019_114728
crossref_primary_10_1016_j_solmat_2019_01_007
crossref_primary_10_1007_s11082_023_06032_9
crossref_primary_10_1007_s40997_023_00599_0
crossref_primary_10_1016_j_enbuild_2020_110237
crossref_primary_10_1016_j_applthermaleng_2015_01_028
crossref_primary_10_3390_en16196931
crossref_primary_10_1016_j_energy_2019_05_080
crossref_primary_10_1016_j_nanoen_2015_02_016
crossref_primary_10_1016_j_renene_2015_07_033
crossref_primary_10_1007_s10973_020_09697_6
crossref_primary_10_1016_j_applthermaleng_2013_06_042
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124461
crossref_primary_10_1016_j_energy_2017_07_044
crossref_primary_10_1016_j_applthermaleng_2012_08_015
crossref_primary_10_1016_j_enconman_2015_09_033
crossref_primary_10_1016_j_applthermaleng_2013_10_011
crossref_primary_10_3390_en17102324
crossref_primary_10_1016_j_enbuild_2013_12_028
crossref_primary_10_1016_j_rser_2020_110101
crossref_primary_10_1016_j_applthermaleng_2015_12_124
crossref_primary_10_1016_j_est_2020_101938
crossref_primary_10_1299_jtst_2018jtst0033
crossref_primary_10_1016_j_rser_2012_03_059
crossref_primary_10_1016_j_rser_2016_08_035
crossref_primary_10_1016_j_icheatmasstransfer_2018_05_011
crossref_primary_10_1016_j_ijheatmasstransfer_2017_12_047
crossref_primary_10_1016_j_est_2021_103931
Cites_doi 10.1115/1.3267683
10.1088/0957-0233/10/3/015
10.1007/s00231-007-0232-0
10.1016/j.enbuild.2008.09.003
10.1016/S1359-4311(02)00192-8
10.1088/0957-0233/17/8/016
10.1016/j.energy.2009.03.016
10.1016/j.ijheatmasstransfer.2006.12.024
10.1016/0017-9310(94)90131-7
10.1016/S0017-9310(02)00034-0
10.1016/j.apenergy.2009.05.002
10.1016/j.apenergy.2009.04.025
10.1016/j.solmat.2004.12.008
10.1016/0017-9310(91)90128-2
10.1016/S0017-9310(00)00260-X
10.1016/j.ijheatmasstransfer.2006.09.026
10.1016/j.rser.2009.08.015
10.1016/j.applthermaleng.2008.03.027
ContentType Journal Article
Copyright 2011 Elsevier Ltd
Copyright_xml – notice: 2011 Elsevier Ltd
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.applthermaleng.2011.10.050
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 377
ExternalDocumentID 10_1016_j_applthermaleng_2011_10_050
S1359431111006028
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c429t-24174a93df1ba330f64d1466973fa9134cf9e9de709407028bb49e0dd190de403
ISSN 1359-4311
IngestDate Sat Oct 26 00:11:28 EDT 2024
Thu Sep 26 16:03:17 EDT 2024
Fri Feb 23 02:18:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Convective heat transfer
Thermal Energy Storage
Microencapsulated PCM slurry
Laminar slurry flow
Experimental
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c429t-24174a93df1ba330f64d1466973fa9134cf9e9de709407028bb49e0dd190de403
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1019635461
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1019635461
crossref_primary_10_1016_j_applthermaleng_2011_10_050
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2011_10_050
PublicationCentury 2000
PublicationDate 2012-04-01
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied thermal engineering
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Rao, Dammel, Stephan, Lin (bib10) 2007; 44
Alvarado, Marsh, Sohn, Phetteplace, Newell (bib12) 2007; 50
Hu, Zhang (bib6) 2002; 45
Zhang, Jiang, Jiang (bib16) 1999; 10
Goel, Roy, Sengupta (bib19) 1994; 37
Lázaro, Günther, Mehling, Hiebler, Marín, Zalba (bib15) 2006; 17
Zeng, Wang, Chen, Zhang, Niu, Wang, Di (bib8) 2009; 86
Sabbah, Farid, Al-Hallaj (bib9) 2009; 29
Kays (bib18) 1955; 77
A. Heinz, W. Streicher, Application of phase change materials and PCM-slurries for thermal energy storage. The Tenth International Conference on Thermal Energy Storage, Ecostock, New Jersey (May 31–June 2, 2006).
