Functional nanoparticle architectures for sensoric, optoelectronic, and bioelectronic applications
Tailored sensoric, electronic, photoelectrochemical, and bioelectrocatalytic functions can be designed by organized molecular or biomolecular nanoparticle hybrid configurations on surfaces. Layered receptor-cross-linked Au nanoparticle assemblies on electrodes act as specific sensors of tunable sens...
Saved in:
Published in: | Pure and applied chemistry Vol. 74; no. 9; pp. 1773 - 1783 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin
De Gruyter
01-09-2002
Walter de Gruyter GmbH |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Tailored sensoric, electronic, photoelectrochemical, and bioelectrocatalytic functions can be designed by organized molecular or biomolecular nanoparticle hybrid configurations on surfaces. Layered receptor-cross-linked Au nanoparticle assemblies on electrodes act as specific sensors of tunable sensitivities. Layered DNA-cross-linked CdS nanoparticles on electrode supports reveal organized assemblies of controlled electronic and photoelectrochemical properties. Au nanoparticle-FAD semisynthetic cofactor units are reconstituted into apo-glucose oxidase (GOx) and assembled onto electrodes. The resulting enzymes reveal effective electrical contacting with the electrodes, and exhibit bioelectrocatalytic functions toward the oxidation of glucose to gluconic acid. Magneto-switchable electrocatalysis and bioelectrocatalysis are accomplished by the surface modification of magnetic particles with redox-relay units. By the attraction of the modified magnetic particles to the electrode support, or their retraction from the electrode, by means of an external magnet, the electrochemical functions of the magnetic particle-tethered relays can be switched between "ON" and "OFF" states, respectively. The magneto-switchable redox functionalities of the modified particles activate electrocatalytic transformations, such as a biocatalytic chemoluminescence cascade that leads to magneto-switchable light emission or the activation of bioelectrocatalytic processes. |
---|---|
AbstractList | Tailored sensoric, electronic, photoelectrochemical, and bioelectrocatalytic functions can be designed by organized molecular or biomolecular nanoparticle hybrid configurations on surfaces. Layered receptor-cross-linked Au nanoparticle assemblies on electrodes act as specific sensors of tunable sensitivities. Layered DNA-cross-linked CdS nanoparticles on electrode supports reveal organized assemblies of controlled electronic and photoelectrochemical properties. Au nanoparticle-FAD semisynthetic cofactor units are reconstituted into apo-glucose oxidase (GOx) and assembled onto electrodes. The resulting enzymes reveal effective electrical contacting with the electrodes, and exhibit bioelectrocatalytic functions toward the oxidation of glucose to gluconic acid. Magneto-switchable electrocatalysis and bioelectrocatalysis are accomplished by the surface modification of magnetic particles with redox-relay units. By the attraction of the modified magnetic particles to the electrode support, or their retraction from the electrode, by means of an external magnet, the electrochemical functions of the magnetic particle-tethered relays can be switched between "ON" and "OFF" states, respectively. The magneto-switchable redox functionalities of the modified particles activate electrocatalytic transformations, such as a biocatalytic chemoluminescence cascade that leads to magneto-switchable light emission or the activation of bioelectrocatalytic processes. |
