Enrichment of gas storage in clathrate hydrates by optimizing the molar liquid water-gas ratio

Natural gas (NG) is considered a modern source of energy. Gas hydrates are anticipated to be an alternative method for gas storage and transportation applications. The process must be handy, rapid, and proficient for scale-up. In the present study, methane (CH 4 ) and carbon dioxide (CO 2 ) hydrates...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances Vol. 12; no. 4; pp. 274 - 282
Main Authors: Burla, Sai Kiran, Pinnelli, S. R. Prasad
Format: Journal Article
Language:English
Published: England Royal Society of Chemistry 12-01-2022
The Royal Society of Chemistry
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Natural gas (NG) is considered a modern source of energy. Gas hydrates are anticipated to be an alternative method for gas storage and transportation applications. The process must be handy, rapid, and proficient for scale-up. In the present study, methane (CH 4 ) and carbon dioxide (CO 2 ) hydrates are synthesized by varying the guest (gas) to host (water) volume. The experiments are performed in a non-stirred system. The results specify that the maximum storage capacity is achieved when the molar liquid water-gas ratio is about 4.08 and 8.25 for CH 4 and CO 2 hydrates. At the optimal water-gas ratios, the total CH 4 and CO 2 gas uptake capacity is about 14.3 ± 0.4 and 9.1 ± 0.4 liters at standard temperature and pressure (STP) conditions. The gas uptake gradually increases with the solution volume and abruptly falls after a threshold point. The hydrate grows across the reactor's metal surface; when the process fully covers the surface, the growth continues horizontally (increase in thickness). With varying the liquid water-gas ratio (low to high), the formation kinetics ( t 90 ) is delayed. The hydrate growth rate gradually decreases and does not significantly influence the hydrate formation temperatures. Optimizing the molar liquid water-gas ratio yields a high gas storage capacity and faster process kinetics. Methane and carbon dioxide storage in hydrate form.
AbstractList Natural gas (NG) is considered a modern source of energy. Gas hydrates are anticipated to be an alternative method for gas storage and transportation applications. The process must be handy, rapid, and proficient for scale-up. In the present study, methane (CH4) and carbon dioxide (CO2) hydrates are synthesized by varying the guest (gas) to host (water) volume. The experiments are performed in a non-stirred system. The results specify that the maximum storage capacity is achieved when the molar liquid water-gas ratio is about 4.08 and 8.25 for CH4 and CO2 hydrates. At the optimal water-gas ratios, the total CH4 and CO2 gas uptake capacity is about 14.3 ± 0.4 and 9.1 ± 0.4 liters at standard temperature and pressure (STP) conditions. The gas uptake gradually increases with the solution volume and abruptly falls after a threshold point. The hydrate grows across the reactor's metal surface; when the process fully covers the surface, the growth continues horizontally (increase in thickness). With varying the liquid water-gas ratio (low to high), the formation kinetics (t 90) is delayed. The hydrate growth rate gradually decreases and does not significantly influence the hydrate formation temperatures. Optimizing the molar liquid water-gas ratio yields a high gas storage capacity and faster process kinetics.Natural gas (NG) is considered a modern source of energy. Gas hydrates are anticipated to be an alternative method for gas storage and transportation applications. The process must be handy, rapid, and proficient for scale-up. In the present study, methane (CH4) and carbon dioxide (CO2) hydrates are synthesized by varying the guest (gas) to host (water) volume. The experiments are performed in a non-stirred system. The results specify that the maximum storage capacity is achieved when the molar liquid water-gas ratio is about 4.08 and 8.25 for CH4 and CO2 hydrates. At the optimal water-gas ratios, the total CH4 and CO2 gas uptake capacity is about 14.3 ± 0.4 and 9.1 ± 0.4 liters at standard temperature and pressure (STP) conditions. The gas uptake gradually increases with the solution volume and abruptly falls after a threshold point. The hydrate grows across the reactor's metal surface; when the process fully covers the surface, the growth continues horizontally (increase in thickness). With varying the liquid water-gas ratio (low to high), the formation kinetics (t 90) is delayed. The hydrate growth rate gradually decreases and does not significantly influence the hydrate formation temperatures. Optimizing the molar liquid water-gas ratio yields a high gas storage capacity and faster process kinetics.
Natural gas (NG) is considered a modern source of energy. Gas hydrates are anticipated to be an alternative method for gas storage and transportation applications. The process must be handy, rapid, and proficient for scale-up. In the present study, methane (CH 4 ) and carbon dioxide (CO 2 ) hydrates are synthesized by varying the guest (gas) to host (water) volume. The experiments are performed in a non-stirred system. The results specify that the maximum storage capacity is achieved when the molar liquid water–gas ratio is about 4.08 and 8.25 for CH 4 and CO 2 hydrates. At the optimal water–gas ratios, the total CH 4 and CO 2 gas uptake capacity is about 14.3 ± 0.4 and 9.1 ± 0.4 liters at standard temperature and pressure (STP) conditions. The gas uptake gradually increases with the solution volume and abruptly falls after a threshold point. The hydrate grows across the reactor's metal surface; when the process fully covers the surface, the growth continues horizontally (increase in thickness). With varying the liquid water–gas ratio (low to high), the formation kinetics ( t 90 ) is delayed. The hydrate growth rate gradually decreases and does not significantly influence the hydrate formation temperatures. Optimizing the molar liquid water–gas ratio yields a high gas storage capacity and faster process kinetics.