Gschwander, Schossig, Henning (bib17) 2005; 89
Zalba, Marín, Cabeza, Mehling (bib1) 2003; 23
Wang, Niu, Li, Wang, Chen, Zeng, Song, Zhang (bib11) 2007; 50
Zhang, Ma, Wang (bib2) 2010; 14
Diaconu (bib3) 2009; 41
Roy, Avanic (bib7) 2001; 44
Diaconu, Varga, Oliveira (bib14) 2010; 87
Kasza, Chen (bib21) 1985; 107
Charunyakorn, Sengupta, Roy (bib5) 1991; 34
Huang, Petermann, Doetsch (bib4) 2009; 34
S. Gschwander, P. Schossig, Phase Change Slurries as heat transfer and storage fluids for cooling applications, The Tenth International Conference on Thermal Energy Storage, Ecostock, New Jersey (May 31–June 2, 2006).
Zhang (10.1016/j.applthermaleng.2011.10.050_bib2) 2010; 14
Rao (10.1016/j.applthermaleng.2011.10.050_bib10) 2007; 44
Wang (10.1016/j.applthermaleng.2011.10.050_bib11) 2007; 50
Goel (10.1016/j.applthermaleng.2011.10.050_bib19) 1994; 37
Charunyakorn (10.1016/j.applthermaleng.2011.10.050_bib5) 1991; 34
Diaconu (10.1016/j.applthermaleng.2011.10.050_bib14) 2010; 87
Kays (10.1016/j.applthermaleng.2011.10.050_bib18) 1955; 77
Zhang (10.1016/j.applthermaleng.2011.10.050_bib16) 1999; 10
Diaconu (10.1016/j.applthermaleng.2011.10.050_bib3) 2009; 41
Huang (10.1016/j.applthermaleng.2011.10.050_bib4) 2009; 34
Sabbah (10.1016/j.applthermaleng.2011.10.050_bib9) 2009; 29
Roy (10.1016/j.applthermaleng.2011.10.050_bib7) 2001; 44
Kasza (10.1016/j.applthermaleng.2011.10.050_bib21) 1985; 107
Gschwander (10.1016/j.applthermaleng.2011.10.050_bib17) 2005; 89
Zeng (10.1016/j.applthermaleng.2011.10.050_bib8) 2009; 86
10.1016/j.applthermaleng.2011.10.050_bib13
Zalba (10.1016/j.applthermaleng.2011.10.050_bib1) 2003; 23
Alvarado (10.1016/j.applthermaleng.2011.10.050_bib12) 2007; 50
Hu (10.1016/j.applthermaleng.2011.10.050_bib6) 2002; 45
10.1016/j.applthermaleng.2011.10.050_bib20
Lázaro (10.1016/j.applthermaleng.2011.10.050_bib15) 2006; 17
References_xml – volume: 86
  start-page: 2661
  year: 2009
  end-page: 2670
  ident: bib8
  article-title: Heat transfer characteristics of microencapsulated phase change material slurry in laminar flow under constant heat flux
  publication-title: Appl. Energy
  contributor:
    fullname: Di
– volume: 50
  start-page: 1938
  year: 2007
  end-page: 1952
  ident: bib12
  article-title: Thermal performance of microencapsulated phase change material slurry in turbulent flow under constant heat flux
  publication-title: Int. J. Heat Mass Transf
  contributor:
    fullname: Newell
– volume: 14
  start-page: 598
  year: 2010
  end-page: 614
  ident: bib2
  article-title: An overview of phase change material slurries: MPCS and CHS
  publication-title: Renew. Sustain. Energy Rev.
  contributor:
    fullname: Wang
– volume: 34
  start-page: 819
  year: 1991
  end-page: 833
  ident: bib5
  article-title: Forced convection heat transfer in microencapsulated phase change material slurries: flow in circular ducts
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Roy
– volume: 10
  start-page: 201
  year: 1999
  end-page: 205
  ident: bib16
  article-title: A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials
  publication-title: Meas. Sci. Technol.