Author | Willner, Bilha Willner, Itamar |
Author_xml | – sequence: 1 givenname: Itamar surname: Willner fullname: Willner, Itamar organization: Institute of Chemistry, Farkas Center for Light-Induced Processes, Hebrew University of Jerusalem, Jerusalem 91904, Israel – sequence: 2 givenname: Bilha surname: Willner fullname: Willner, Bilha organization: Institute of Chemistry, Farkas Center for Light-Induced Processes, Hebrew University of Jerusalem, Jerusalem 91904, Israel |
BookMark | eNp1kEtLw0AUhQepYFtduw24NfbOK5NsBCm2CgU3ug43k4mmxJk4M0H6702JoAiu7uucD-5ZkJl11hBySeGGcklXPWoGwJSAgirFT8ic8kymHJSckTkA56mQQp6RRQh7ABCFYHNSbQarY-ssdolF63r0sdWdSdDrtzYaHQdvQtI4nwRjg_Otvk5cH53pxpt39jijrZOq_bVKsO-7VuMRHM7JaYNdMBffdUleNvfP64d097R9XN_tUi1YEVNaoTHI6yrnaKSGPOMyZ0xBI4sGEXKd5cVYmKQVb6paaQkZVYKxAjIhgS_J1cTtvfsYTIjl3g1-fCyUjHEAmctCjqrVpNLeheBNU_a-fUd_KCmUxyDLP0GOjtvJ8YldNL42r344jM0P_h-nEhPgC8jyfQU |
CitedBy_id | crossref_primary_10_1021_jp057105e crossref_primary_10_1557_PROC_0901_Ra22_54_Rb22_54 crossref_primary_10_1039_B813620C crossref_primary_10_1021_ja106149g crossref_primary_10_1016_j_cap_2008_12_027 crossref_primary_10_1002_marc_200800764 crossref_primary_10_1021_la063528b crossref_primary_10_1088_0022_3727_43_30_305301 crossref_primary_10_1016_j_jcis_2009_09_029 crossref_primary_10_1016_j_saa_2012_03_047 crossref_primary_10_1002_cphc_201300047 crossref_primary_10_1063_1_1906210 crossref_primary_10_1021_ac3029486 crossref_primary_10_1002_elan_200804209 crossref_primary_10_1142_S1793048007000477 crossref_primary_10_1021_ja0457718 crossref_primary_10_1007_s10008_009_0811_8 crossref_primary_10_1002_elan_200302920 crossref_primary_10_1016_j_jpcs_2021_110004 crossref_primary_10_1016_j_tsf_2008_06_069 crossref_primary_10_1002_elan_200603613 crossref_primary_10_1016_j_electacta_2004_08_017 crossref_primary_10_1039_b711658f crossref_primary_10_1039_C4RA03033H crossref_primary_10_1364_JOSAB_440578 crossref_primary_10_1039_c0cp02409k crossref_primary_10_1039_b815881a crossref_primary_10_1002_elan_200503401 crossref_primary_10_1021_acs_chemrev_6b00030 crossref_primary_10_2116_analsci_20_1265 crossref_primary_10_1016_j_jlumin_2011_08_034 crossref_primary_10_1016_j_colsurfa_2007_08_030 crossref_primary_10_1021_ic0481576 crossref_primary_10_1021_ma050836s crossref_primary_10_1016_S0003_2670_03_00725_6 crossref_primary_10_1039_B308242C crossref_primary_10_1016_j_apsusc_2014_11_040 crossref_primary_10_1246_cl_2010_156 crossref_primary_10_1021_acsami_6b13456 crossref_primary_10_1039_c2nr11605g crossref_primary_10_1039_c2nr32441e crossref_primary_10_1007_s10876_005_0044_7 crossref_primary_10_1038_nbt873 crossref_primary_10_1007_s11182_006_0265_8 crossref_primary_10_1134_S1995078019030029 crossref_primary_10_1021_la0358163 crossref_primary_10_1016_j_jnoncrysol_2022_121599 crossref_primary_10_1134_S1995078017010062 crossref_primary_10_1142_S0218863508004093 crossref_primary_10_1016_j_msec_2006_07_018 crossref_primary_10_1007_s13206_010_4101_4 crossref_primary_10_1021_cm060793 crossref_primary_10_1021_ct200266f crossref_primary_10_1007_s11164_014_1622_9 crossref_primary_10_3740_MRSK_2015_25_12_647 crossref_primary_10_1021_ac0344079 crossref_primary_10_1098_rsta_2009_0274 crossref_primary_10_1002_adom_201600281 crossref_primary_10_1039_b714745g crossref_primary_10_3390_coatings13101661 crossref_primary_10_1016_j_cplett_2005_05_069 crossref_primary_10_1021_jp9118088 crossref_primary_10_1021_nl048669h crossref_primary_10_3390_s7040589 crossref_primary_10_1016_j_reactfunctpolym_2008_03_007 crossref_primary_10_1016_j_bpc_2005_11_003 crossref_primary_10_1007_BF03010455 crossref_primary_10_1021_la052589r crossref_primary_10_1002_adma_200600312 crossref_primary_10_1007_s13204_012_0142_4 crossref_primary_10_1002_anie_200600356 crossref_primary_10_1021_cr2001178 crossref_primary_10_1146_annurev_anchem_111808_073555 crossref_primary_10_1002_elan_201100186 crossref_primary_10_1007_s11051_016_3563_2 crossref_primary_10_1021_cr068077e crossref_primary_10_1021_jp054127s crossref_primary_10_1088_0022_3727_47_8_085101 crossref_primary_10_1021_am5075002 crossref_primary_10_1155_2013_710432 crossref_primary_10_1016_j_ultramic_2010_02_039 crossref_primary_10_1002_ange_200600356 crossref_primary_10_1063_1_2963191 crossref_primary_10_1021_bm701386b crossref_primary_10_1002_macp_201600371 crossref_primary_10_1016_j_snr_2021_100054 crossref_primary_10_1103_PhysRevE_81_026304 crossref_primary_10_1557_s43578_023_01208_1 crossref_primary_10_1016_j_jelechem_2010_04_015 crossref_primary_10_1081_AL_120039426 crossref_primary_10_1080_03601231003613641 crossref_primary_10_1016_j_jcis_2010_01_010 crossref_primary_10_1002_adma_200401728 crossref_primary_10_1039_B611448B crossref_primary_10_1149_2_057401jes crossref_primary_10_1016_j_matchemphys_2009_04_024 crossref_primary_10_1021_nn901112p crossref_primary_10_1021_jp809780m crossref_primary_10_1364_JOSAB_29_000088 crossref_primary_10_1002_pi_2415 crossref_primary_10_1039_b902749a crossref_primary_10_1016_j_aca_2010_07_020 crossref_primary_10_1021_jp061003m crossref_primary_10_1021_cr300143v |
ContentType | Journal Article |
Copyright | 2013 Walter de Gruyter GmbH, Berlin/Boston |
Copyright_xml | – notice: 2013 Walter de Gruyter GmbH, Berlin/Boston |
DBID | AAYXX CITATION K9. |
DOI | 10.1351/pac200274091773 |
DatabaseName | CrossRef ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1365-3075 |
EndPage | 1783 |
ExternalDocumentID | 10_1351_pac200274091773 10_1351_pac2002740917737491773 |
GroupedDBID | -~X 08R 0R~ 123 2WC 4.4 53G 8W4 AAAEU AAEMA AAFPC AAGVJ AAKRG AALGR AALRV AAONY AAOWA AAPBV AAPJK AAQCX AASQN AAWFC AAXCG ABABW ABAOT ABAQN ABFKT ABFLS ABIQR ABLVI ABMIY ABPLS ABPTK ABRDF ABRQL ABUVI ABXMZ ABYBW ACEFL ACGFO ACGFS ACIWK ACMKP ACNCT ACTFP ACXLN ACZBO ADALX ADEQT ADGQD AEDGQ AEGVQ AEICA AEKEB AEMOE AENEX AEQDQ AERZL AEXIE AFAUI AFBQV AFCXV AFGNR AFQUK AFYRI AGWTP AHVWV AHXUK AIAGR AIERV AIGSN AIKXB AJATJ AJPIC ALMA_UNASSIGNED_HOLDINGS ALUKF AMAVY ASYPN AZMOX BAKPI BBCWN BBDJO BCIFA BDLBQ BENPR CAG COF CS3 DASCH DBYYV DU5 E.- E3Z EBS EJD F5P FSTRU HCIFZ HH5 HZ~ H~9 IH2 IPNFZ L7B O9- OK1 P2P PDBOC QD8 RDN RIG RNS SJN TN5 TWZ WHG WTRAM ZE2 ~02 AAILP AAYXX ABCQX ABJNI ABVMU ABWLS ACPMA AGBEV AKXKS CITATION KDIRW SLJYH UK5 K9. |
ID | FETCH-LOGICAL-c429t-1baeea3db83ae5c0863582270f59faa08c689a08251b3fbd7c506174229064503 |
ISSN | 0033-4545 |
IngestDate | Thu Oct 10 15:57:08 EDT 2024 Fri Nov 22 01:14:55 EST 2024 Fri Nov 25 00:38:09 EST 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c429t-1baeea3db83ae5c0863582270f59faa08c689a08251b3fbd7c506174229064503 |
OpenAccessLink | https://www.degruyter.com/document/doi/10.1351/pac200274091773/pdf |
PQID | 2230058595 |
PQPubID | 2032616 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2230058595 crossref_primary_10_1351_pac200274091773 walterdegruyter_journals_10_1351_pac2002740917737491773 |
PublicationCentury | 2000 |
PublicationDate | 2002-09-01 |
PublicationDateYYYYMMDD | 2002-09-01 |
PublicationDate_xml | – month: 09 year: 2002 text: 2002-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Pure and applied chemistry |
PublicationYear | 2002 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
SSID | ssj0004942 |
Score | 2.1284528 |
Snippet | Tailored sensoric, electronic, photoelectrochemical, and bioelectrocatalytic functions can be designed by organized molecular or biomolecular nanoparticle... |
SourceID | proquest crossref walterdegruyter |
SourceType | Aggregation Database Publisher |
StartPage | 1773 |
SubjectTerms | Assemblies Bioelectricity Crosslinking Electrodes Gluconic acid Glucose oxidase Gold Light emission Nanoparticles Optoelectronic devices Oxidation |
Title | Functional nanoparticle architectures for sensoric, optoelectronic, and bioelectronic applications |
URI | http://www.degruyter.com/doi/10.1351/pac200274091773 https://www.proquest.com/docview/2230058595 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe68QA8TDBAbAzkBx6QuogmtuvkEUZLQVNBWiftLbIde0xi6dQPTfDXc_5I45QPwQMvSeQml-rul_Odz3eH0MusMEwOC5WojPKEGvBTimEhE02lFmxoYJKyucOTMz69yN-N6KjX-954_Zux_yppGANZ28zZf5D2higMwDXIHI4gdTj-ldzHMFGF9b1a1OAS-1v6ccTA1WDoL8GDtRVCLJfnN6t52xGn2dIpr6LBfhzrjm3az00MQgSLVjVN5OJFnZBY82ElrsXiFz-8vfr6RXTWILLNJqug6Vxkv18Brhfrb_by_bWcxGqXEFtc3Yevtde0dnsdKBgWq2LfsCdAroj0asp9w5MwR6fcd7_5Sf8TlrqmxSpz_jYYQ5sH40rb00_l-Pz0tJyNLmY76E4GSsrqyLOP0zantqC-0nz466EsFLzg9Rb5rkXTuil7t44tlb70TInsltkDtBccDvzGw-Ah6ul6H909aUS0j-5HJSkfIdniB8f4wR38YMAPbvBzjLvoOcYABtzBDo6x8xidj0ezk0kS-nAkCqyVVZJKobUglcyJ0EyBE2zTqzM-MKwwQgxyNcwLYdcaUkmMrLhi1jCmrpUAZQPyBO3W81o_RThTjChhckVNRo3R4C2bQaolrxiRYOofoFcNL8sbX26ldDFXlpZbbD9ARw2vy_D9LUswdm2jTFYAJb7F__au31Dk1J0O_0z4GbrXfgJHaHe1WOvnaGdZrV84BP0AYlOSdg |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Multiple Vendors |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+nanoparticle+architectures+for+sensoric%2C+optoelectronic%2C+and+bioelectronic+applications&rft.jtitle=Pure+and+applied+chemistry&rft.au=Willner%2C+Itamar&rft.au=Willner%2C+Bilha&rft.date=2002-09-01&rft.pub=Walter+de+Gruyter+GmbH&rft.issn=0033-4545&rft.eissn=1365-3075&rft.volume=74&rft.issue=9&rft.spage=1773&rft.epage=1783&rft_id=info:doi/10.1351%2Fpac200274091773&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-4545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-4545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-4545&client=summon |