Natural gas (NG) is considered a modern source of energy. Gas hydrates are anticipated to be an alternative method for gas storage and transportation applications. The process must be handy, rapid, and proficient for scale-up. In the present study, methane (CH 4 ) and carbon dioxide (CO 2 ) hydrates are synthesized by varying the guest (gas) to host (water) volume. The experiments are performed in a non-stirred system. The results specify that the maximum storage capacity is achieved when the molar liquid water–gas ratio is about 4.08 and 8.25 for CH 4 and CO 2 hydrates. At the optimal water–gas ratios, the total CH 4 and CO 2 gas uptake capacity is about 14.3 ± 0.4 and 9.1 ± 0.4 liters at standard temperature and pressure (STP) conditions. The gas uptake gradually increases with the solution volume and abruptly falls after a threshold point. The hydrate grows across the reactor's metal surface; when the process fully covers the surface, the growth continues horizontally (increase in thickness). With varying the liquid water–gas ratio (low to high), the formation kinetics ( t 90 ) is delayed. The hydrate growth rate gradually decreases and does not significantly influence the hydrate formation temperatures. Optimizing the molar liquid water–gas ratio yields a high gas storage capacity and faster process kinetics. Methane and carbon dioxide storage in hydrate form.
Natural gas (NG) is considered a modern source of energy. Gas hydrates are anticipated to be an alternative method for gas storage and transportation applications. The process must be handy, rapid, and proficient for scale-up. In the present study, methane (CH ) and carbon dioxide (CO ) hydrates are synthesized by varying the guest (gas) to host (water) volume. The experiments are performed in a non-stirred system. The results specify that the maximum storage capacity is achieved when the molar liquid water-gas ratio is about 4.08 and 8.25 for CH and CO hydrates. At the optimal water-gas ratios, the total CH and CO gas uptake capacity is about 14.3 ± 0.4 and 9.1 ± 0.4 liters at standard temperature and pressure (STP) conditions. The gas uptake gradually increases with the solution volume and abruptly falls after a threshold point. The hydrate grows across the reactor's metal surface; when the process fully covers the surface, the growth continues horizontally (increase in thickness). With varying the liquid water-gas ratio (low to high), the formation kinetics ( ) is delayed. The hydrate growth rate gradually decreases and does not significantly influence the hydrate formation temperatures. Optimizing the molar liquid water-gas ratio yields a high gas storage capacity and faster process kinetics.
Natural gas (NG) is considered a modern source of energy. Gas hydrates are anticipated to be an alternative method for gas storage and transportation applications. The process must be handy, rapid, and proficient for scale-up. In the present study, methane (CH4) and carbon dioxide (CO2) hydrates are synthesized by varying the guest (gas) to host (water) volume. The experiments are performed in a non-stirred system. The results specify that the maximum storage capacity is achieved when the molar liquid water–gas ratio is about 4.08 and 8.25 for CH4 and CO2 hydrates. At the optimal water–gas ratios, the total CH4 and CO2 gas uptake capacity is about 14.3 ± 0.4 and 9.1 ± 0.4 liters at standard temperature and pressure (STP) conditions. The gas uptake gradually increases with the solution volume and abruptly falls after a threshold point. The hydrate grows across the reactor's metal surface; when the process fully covers the surface, the growth continues horizontally (increase in thickness). With varying the liquid water–gas ratio (low to high), the formation kinetics (t90) is delayed. The hydrate growth rate gradually decreases and does not significantly influence the hydrate formation temperatures. Optimizing the molar liquid water–gas ratio yields a high gas storage capacity and faster process kinetics.
Author Pinnelli, S. R. Prasad
Burla, Sai Kiran
AuthorAffiliation Academy of Scientific and Innovative Research (AcSIR)
Gas Hydrate Division
CSIR-National Geophysical Research Institute (CSIR-NGRI)
AuthorAffiliation_xml – name: Gas Hydrate Division
– name: CSIR-National Geophysical Research Institute (CSIR-NGRI)
– name: Academy of Scientific and Innovative Research (AcSIR)
Author_xml – sequence: 1
  givenname: Sai Kiran