  contributor:
    fullname: Jiang
– volume: 29
  start-page: 445
  year: 2009
  end-page: 454
  ident: bib9
  article-title: Micro-channel heat sink with slurry of water with micro-encapsulated phase change material: 3D-numerical study
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Al-Hallaj
– volume: 44
  start-page: 175
  year: 2007
  end-page: 186
  ident: bib10
  article-title: Convective heat transfer characteristics of microencapsulated phase change material suspensions in minichannels
  publication-title: Heat Mass Transf.
  contributor:
    fullname: Lin
– volume: 44
  start-page: 2277
  year: 2001
  end-page: 2285
  ident: bib7
  article-title: Turbulent heat transfer with phase change material suspensions
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Avanic
– volume: 23
  start-page: 251
  year: 2003
  end-page: 283
  ident: bib1
  article-title: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Mehling
– volume: 34
  start-page: 1145
  year: 2009
  end-page: 1155
  ident: bib4
  article-title: Evaluation of paraffin/water emulsion as a phase change slurry for cooling applications
  publication-title: Energy
  contributor:
    fullname: Doetsch
– volume: 45
  start-page: 3163
  year: 2002
  end-page: 3172
  ident: bib6
  article-title: Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries: laminar flow in a circular tube with constant heat flux
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Zhang
– volume: 107
  start-page: 229
  year: 1985
  end-page: 236
  ident: bib21
  article-title: Improvement of the performance of solar energy or waste heat utilization systems by using phase-change slurry as an enhanced heat-transfer storage fluid
  publication-title: J. Sol. Energy Eng.
  contributor:
    fullname: Chen
– volume: 87
  start-page: 620
  year: 2010
  end-page: 628
  ident: bib14
  article-title: Experimental assessment of heat storage properties and heat transfer characteristics of a phase change material slurry for air conditioning applications
  publication-title: Appl. Energy
  contributor:
    fullname: Oliveira
– volume: 89
  start-page: 307
  year: 2005
  end-page: 315
  ident: bib17
  article-title: Micro-encapsulated paraffin in phase-change slurries
  publication-title: Sol. Energy Mater. Sol. Cells
  contributor:
    fullname: Henning
– volume: 37
  start-page: 593
  year: 1994
  end-page: 604
  ident: bib19
  article-title: Laminar forced convection heat transfer in microcapsulated phase change material suspensions
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Sengupta
– volume: 41
  start-page: 212
  year: 2009
  end-page: 219
  ident: bib3
  article-title: Transient thermal response of a PCS heat storage system
  publication-title: Energy Build.
  contributor:
    fullname: Diaconu
– volume: 77
  start-page: 1265
  year: 1955
  end-page: 1274
  ident: bib18
  article-title: Numerical solutions for laminar-flow heat transfer in circular tubes
  publication-title: Trans. ASME
  contributor:
    fullname: Kays
– volume: 50
  start-page: 2480
  year: 2007
  end-page: 2491
  ident: bib11
  article-title: Flow and heat transfer behaviors of phase change material slurries in a horizontal circular tube
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Zhang
– volume: 17
  start-page: 2168
  year: 2006
  end-page: 2174
  ident: bib15
  article-title: Verification of a T-history installation to measure enthalpy versus temperature curves of phase change materials
  publication-title: Meas. Sci. Technol.
  contributor:
    fullname: Zalba
– volume: 77
  start-page: 1265
  year: 1955
  ident: 10.1016/j.applthermaleng.2011.10.050_bib18
  article-title: Numerical solutions for laminar-flow heat transfer in circular tubes
  publication-title: Trans. ASME
  contributor:
    fullname: Kays
– ident: 10.1016/j.applthermaleng.2011.10.050_bib20
– volume: 107
  start-page: 229
  year: 1985
  ident: 10.1016/j.applthermaleng.2011.10.050_bib21
  article-title: Improvement of the performance of solar energy or waste heat utilization systems by using phase-change slurry as an enhanced heat-transfer storage fluid
  publication-title: J. Sol. Energy Eng.
  doi: 10.1115/1.3267683
  contributor:
    fullname: Kasza
– volume: 10
  start-page: 201
  issue: 3
  year: 1999
  ident: 10.1016/j.applthermaleng.2011.10.050_bib16
  article-title: A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/10/3/015
  contributor:
    fullname: Zhang
– ident: 10.1016/j.applthermaleng.2011.10.050_bib13
– volume: 44
  start-page: 175
  issue: 2
  year: 2007
  ident: 10.1016/j.applthermaleng.2011.10.050_bib10
  article-title: Convective heat transfer characteristics of microencapsulated phase change material suspensions in minichannels
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-007-0232-0
  contributor:
    fullname: Rao
– volume: 41
  start-page: 212
  issue: 2
  year: 2009
  ident: 10.1016/j.applthermaleng.2011.10.050_bib3
  article-title: Transient thermal response of a PCS heat storage system
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2008.09.003
  contributor:
    fullname: Diaconu
– volume: 23
  start-page: 251
  issue: 3
  year: 2003
  ident: 10.1016/j.applthermaleng.2011.10.050_bib1
  article-title: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(02)00192-8
  contributor:
    fullname: Zalba
– volume: 17
  start-page: 2168
  issue: 8
  year: 2006
  ident: 10.1016/j.applthermaleng.2011.10.050_bib15
  article-title: Verification of a T-history installation to measure enthalpy versus temperature curves of phase change materials
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/17/8/016
  contributor:
    fullname: Lázaro
– volume: 34
  start-page: 1145
  issue: 9
  year: 2009
  ident: 10.1016/j.applthermaleng.2011.10.050_bib4
  article-title: Evaluation of paraffin/water emulsion as a phase change slurry for cooling applications
  publication-title: Energy
  doi: 10.1016/j.energy.2009.03.016
  contributor:
    fullname: Huang
– volume: 50
  start-page: 2480
  issue: 13, 14
  year: 2007
  ident: 10.1016/j.applthermaleng.2011.10.050_bib11
  article-title: Flow and heat transfer behaviors of phase change material slurries in a horizontal circular tube
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2006.12.024
  contributor:
    fullname: Wang
– volume: 37
  start-page: 593
  issue: 4
  year: 1994
  ident: 10.1016/j.applthermaleng.2011.10.050_bib19
  article-title: Laminar forced convection heat transfer in microcapsulated phase change material suspensions
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(94)90131-7
  contributor:
    fullname: Goel
– volume: 45
  start-page: 3163
  issue: 15
  year: 2002
  ident: 10.1016/j.applthermaleng.2011.10.050_bib6
  article-title: Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries: laminar flow in a circular tube with constant heat flux
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(02)00034-0
  contributor:
    fullname: Hu
– volume: 87
  start-page: 620
  issue: 2
  year: 2010
  ident: 10.1016/j.applthermaleng.2011.10.050_bib14
  article-title: Experimental assessment of heat storage properties and heat transfer characteristics of a phase change material slurry for air conditioning applications
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.05.002
  contributor:
    fullname: Diaconu
– volume: 86
  start-page: 2661
  issue: 12
  year: 2009
  ident: 10.1016/j.applthermaleng.2011.10.050_bib8
  article-title: Heat transfer characteristics of microencapsulated phase change material slurry in laminar flow under constant heat flux
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.04.025
  contributor:
    fullname: Zeng
– volume: 89
  start-page: 307
  issue: 2, 3
  year: 2005
  ident: 10.1016/j.applthermaleng.2011.10.050_bib17
  article-title: Micro-encapsulated paraffin in phase-change slurries
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2004.12.008
  contributor:
    fullname: Gschwander
– volume: 34
  start-page: 819
  issue: 3
  year: 1991
  ident: 10.1016/j.applthermaleng.2011.10.050_bib5
  article-title: Forced convection heat transfer in microencapsulated phase change material slurries: flow in circular ducts
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(91)90128-2
  contributor:
    fullname: Charunyakorn
– volume: 44
  start-page: 2277
  issue: 12
  year: 2001
  ident: 10.1016/j.applthermaleng.2011.10.050_bib7
  article-title: Turbulent heat transfer with phase change material suspensions
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(00)00260-X
  contributor:
    fullname: Roy
– volume: 50
  start-page: 1938
  issue: 9, 10
  year: 2007
  ident: 10.1016/j.applthermaleng.2011.10.050_bib12
  article-title: Thermal performance of microencapsulated phase change material slurry in turbulent flow under constant heat flux
  publication-title: Int. J. Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2006.09.026
  contributor:
    fullname: Alvarado
– volume: 14
  start-page: 598
  issue: 2
  year: 2010
  ident: 10.1016/j.applthermaleng.2011.10.050_bib2
  article-title: An overview of phase change material slurries: MPCS and CHS
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2009.08.015
  contributor:
    fullname: Zhang
– volume: 29
  start-page: 445
  issue: 2, 3
  year: 2009
  ident: 10.1016/j.applthermaleng.2011.10.050_bib9
  article-title: Micro-channel heat sink with slurry of water with micro-encapsulated phase change material: 3D-numerical study
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2008.03.027
  contributor:
    fullname: Sabbah
SSID ssj0012874
Score 2.4052277
Snippet A microencapsulated PCM (Phase Change Material) slurry is a dispersion where the PCM, microencapsulated by a polymeric capsule, is dispersed in water. Compared...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 370
SubjectTerms Convective heat transfer
Experimental
Fluid dynamics
Fluid flow
Fluids
Heat transfer
Laminar slurry flow
Microencapsulated PCM slurry
Phase change
Slurries
Thermal Energy Storage
Thermal engineering
Thermal storage
Title Experimental analysis of a microencapsulated PCM slurry as thermal storage system and as heat transfer fluid in laminar flow
URI https://dx.doi.org/10.1016/j.applthermaleng.2011.10.050
https://search.proquest.com/docview/1019635461
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBabBEp7KH2SpA9UyM24eFfy61TSxCUt3VJICrmZsSWHhI23rNeEhv74zliyrTYEUkovZpFZSWg-az5pXoztoVKFROH3rdRM-xIC7SeRDP1kVpVROosjnVBw8tFx_OU0OcxkNpn01UHHtv8qaWxDWVPk7F9Ie-gUG_A3yhyfKHV83knumZuyH5yUI-BdkvMdzhXwZLwAoppfD-Zes2hXqx9Ub4a44GUXP4K4ONM2y7NJ59oQpVxTRQnkuXrlVYv2nNI2eYgoCunFhuWVy3R7ett3qsfEhwN51oszUN1d7ZwM9u9F7XgOfe5s-NNrsJE49fBmDtfGXgSk1MdWY_U_rK1lw_gAeEM7uDcc5Coi3RuOIfRm9HOinVqEqY_sZ-pu5cLdi4WpSGLVujDVYm5oDHN5cfGW_AXsiuCCmNyu5PYXBqOmHPwXj2l0GpwS7kVI0TbY1gx3Otxot_Y_ZqefBkMWlRPozvx2tvfY3uhiePuYt7GkP_hCR4JOHrGH9vTC9w3sHrOJrp-wB05Oy6fspwtA3gOQLysO_AYAOQKQGwByaLidJbcA5AaA2ImitwRA3gOQdwDk5zW3AOQEwGfs24fs5ODItyU-_BKJ0NpH_hhLSIWqpgUIEVSRVKi7ozQWFZBTSFmlOlU6pjSPMS50UchUB0ohj1VaBuI526yXtd5mHErke6kms3AgoYA0TSpdFtMYirIog3KHhf2S5t9NJpe8d3G8yH8XRU6ioLcoih32rl__3LJSwzZzhNAde3jTiy3HzZssclDrZdvQX1EBhjKa7v7zKC_Y_fHjeck216tWv2IbjWpfW1D-AjmJx6M
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+analysis+of+a+microencapsulated+PCM+slurry+as+thermal+storage+system+and+as+heat+transfer+fluid+in+laminar+flow&rft.jtitle=Applied+thermal+engineering&rft.au=Delgado%2C+M%C3%B3nica&rft.au=L%C3%A1zaro%2C+Ana&rft.au=Mazo%2C+Javier&rft.au=Mar%C3%ADn%2C+Jos%C3%A9+Mar%C3%ADa&rft.date=2012-04-01&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=36&rft.spage=370&rft.epage=377&rft_id=info:doi/10.1016%2Fj.applthermaleng.2011.10.050&rft.externalDocID=S1359431111006028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon