Beta-N-oxalylamino-L-alanine action on glutamate receptors

beta-N-Oxalylamino-L-alanine (L-BOAA) is a non-protein excitatory amino acid present in the seed of Lathyrus sativus L. This excitotoxin has been characterized as the causative agent of human neurolathyrism, an upper motor neuron disease producing corticospinal dysfunction from excessive consumption...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neurochemistry Vol. 53; no. 3; p. 710
Main Authors: Ross, S M, Roy, D N, Spencer, P S
Format: Journal Article
Language:English
Published: England 01-09-1989
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:beta-N-Oxalylamino-L-alanine (L-BOAA) is a non-protein excitatory amino acid present in the seed of Lathyrus sativus L. This excitotoxin has been characterized as the causative agent of human neurolathyrism, an upper motor neuron disease producing corticospinal dysfunction from excessive consumption of the lathyrus pea. Previous behavioral, tissue-culture, and in vitro receptor binding investigations revealed that L-BOAA might mediate acute neurotoxicity through quisqualate (QA)-preferring glutamate receptors. The present study demonstrates the stereospecific action of L-BOAA on glutamate receptor binding in whole mouse brain synaptic membranes. L-BOAA was most active in displacing thiocyanate (KSCN)-sensitive specific tritiated (RS)-alpha-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) binding (i.e., QA receptor) (Ki = 0.76 microM) with a rank-order potency of QA greater than kainate greater than N-methyl-D-aspartate (NMDA). By contrast, the nonneurotoxic D-BOAA isomer (100 microM) was essentially inactive in displacing radioligands for glutamate receptors, except the NMDA site, where it was equipotent with L-BOAA. Scatchard analysis of L-BOAA displacement of specific [3H]AMPA binding indicated competitive antagonism (KD: control, 135 nM; L-BOAA, 265 nM) without a significant change in QA-receptor density, and Hill plots yielded coefficients approaching unity. Differential L-BOAA concentration-dependent decreases in specific [3H]AMPA binding were observed in synaptic membranes, indicating that the neurotoxin was more potent in displacing specific binding from frontal cortex membranes, followed by that for corpus striatum, hippocampus, cerebellum, and spinal cord.
ISSN:0022-3042
DOI:10.1111/j.1471-4159.1989.tb11762.x