  surname: Burla
  fullname: Burla, Sai Kiran
– sequence: 2
  givenname: S. R. Prasad
  surname: Pinnelli
  fullname: Pinnelli, S. R. Prasad
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35425253$$D View this record in MEDLINE/PubMed
BookMark eNpdkU1r3DAQhkVISdI0l9xbBLmEgltpZHntSyBs0g8IFEpyrRjL8lrBljaSnbL99ZW76TapLiM0Dw8zel-TfeedIeSUsw-ciepjwwOyhSyl3iNHwPIiA1ZU-8_uh-QkxnuWTiE5FPyAHAqZgwQpjsiPaxes7gbjRupbusJI4-gDrgy1juoexy7gaGi3aeYaab2hfj3awf6ybkXHztDB9xhobx8m29CfCQrZrEm49W_Iqxb7aE6e6jG5-3R9u_yS3Xz7_HV5eZPpHMox09WCAS9rjnleCgAhuKxRNhUyUWvTFqUsagSsFpyl57oGaHleQl5WhoFEcUwutt71VA-m0WmdgL1aBztg2CiPVr3sONuplX9UZbWouIAkOH8SBP8wmTiqwUZt-h6d8VNUkP5unqLIE3r2H3rvp-DSeokCzpNRzsL3W0oHH2Mw7W4YztScnLri3y__JLdM8Lvn4-_Qvzkl4O0WCFHvuv-iF78BBgOfeg
CitedBy_id crossref_primary_10_1039_D2RA03119A
crossref_primary_10_1016_j_energy_2024_131366
crossref_primary_10_1021_acs_energyfuels_3c03955
crossref_primary_10_1021_acssuschemeng_2c01742
crossref_primary_10_1016_j_energy_2024_131579
crossref_primary_10_1016_j_molliq_2023_123196
crossref_primary_10_1016_j_fuel_2023_129663
crossref_primary_10_1016_j_fuel_2022_127129
crossref_primary_10_1016_j_molliq_2022_121192
crossref_primary_10_1039_D2RA00531J
crossref_primary_10_1016_j_cscee_2023_100335
crossref_primary_10_1016_j_seppur_2023_123135
crossref_primary_10_1021_acsnano_2c04640
Cites_doi 10.1016/j.margeo.2004.08.001
10.1021/acsomega.8b03097
10.1016/j.cofs.2019.08.005
10.1016/j.molliq.2020.112665
10.1016/B978-075067776-9/50013-0
10.1016/j.fuel.2019.116219
10.1039/D0CC02195D
10.1021/acs.energyfuels.0c03550
10.1016/j.fuel.2019.116689
10.1016/j.ceja.2020.100022
10.2516/ogst/2014019
10.1134/S0097807820010108
10.1021/acs.energyfuels.0c01862
10.1021/acs.energyfuels.0c01725
10.1016/j.jece.2021.105053
10.1016/j.rser.2019.109492
10.1016/j.fuel.2016.05.068
10.1016/j.enconman.2008.05.016
10.1016/j.apenergy.2016.12.002
10.1016/j.energy.2020.117209
10.1016/j.cej.2018.01.054
10.1016/j.jngse.2018.02.001
10.1016/j.fuel.2021.120320
10.1021/acs.energyfuels.6b02304
10.18520/cs/v114/i03/661-666
10.1016/j.marpetgeo.2019.05.023
10.1021/ef500626u
10.1038/s41598-018-26916-1
10.1007/s00367-019-00628-5
10.1021/acs.iecr.5b03476
10.1016/j.jiec.2019.10.034
10.1038/nature02135
10.1021/ef400397x
10.1016/j.cej.2019.121974
10.1201/9781420008494
10.2516/ogst/2018092
10.1016/j.apenergy.2012.05.005
10.1016/j.fuel.2019.116558
10.1016/j.desal.2019.114284
10.1016/j.marpetgeo.2020.104783
10.1016/B978-0-12-404585-9.00003-9
10.1038/s41598-020-59431-3
10.1016/j.energy.2019.05.151
10.1016/j.marpetgeo.2018.11.021
10.1021/acs.energyfuels.9b03853
10.1016/j.jngse.2020.103211
10.3390/pr8010124
10.1039/D0EE02315A
10.1021/acs.jced.9b00771
10.3390/pr8010070
10.1016/j.apenergy.2019.04.118
10.3390/pr7090598
10.1016/j.molliq.2020.113175
10.1016/j.marpetgeo.2014.08.010
10.1021/jp902547d
10.1021/acs.energyfuels.0c02202
10.1039/D0RA01754J
10.3390/en13030531
10.1016/j.petrol.2020.106940
10.1016/j.ces.2007.01.001
10.1021/acs.iecr.7b00427
10.1016/j.cej.2016.01.026
10.1021/acs.chemrev.5b00745
10.1016/j.jngse.2015.04.030
10.1016/j.apenergy.2021.116576
10.1016/j.fluid.2011.11.012
10.1016/j.energy.2019.116201
10.1016/j.jiec.2021.01.022
10.1016/j.clay.2020.105618
10.3390/app10051701
10.1039/C9TA07071K
10.18520/cs/v114/i06/1163-1165
10.1021/jp411873m
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2022
This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2022
– notice: This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/d1ra07585c
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

PubMed
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 282
ExternalDocumentID 10_1039_D1RA07585C
35425253
d1ra07585c
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: Unassigned
GroupedDBID 0-7
0R
AAGNR
AAIWI
ABGFH
ACGFS
ADBBV
ADMRA
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
CKLOX
EBS
EE0
EF-
GROUPED_DOAJ
HZ
H~N
J3I
JG
O9-
OK1
R7C
R7E
R7G
RCNCU
ROYLF
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
-JG
0R~
53G
AAFWJ
AAHBH
AAJAE
AARTK
AAWGC
AAXHV
ABEMK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AGEGJ
AGRSR
AHGCF
AKBGW
ANUXI
APEMP
H13
HZ~
M~E
NPM
PGMZT
RPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
5PM
AFPKN
ID FETCH-LOGICAL-c428t-c970218b1a4483223315ba5d9a03bcef6856ba2a9710a5dbb22f1482489e025a3
IEDL.DBID RPM
ISSN 2046-2069
IngestDate Tue Sep 17 21:21:35 EDT 2024
Sat Oct 26 04:12:28 EDT 2024
Thu Oct 10 18:51:57 EDT 2024
Thu Nov 21 23:44:33 EST 2024
Sat Nov 02 12:28:36 EDT 2024
Fri Jan 21 11:44:34 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-c970218b1a4483223315ba5d9a03bcef6856ba2a9710a5dbb22f1482489e025a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4954-1321
0000-0003-1473-5510
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979132/
PMID 35425253
PQID 2621197952
PQPubID 2047525
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8979132
pubmed_primary_35425253
crossref_primary_10_1039_D1RA07585C
rsc_primary_d1ra07585c
proquest_journals_2621197952
proquest_miscellaneous_2651685664
PublicationCentury 2000
PublicationDate 2022-01-12
PublicationDateYYYYMMDD 2022-01-12
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-12
  day: 12
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2022
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Sahu (D1RA07585C/cit9/1) 2020; 34
Zhang (D1RA07585C/cit19/1) 2021; 287
Kumar (D1RA07585C/cit71/1) 2015; 54
Oppo (D1RA07585C/cit5/1) 2020; 10
Pandey (D1RA07585C/cit17/1) 2020; 8
Saha (D1RA07585C/cit49/1) 2016; 116
Kim (D1RA07585C/cit39/1) 2020; 82
Sloan (D1RA07585C/cit47/1) 2003; 426
Asadi (D1RA07585C/cit68/1) 2020; 34
Prasad (D1RA07585C/cit58/1) 2015; 25
Nasir (D1RA07585C/cit75/1) 2020; 76
Prasad (D1RA07585C/cit12/1) 2018; 8
Collett (D1RA07585C/cit4/1) 2019; 108
Goodness (D1RA07585C/cit36/1) 2020; 38
Kanda (D1RA07585C/cit43/1) 2006
Babu (D1RA07585C/cit21/1) 2021; 35
Hao (D1RA07585C/cit76/1) 2008; 49
Claßen (D1RA07585C/cit29/1) 2019; 29
Veluswamy (D1RA07585C/cit50/1) 2017; 56
Zhang (D1RA07585C/cit34/1) 2020; 262
Lee (D1RA07585C/cit38/1) 2020; 263
(D1RA07585C/cit42/1) 2006
Zheng (D1RA07585C/cit22/1) 2020; 478
Yue (D1RA07585C/cit56/1) 2019; 64
He (D1RA07585C/cit70/1) 2019; 7
Seol (D1RA07585C/cit57/1) 2020; 56
Lee (D1RA07585C/cit53/1) 2019; 375
Prasad (D1RA07585C/cit10/1) 2020; 10
Pandey (D1RA07585C/cit69/1) 2019; 7
Rossi (D1RA07585C/cit77/1) 2012; 99
Kumar (D1RA07585C/cit3/1) 2019; 108
Kiran (D1RA07585C/cit31/1) 2020; 4
Kiran (D1RA07585C/cit13/1) 2018; 3
Li (D1RA07585C/cit52/1) 2020; 13
Wang (D1RA07585C/cit55/1) 2020; 197
Shi (D1RA07585C/cit51/1) 2019; 180
Mu (D1RA07585C/cit37/1) 2020; 188
Sloan (D1RA07585C/cit1/1) 2007
Linga (D1RA07585C/cit61/1) 2016; 31
Prasad (D1RA07585C/cit72/1) 2020; 3
Mizandrontsev (D1RA07585C/cit6/1) 2020; 47
Nallakukkala (D1RA07585C/cit20/1) 2021; 9
Raju (D1RA07585C/cit65/1) 2014
Lee (D1RA07585C/cit54/1) 2018; 338
Yang (D1RA07585C/cit46/1) 2015; 06
Bhattacharjee (D1RA07585C/cit14/1) 2020; 13
Dhanunjana Chari (D1RA07585C/cit59/1) 2012; 315
Dewangan (D1RA07585C/cit2/1) 2021; 124
Prasad (D1RA07585C/cit74/1) 2018; 52
Pang (D1RA07585C/cit78/1) 2007; 62
Yuan (D1RA07585C/cit44/1) 2020; 10
Eswari (D1RA07585C/cit63/1) 2014; 58
Veluswamy (D1RA07585C/cit15/1) 2017; 188
Qasim (D1RA07585C/cit35/1) 2020; 259
Yatsuk (D1RA07585C/cit7/1) 2019; 40
Zhang (D1RA07585C/cit33/1) 2020; 34
Chari (D1RA07585C/cit66/1) 2013; 27
Mohammadi (D1RA07585C/cit24/1) 2020; 309
Zheng (D1RA07585C/cit28/1) 2019; 249
(D1RA07585C/cit41/1) 2014
Kiran (D1RA07585C/cit18/1) 2018; 114
Liu (D1RA07585C/cit25/1) 2020; 190
Zhang (D1RA07585C/cit48/1) 2020; 8
Prasad (D1RA07585C/cit73/1) 2018; 114
Mazzini (D1RA07585C/cit8/1) 2004; 212
Liu (D1RA07585C/cit67/1) 2021; 293
Veluswamy (D1RA07585C/cit80/1) 2016; 182
Veluswamy (D1RA07585C/cit79/1) 2016; 290
Javidani (D1RA07585C/cit26/1) 2020; 304
Shin (D1RA07585C/cit60/1) 2009; 113
Wan (D1RA07585C/cit32/1) 2021; 96
Prasad (D1RA07585C/cit62/1) 2014; 118
Stoporev (D1RA07585C/cit23/1) 2020; 191
D1RA07585C/cit40/1
Veluswamy (D1RA07585C/cit16/1) 2020; 34
Chari (D1RA07585C/cit64/1) 2014; 70
Sloan (D1RA07585C/cit30/1) 2010
Cheng (D1RA07585C/cit27/1) 2020; 117
Sai Kiran (D1RA07585C/cit11/1) 2019; 74
Ikealumba (D1RA07585C/cit45/1) 2014; 28
References_xml – issn: 2010
  publication-title: Natural gas hydrates in flow assurance
  doi: Sloan
– issn: 2014
  publication-title: Methane hydrates with nano/micro size stböer silica
  doi: Raju Eswari Chari Prasad
– issn: 2007
  publication-title: Clathrate hydrates of natural gases
  doi: Sloan Koh
– issn: 2006
  end-page: p 295-322
  publication-title: Handbook of Natural Gas Transmission and Processing
– issn: 2014
  end-page: p 147-183
  publication-title: Handbook of Liquefied Natural Gas
– issn: 2006
  publication-title: Economic study on natural gas transportation with natural gas hydrate (NGH) pellets
  doi: Kanda
– volume: 38
  start-page: 1
  year: 2020
  ident: D1RA07585C/cit36/1
  publication-title: Curr. J. Appl. Sci. Technol.
  contributor:
    fullname: Goodness
– volume: 212
  start-page: 153
  year: 2004
  ident: D1RA07585C/cit8/1
  publication-title: Mar. Geol.
  doi: 10.1016/j.margeo.2004.08.001
  contributor:
    fullname: Mazzini
– volume: 3
  start-page: 18984
  year: 2018
  ident: D1RA07585C/cit13/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b03097
  contributor:
    fullname: Kiran
– volume-title: Natural gas hydrates in flow assurance
  year: 2010
  ident: D1RA07585C/cit30/1
  contributor:
    fullname: Sloan
– volume: 29
  start-page: 48
  year: 2019
  ident: D1RA07585C/cit29/1
  publication-title: Curr. Opin. Food Sci.
  doi: 10.1016/j.cofs.2019.08.005
  contributor:
    fullname: Claßen
– volume: 304
  start-page: 112665
  year: 2020
  ident: D1RA07585C/cit26/1
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.112665
  contributor:
    fullname: Javidani
– start-page: 295
  volume-title: Handbook of Natural Gas Transmission and Processing
  year: 2006
  ident: D1RA07585C/cit42/1
  doi: 10.1016/B978-075067776-9/50013-0
– volume: 259
  start-page: 116219
  year: 2020
  ident: D1RA07585C/cit35/1
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116219
  contributor:
    fullname: Qasim
– volume: 56
  start-page: 8368
  year: 2020
  ident: D1RA07585C/cit57/1
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC02195D
  contributor:
    fullname: Seol
– volume: 35
  start-page: 2514
  year: 2021
  ident: D1RA07585C/cit21/1
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c03550
  contributor:
    fullname: Babu
– volume: 263
  start-page: 116689
  year: 2020
  ident: D1RA07585C/cit38/1
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116689
  contributor:
    fullname: Lee
– volume: 3
  start-page: 100022
  year: 2020
  ident: D1RA07585C/cit72/1
  publication-title: Adv. Chem. Eng.
  doi: 10.1016/j.ceja.2020.100022
  contributor:
    fullname: Prasad
– volume: 70
  start-page: 1125
  year: 2014
  ident: D1RA07585C/cit64/1
  publication-title: Oil Gas Sci. Technol.
  doi: 10.2516/ogst/2014019
  contributor:
    fullname: Chari
– volume: 47
  start-page: 122
  year: 2020
  ident: D1RA07585C/cit6/1
  publication-title: Water Resour.
  doi: 10.1134/S0097807820010108
  contributor:
    fullname: Mizandrontsev
– volume: 34
  start-page: 15257
  year: 2020
  ident: D1RA07585C/cit16/1
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c01862
  contributor:
    fullname: Veluswamy
– volume: 34
  start-page: 9971
  year: 2020
  ident: D1RA07585C/cit68/1
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c01725
  contributor:
    fullname: Asadi
– volume: 9
  start-page: 105053
  year: 2021
  ident: D1RA07585C/cit20/1
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.105053
  contributor:
    fullname: Nallakukkala
– volume: 117
  start-page: 109492
  year: 2020
  ident: D1RA07585C/cit27/1
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2019.109492
  contributor:
    fullname: Cheng
– volume: 182
  start-page: 907
  year: 2016
  ident: D1RA07585C/cit80/1
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.05.068
  contributor:
    fullname: Veluswamy
– volume: 06
  start-page: 306
  year: 2015
  ident: D1RA07585C/cit46/1
  publication-title: Nat. Resour.
  contributor:
    fullname: Yang
– volume: 49
  start-page: 2546
  year: 2008
  ident: D1RA07585C/cit76/1
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2008.05.016
  contributor:
    fullname: Hao
– volume: 188
  start-page: 190
  year: 2017
  ident: D1RA07585C/cit15/1
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.12.002
  contributor:
    fullname: Veluswamy
– volume: 197
  start-page: 117209
  year: 2020
  ident: D1RA07585C/cit55/1
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117209
  contributor:
    fullname: Wang
– volume: 338
  start-page: 572
  year: 2018
  ident: D1RA07585C/cit54/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.01.054
  contributor:
    fullname: Lee
– volume: 52
  start-page: 461
  year: 2018
  ident: D1RA07585C/cit74/1
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2018.02.001
  contributor:
    fullname: Prasad
– volume-title: Methane hydrates with nano/micro size stböer silica
  year: 2014
  ident: D1RA07585C/cit65/1
  contributor:
    fullname: Raju
– volume: 293
  start-page: 120320
  year: 2021
  ident: D1RA07585C/cit67/1
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.120320
  contributor:
    fullname: Liu
– volume: 31
  start-page: 1
  year: 2016
  ident: D1RA07585C/cit61/1
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.6b02304
  contributor:
    fullname: Linga
– volume: 114
  start-page: 661
  year: 2018
  ident: D1RA07585C/cit18/1
  publication-title: Curr. Sci.
  doi: 10.18520/cs/v114/i03/661-666
  contributor:
    fullname: Kiran
– volume: 108
  start-page: 39
  year: 2019
  ident: D1RA07585C/cit4/1
  publication-title: Mar. Pet. Geol.
  doi: 10.1016/j.marpetgeo.2019.05.023
  contributor:
    fullname: Collett
– volume: 28
  start-page: 3556
  year: 2014
  ident: D1RA07585C/cit45/1
  publication-title: Energy Fuels
  doi: 10.1021/ef500626u
  contributor:
    fullname: Ikealumba
– volume: 8
  start-page: 8560
  year: 2018
  ident: D1RA07585C/cit12/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-26916-1
  contributor:
    fullname: Prasad
– volume: 40
  start-page: 481
  year: 2019
  ident: D1RA07585C/cit7/1
  publication-title: Geo-Mar. Lett.
  doi: 10.1007/s00367-019-00628-5
  contributor:
    fullname: Yatsuk
– volume: 54
  start-page: 12217
  year: 2015
  ident: D1RA07585C/cit71/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b03476
  contributor:
    fullname: Kumar
– volume: 82
  start-page: 349
  year: 2020
  ident: D1RA07585C/cit39/1
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2019.10.034
  contributor:
    fullname: Kim
– volume: 426
  start-page: 353
  year: 2003
  ident: D1RA07585C/cit47/1
  publication-title: Nature
  doi: 10.1038/nature02135
  contributor:
    fullname: Sloan
– volume: 27
  start-page: 3679
  year: 2013
  ident: D1RA07585C/cit66/1
  publication-title: Energy Fuels
  doi: 10.1021/ef400397x
  contributor:
    fullname: Chari
– volume: 375
  start-page: 121974
  year: 2019
  ident: D1RA07585C/cit53/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.121974
  contributor:
    fullname: Lee
– volume-title: Clathrate hydrates of natural gases
  year: 2007
  ident: D1RA07585C/cit1/1
  doi: 10.1201/9781420008494
  contributor:
    fullname: Sloan
– volume: 74
  start-page: 12
  year: 2019
  ident: D1RA07585C/cit11/1
  publication-title: Oil Gas Sci. Technol.
  doi: 10.2516/ogst/2018092
  contributor:
    fullname: Sai Kiran
– volume: 99
  start-page: 167
  year: 2012
  ident: D1RA07585C/cit77/1
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.05.005
  contributor:
    fullname: Rossi
– volume: 262
  start-page: 116558
  year: 2020
  ident: D1RA07585C/cit34/1
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116558
  contributor:
    fullname: Zhang
– volume: 478
  start-page: 114284
  year: 2020
  ident: D1RA07585C/cit22/1
  publication-title: Desalination
  doi: 10.1016/j.desal.2019.114284
  contributor:
    fullname: Zheng
– volume: 124
  start-page: 104783
  year: 2021
  ident: D1RA07585C/cit2/1
  publication-title: Mar. Pet. Geol.
  doi: 10.1016/j.marpetgeo.2020.104783
  contributor:
    fullname: Dewangan
– start-page: 147
  volume-title: Handbook of Liquefied Natural Gas
  year: 2014
  ident: D1RA07585C/cit41/1
  doi: 10.1016/B978-0-12-404585-9.00003-9
– volume: 10
  start-page: 2562
  year: 2020
  ident: D1RA07585C/cit5/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-59431-3
  contributor:
    fullname: Oppo
– volume: 180
  start-page: 978
  year: 2019
  ident: D1RA07585C/cit51/1
  publication-title: Energy
  doi: 10.1016/j.energy.2019.05.151
  contributor:
    fullname: Shi
– volume: 108
  start-page: 3
  year: 2019
  ident: D1RA07585C/cit3/1
  publication-title: Mar. Pet. Geol.
  doi: 10.1016/j.marpetgeo.2018.11.021
  contributor:
    fullname: Kumar
– volume: 4
  start-page: 000234
  year: 2020
  ident: D1RA07585C/cit31/1
  publication-title: Petrol. Petrochem. Eng. J.
  contributor:
    fullname: Kiran
– volume: 34
  start-page: 2790
  year: 2020
  ident: D1RA07585C/cit33/1
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.9b03853
  contributor:
    fullname: Zhang
– volume: 76
  start-page: 103211
  year: 2020
  ident: D1RA07585C/cit75/1
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2020.103211
  contributor:
    fullname: Nasir
– volume: 8
  start-page: 124
  year: 2020
  ident: D1RA07585C/cit17/1
  publication-title: Processes
  doi: 10.3390/pr8010124
  contributor:
    fullname: Pandey
– volume: 13
  start-page: 4946
  year: 2020
  ident: D1RA07585C/cit14/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02315A
  contributor:
    fullname: Bhattacharjee
– volume: 64
  start-page: 5824
  year: 2019
  ident: D1RA07585C/cit56/1
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/acs.jced.9b00771
  contributor:
    fullname: Yue
– volume: 8
  start-page: 70
  year: 2020
  ident: D1RA07585C/cit48/1
  publication-title: Processes
  doi: 10.3390/pr8010070
  contributor:
    fullname: Zhang
– volume: 249
  start-page: 190
  year: 2019
  ident: D1RA07585C/cit28/1
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.04.118
  contributor:
    fullname: Zheng
– volume: 7
  start-page: 598
  year: 2019
  ident: D1RA07585C/cit69/1
  publication-title: Processes
  doi: 10.3390/pr7090598
  contributor:
    fullname: Pandey
– volume: 309
  start-page: 113175
  year: 2020
  ident: D1RA07585C/cit24/1
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.113175
  contributor:
    fullname: Mohammadi
– volume: 58
  start-page: 199
  year: 2014
  ident: D1RA07585C/cit63/1
  publication-title: Mar. Pet. Geol.
  doi: 10.1016/j.marpetgeo.2014.08.010
  contributor:
    fullname: Eswari
– volume: 113
  start-page: 6415
  year: 2009
  ident: D1RA07585C/cit60/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp902547d
  contributor:
    fullname: Shin
– volume: 34
  start-page: 11813
  year: 2020
  ident: D1RA07585C/cit9/1
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c02202
  contributor:
    fullname: Sahu
– volume: 10
  start-page: 17795
  year: 2020
  ident: D1RA07585C/cit10/1
  publication-title: RSC Adv.
  doi: 10.1039/D0RA01754J
  contributor:
    fullname: Prasad
– volume-title: Economic study on natural gas transportation with natural gas hydrate (NGH) pellets
  year: 2006
  ident: D1RA07585C/cit43/1
  contributor:
    fullname: Kanda
– volume: 13
  start-page: 531
  year: 2020
  ident: D1RA07585C/cit52/1
  publication-title: Energies
  doi: 10.3390/en13030531
  contributor:
    fullname: Li
– volume: 188
  start-page: 106940
  year: 2020
  ident: D1RA07585C/cit37/1
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.106940
  contributor:
    fullname: Mu
– volume: 62
  start-page: 2198
  year: 2007
  ident: D1RA07585C/cit78/1
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2007.01.001
  contributor:
    fullname: Pang
– ident: D1RA07585C/cit40/1
– volume: 56
  start-page: 6145
  year: 2017
  ident: D1RA07585C/cit50/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b00427
  contributor:
    fullname: Veluswamy
– volume: 290
  start-page: 161
  year: 2016
  ident: D1RA07585C/cit79/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.01.026
  contributor:
    fullname: Veluswamy
– volume: 116
  start-page: 11436
  year: 2016
  ident: D1RA07585C/cit49/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00745
  contributor:
    fullname: Saha
– volume: 25
  start-page: 10
  year: 2015
  ident: D1RA07585C/cit58/1
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2015.04.030
  contributor:
    fullname: Prasad
– volume: 287
  start-page: 116576
  year: 2021
  ident: D1RA07585C/cit19/1
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116576
  contributor:
    fullname: Zhang
– volume: 315
  start-page: 126
  year: 2012
  ident: D1RA07585C/cit59/1
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/j.fluid.2011.11.012
  contributor:
    fullname: Dhanunjana Chari
– volume: 190
  start-page: 116201
  year: 2020
  ident: D1RA07585C/cit25/1
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116201
  contributor:
    fullname: Liu
– volume: 96
  start-page: 183
  year: 2021
  ident: D1RA07585C/cit32/1
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2021.01.022
  contributor:
    fullname: Wan
– volume: 191
  start-page: 105618
  year: 2020
  ident: D1RA07585C/cit23/1
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2020.105618
  contributor:
    fullname: Stoporev
– volume: 10
  start-page: 1701
  year: 2020
  ident: D1RA07585C/cit44/1
  publication-title: Appl. Sci.
  doi: 10.3390/app10051701
  contributor:
    fullname: Yuan
– volume: 7
  start-page: 21634
  year: 2019
  ident: D1RA07585C/cit70/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA07071K
  contributor:
    fullname: He
– volume: 114
  start-page: 1163
  year: 2018
  ident: D1RA07585C/cit73/1
  publication-title: Curr. Sci.
  doi: 10.18520/cs/v114/i06/1163-1165
  contributor:
    fullname: Prasad
– volume: 118
  start-page: 7759
  year: 2014
  ident: D1RA07585C/cit62/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp411873m
  contributor:
    fullname: Prasad
SSID ssj0000651261
Score 2.475457
Snippet Natural gas (NG) is considered a modern source of energy. Gas hydrates are anticipated to be an alternative method for gas storage and transportation...
SourceID pubmedcentral
proquest
crossref
pubmed
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 274
SubjectTerms Carbon dioxide
Chemistry
Energy sources
Gas hydrates
Kinetics
Metal surfaces
Methane
Natural gas
Optimization
Storage capacity
Transportation applications
Water
Title Enrichment of gas storage in clathrate hydrates by optimizing the molar liquid water-gas ratio
URI https://www.ncbi.nlm.nih.gov/pubmed/35425253
https://www.proquest.com/docview/2621197952
https://www.proquest.com/docview/2651685664
https://pubmed.ncbi.nlm.nih.gov/PMC8979132
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6xPUAviFdpoFRGcE03tuM4PlbbrXoBIR4St-BHwkbazZbdrlB76n_gH_JLmPFuFla9cYoUjxxrZjyPePwNwNtcZ8Zq7VLfZC7NdWPS0jQhNcryxqjci9iL4OKTfv-1PBsTTI7q78LEon3v2pNuOjvp2kmsrbyc-WFfJzb88G5UGm0wixoOYICx4T8p-tr8og8reA9FKs0w8IXNKC72-3BfKtRSoeSuH7oTXN6tkRws-pYg0fWcP4KHm5iRna7X9hju1d0TeDDqW7U9hW_jDs3ZhH70sXnDvtslo6JHNBWs7ZifYpRHiBBsch3ouWTums3RVszaG_RcDGNANqMUl03bH6s2sJ9ItPh9-4smihryDL6cjz-PLtJN64TUYz5xlXqjyXk7bjH9wj0rJVfOqmBsJp2vm6JUhbPCGgww8LVzQjSECJqXpsYoyMoD2OvmXX0ILASLcrMS3ViTyzpzsnRKYBpiHWGBhQTe9IysLtcIGVU82ZamOuMfTyPnRwkc9TyuNrtkWYmC8OW0USKB19th5B0dWtiunq-IRnFabZEn8Hwtku1nelkmoHeEtSUg7OzdEVSpiKG9UaEEDlCsW_q_mvLiv6d8CfuCrkhkPOXiCPauFqv6FQyWYXUcE_7jqK5_AJHb8M0
link.rule.ids 230,315,729,782,786,866,887,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6im8T2MsZlEBhgBK9ZYzuO48ep61TENiEYEm_Bl4RGatPRrprGE_-Bf7hfsmO3KVR721Ok-MiJ8h2fS3z8HYAPqUyUltLEtkpMnMpKxbmqXKyEppUSqWWhF8Hgqzz7nh_1PU2OaM_ChKJ9a-qDZjQ-aOphqK28GNtuWyfW_Xzay5VUmEV1O7CJ6zVJ_kvSFwYYvVhGWzJSrrqOTnXiI2O7DQ-5QD1lgq97ojvh5d0qyc60bQoSnM_xo3u-9i7sLKNNcrgYfgwPyuYJbPXaJm9P4Ue_QUM49L8IyaQiP_WM-HJJNDKkbogdYXzouSTI8Nr564yYazJBKzOuf6PPIxg9krFPjsmo_jWvHblCoenNn79-oqBbz-Dbcf-8N4iXTRdii5nIZWyV9G7fUI2JG652zqkwWjilE25sWWW5yIxmWmFogreNYazyXKJprkqMnzTfg41m0pQvgDinEXHN0QFWKS8Tw3MjGCYw2ngWMRfB-xaA4mLBrVGEPXGuiiP65TAg1otgv8WmWK6vWcEyz0wnlWARvFsN47fz2x26KSdzLyOof9ssjeD5AsrVY1odiECugbwS8Kzb6yOIamDfXqIYwR6qw0r-n4a9vPeUb2FrcH56Upx8PPv0CraZP2iR0Jiyfdi4nM7L19CZufmboOy3BbUFdg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6xrVR6gfIoBFowgmua2I7j-FjtQ0VAVfGQuAU_EjbSbnbZ7QqVE_-Bf8gvYZzdpKx6g1OkeORY-cbziCffALxKZKy0lCa0ZWzCRJYqzFTpQiU0LZVILGt6EZx9kOefs8HQ0-R0rb6aon1rqpN6Mj2pq3FTWzmf2qitE4su3vUzJRVmUdHclVEPdnHPxuyvRH1thNGTpbQlJOUqcnShYx8d233Y4wJ1lQm-7Y1uhJg3KyV7i7YxSOOARnf_Y-kHcGcTdZLTtcg9uFXU9-F2v2329gC-DGs0iGP_qZDMSvJVL4kvm0RjQ6qa2AnGiZ5TgoyvnL8uibkiM7Q20-oH-j6CUSSZ-iSZTKpvq8qR7yi0-P3zl5-o0bGH8Gk0_Ng_CzfNF0KLGcllaJX07t9QjQkc7nrOqTBaOKVjbmxRpplIjWZaYYiCt41hrPScokmmCoyjND-EnXpWF4-BOKcRec3REZYJL2LDMyMYJjLaeDYxF8DLFoR8vubYyJuzca7yAX1_2qDWD-CoxSff7LNlzlLPUCeVYAG86Ibx3fljD10Xs5WXEdSvNk0CeLSGs3tMqwcByC2gOwHPvr09gsg2LNwbJAM4RJXo5K-17Mk_T_kc9i4Go_zt6_M3T2Gf-f8tYhpSdgQ7l4tVcQy9pVs9a_T9Dzg2B_Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enrichment+of+gas+storage+in+clathrate+hydrates+by+optimizing+the+molar+liquid+water%E2%80%93gas+ratio&rft.jtitle=RSC+advances&rft.au=Burla%2C+Sai+Kiran&rft.au=Prasad+Pinnelli%2C+S+R&rft.date=2022-01-12&rft.pub=Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=12&rft.issue=4&rft.spage=2074&rft.epage=2082&rft_id=info:doi/10.1039%2Fd1ra07585c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon