Enrichment of gas storage in clathrate hydrates by optimizing the molar liquid water-gas ratio
Natural gas (NG) is considered a modern source of energy. Gas hydrates are anticipated to be an alternative method for gas storage and transportation applications. The process must be handy, rapid, and proficient for scale-up. In the present study, methane (CH 4 ) and carbon dioxide (CO 2 ) hydrates...
Saved in:
Published in: | RSC advances Vol. 12; no. 4; pp. 274 - 282 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
England
Royal Society of Chemistry
12-01-2022
The Royal Society of Chemistry |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Natural gas (NG) is considered a modern source of energy. Gas hydrates are anticipated to be an alternative method for gas storage and transportation applications. The process must be handy, rapid, and proficient for scale-up. In the present study, methane (CH
4
) and carbon dioxide (CO
2
) hydrates are synthesized by varying the guest (gas) to host (water) volume. The experiments are performed in a non-stirred system. The results specify that the maximum storage capacity is achieved when the molar liquid water-gas ratio is about 4.08 and 8.25 for CH
4
and CO
2
hydrates. At the optimal water-gas ratios, the total CH
4
and CO
2
gas uptake capacity is about 14.3 ± 0.4 and 9.1 ± 0.4 liters at standard temperature and pressure (STP) conditions. The gas uptake gradually increases with the solution volume and abruptly falls after a threshold point. The hydrate grows across the reactor's metal surface; when the process fully covers the surface, the growth continues horizontally (increase in thickness). With varying the liquid water-gas ratio (low to high), the formation kinetics (
t
90
) is delayed. The hydrate growth rate gradually decreases and does not significantly influence the hydrate formation temperatures. Optimizing the molar liquid water-gas ratio yields a high gas storage capacity and faster process kinetics.
Methane and carbon dioxide storage in hydrate form. |
---|---|
AbstractList | Natural gas (NG) is considered a modern source of energy. Gas hydrates are anticipated to be an alternative method for gas storage and transportation applications. The process must be handy, rapid, and proficient for scale-up. In the present study, methane (CH4) and carbon dioxide (CO2) hydrates are synthesized by varying the guest (gas) to host (water) volume. The experiments are performed in a non-stirred system. The results specify that the maximum storage capacity is achieved when the molar liquid water-gas ratio is about 4.08 and 8.25 for CH4 and CO2 hydrates. At the optimal water-gas ratios, the total CH4 and CO2 gas uptake capacity is about 14.3 ± 0.4 and 9.1 ± 0.4 liters at standard temperature and pressure (STP) conditions. The gas uptake gradually increases with the solution volume and abruptly falls after a threshold point. The hydrate grows across the reactor's metal surface; when the process fully covers the surface, the growth continues horizontally (increase in thickness). With varying the liquid water-gas ratio (low to high), the formation kinetics (t 90) is delayed. The hydrate growth rate gradually decreases and does not significantly influence the hydrate formation temperatures. Optimizing the molar liquid water-gas ratio yields a high gas storage capacity and faster process kinetics.Natural gas (NG) is considered a modern source of energy. Gas hydrates are anticipated to be an alternative method for gas storage and transportation applications. The process must be handy, rapid, and proficient for scale-up. In the present study, methane (CH4) and carbon dioxide (CO2) hydrates are synthesized by varying the guest (gas) to host (water) volume. The experiments are performed in a non-stirred system. The results specify that the maximum storage capacity is achieved when the molar liquid water-gas ratio is about 4.08 and 8.25 for CH4 and CO2 hydrates. At the optimal water-gas ratios, the total CH4 and CO2 gas uptake capacity is about 14.3 ± 0.4 and 9.1 ± 0.4 liters at standard temperature and pressure (STP) conditions. The gas uptake gradually increases with the solution volume and abruptly falls after a threshold point. The hydrate grows across the reactor's metal surface; when the process fully covers the surface, the growth continues horizontally (increase in thickness). With varying the liquid water-gas ratio (low to high), the formation kinetics (t 90) is delayed. The hydrate growth rate gradually decreases and does not significantly influence the hydrate formation temperatures. Optimizing the molar liquid water-gas ratio yields a high gas storage capacity and faster process kinetics. Natural gas (NG) is considered a modern source of energy. Gas hydrates are anticipated to be an alternative method for gas storage and transportation applications. The process must be handy, rapid, and proficient for scale-up. In the present study, methane (CH 4 ) and carbon dioxide (CO 2 ) hydrates are synthesized by varying the guest (gas) to host (water) volume. The experiments are performed in a non-stirred system. The results specify that the maximum storage capacity is achieved when the molar liquid water–gas ratio is about 4.08 and 8.25 for CH 4 and CO 2 hydrates. At the optimal water–gas ratios, the total CH 4 and CO 2 gas uptake capacity is about 14.3 ± 0.4 and 9.1 ± 0.4 liters at standard temperature and pressure (STP) conditions. The gas uptake gradually increases with the solution volume and abruptly falls after a threshold point. The hydrate grows across the reactor's metal surface; when the process fully covers the surface, the growth continues horizontally (increase in thickness). With varying the liquid water–gas ratio (low to high), the formation kinetics ( t 90 ) is delayed. The hydrate growth rate gradually decreases and does not significantly influence the hydrate formation temperatures. Optimizing the molar liquid water–gas ratio yields a high gas storage capacity and faster process kinetics. Natural gas (NG) is considered a modern source of energy. Gas hydrates are anticipated to be an alternative method for gas storage and transportation applications. The process must be handy, rapid, and proficient for scale-up. In the present study, methane (CH 4 ) and carbon dioxide (CO 2 ) hydrates are synthesized by varying the guest (gas) to host (water) volume. The experiments are performed in a non-stirred system. The results specify that the maximum storage capacity is achieved when the molar liquid water–gas ratio is about 4.08 and 8.25 for CH 4 and CO 2 hydrates. At the optimal water–gas ratios, the total CH 4 and CO 2 gas uptake capacity is about 14.3 ± 0.4 and 9.1 ± 0.4 liters at standard temperature and pressure (STP) conditions. The gas uptake gradually increases with the solution volume and abruptly falls after a threshold point. The hydrate grows across the reactor's metal surface; when the process fully covers the surface, the growth continues horizontally (increase in thickness). With varying the liquid water–gas ratio (low to high), the formation kinetics ( t 90 ) is delayed. The hydrate growth rate gradually decreases and does not significantly influence the hydrate formation temperatures. Optimizing the molar liquid water–gas ratio yields a high gas storage capacity and faster process kinetics. Methane and carbon dioxide storage in hydrate form. Natural gas (NG) is considered a modern source of energy. Gas hydrates are anticipated to be an alternative method for gas storage and transportation applications. The process must be handy, rapid, and proficient for scale-up. In the present study, methane (CH ) and carbon dioxide (CO ) hydrates are synthesized by varying the guest (gas) to host (water) volume. The experiments are performed in a non-stirred system. The results specify that the maximum storage capacity is achieved when the molar liquid water-gas ratio is about 4.08 and 8.25 for CH and CO hydrates. At the optimal water-gas ratios, the total CH and CO gas uptake capacity is about 14.3 ± 0.4 and 9.1 ± 0.4 liters at standard temperature and pressure (STP) conditions. The gas uptake gradually increases with the solution volume and abruptly falls after a threshold point. The hydrate grows across the reactor's metal surface; when the process fully covers the surface, the growth continues horizontally (increase in thickness). With varying the liquid water-gas ratio (low to high), the formation kinetics ( ) is delayed. The hydrate growth rate gradually decreases and does not significantly influence the hydrate formation temperatures. Optimizing the molar liquid water-gas ratio yields a high gas storage capacity and faster process kinetics. Natural gas (NG) is considered a modern source of energy. Gas hydrates are anticipated to be an alternative method for gas storage and transportation applications. The process must be handy, rapid, and proficient for scale-up. In the present study, methane (CH4) and carbon dioxide (CO2) hydrates are synthesized by varying the guest (gas) to host (water) volume. The experiments are performed in a non-stirred system. The results specify that the maximum storage capacity is achieved when the molar liquid water–gas ratio is about 4.08 and 8.25 for CH4 and CO2 hydrates. At the optimal water–gas ratios, the total CH4 and CO2 gas uptake capacity is about 14.3 ± 0.4 and 9.1 ± 0.4 liters at standard temperature and pressure (STP) conditions. The gas uptake gradually increases with the solution volume and abruptly falls after a threshold point. The hydrate grows across the reactor's metal surface; when the process fully covers the surface, the growth continues horizontally (increase in thickness). With varying the liquid water–gas ratio (low to high), the formation kinetics (t90) is delayed. The hydrate growth rate gradually decreases and does not significantly influence the hydrate formation temperatures. Optimizing the molar liquid water–gas ratio yields a high gas storage capacity and faster process kinetics. |
Author | Pinnelli, S. R. Prasad Burla, Sai Kiran |
AuthorAffiliation | Academy of Scientific and Innovative Research (AcSIR) Gas Hydrate Division CSIR-National Geophysical Research Institute (CSIR-NGRI) |
AuthorAffiliation_xml | – name: Gas Hydrate Division – name: CSIR-National Geophysical Research Institute (CSIR-NGRI) – name: Academy of Scientific and Innovative Research (AcSIR) |
Author_xml | – sequence: 1 givenname: Sai Kiran surname: Burla fullname: Burla, Sai Kiran – sequence: 2 givenname: S. R. Prasad surname: Pinnelli fullname: Pinnelli, S. R. Prasad |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35425253$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkU1r3DAQhkVISdI0l9xbBLmEgltpZHntSyBs0g8IFEpyrRjL8lrBljaSnbL99ZW76TapLiM0Dw8zel-TfeedIeSUsw-ciepjwwOyhSyl3iNHwPIiA1ZU-8_uh-QkxnuWTiE5FPyAHAqZgwQpjsiPaxes7gbjRupbusJI4-gDrgy1juoexy7gaGi3aeYaab2hfj3awf6ybkXHztDB9xhobx8m29CfCQrZrEm49W_Iqxb7aE6e6jG5-3R9u_yS3Xz7_HV5eZPpHMox09WCAS9rjnleCgAhuKxRNhUyUWvTFqUsagSsFpyl57oGaHleQl5WhoFEcUwutt71VA-m0WmdgL1aBztg2CiPVr3sONuplX9UZbWouIAkOH8SBP8wmTiqwUZt-h6d8VNUkP5unqLIE3r2H3rvp-DSeokCzpNRzsL3W0oHH2Mw7W4YztScnLri3y__JLdM8Lvn4-_Qvzkl4O0WCFHvuv-iF78BBgOfeg |
CitedBy_id | crossref_primary_10_1039_D2RA03119A crossref_primary_10_1016_j_energy_2024_131366 crossref_primary_10_1021_acs_energyfuels_3c03955 crossref_primary_10_1021_acssuschemeng_2c01742 crossref_primary_10_1016_j_energy_2024_131579 crossref_primary_10_1016_j_molliq_2023_123196 crossref_primary_10_1016_j_fuel_2023_129663 crossref_primary_10_1016_j_fuel_2022_127129 crossref_primary_10_1016_j_molliq_2022_121192 crossref_primary_10_1039_D2RA00531J crossref_primary_10_1016_j_cscee_2023_100335 crossref_primary_10_1016_j_seppur_2023_123135 crossref_primary_10_1021_acsnano_2c04640 |
Cites_doi | 10.1016/j.margeo.2004.08.001 10.1021/acsomega.8b03097 10.1016/j.cofs.2019.08.005 10.1016/j.molliq.2020.112665 10.1016/B978-075067776-9/50013-0 10.1016/j.fuel.2019.116219 10.1039/D0CC02195D 10.1021/acs.energyfuels.0c03550 10.1016/j.fuel.2019.116689 10.1016/j.ceja.2020.100022 10.2516/ogst/2014019 10.1134/S0097807820010108 10.1021/acs.energyfuels.0c01862 10.1021/acs.energyfuels.0c01725 10.1016/j.jece.2021.105053 10.1016/j.rser.2019.109492 10.1016/j.fuel.2016.05.068 10.1016/j.enconman.2008.05.016 10.1016/j.apenergy.2016.12.002 10.1016/j.energy.2020.117209 10.1016/j.cej.2018.01.054 10.1016/j.jngse.2018.02.001 10.1016/j.fuel.2021.120320 10.1021/acs.energyfuels.6b02304 10.18520/cs/v114/i03/661-666 10.1016/j.marpetgeo.2019.05.023 10.1021/ef500626u 10.1038/s41598-018-26916-1 10.1007/s00367-019-00628-5 10.1021/acs.iecr.5b03476 10.1016/j.jiec.2019.10.034 10.1038/nature02135 10.1021/ef400397x 10.1016/j.cej.2019.121974 10.1201/9781420008494 10.2516/ogst/2018092 10.1016/j.apenergy.2012.05.005 10.1016/j.fuel.2019.116558 10.1016/j.desal.2019.114284 10.1016/j.marpetgeo.2020.104783 10.1016/B978-0-12-404585-9.00003-9 10.1038/s41598-020-59431-3 10.1016/j.energy.2019.05.151 10.1016/j.marpetgeo.2018.11.021 10.1021/acs.energyfuels.9b03853 10.1016/j.jngse.2020.103211 10.3390/pr8010124 10.1039/D0EE02315A 10.1021/acs.jced.9b00771 10.3390/pr8010070 10.1016/j.apenergy.2019.04.118 10.3390/pr7090598 10.1016/j.molliq.2020.113175 10.1016/j.marpetgeo.2014.08.010 10.1021/jp902547d 10.1021/acs.energyfuels.0c02202 10.1039/D0RA01754J 10.3390/en13030531 10.1016/j.petrol.2020.106940 10.1016/j.ces.2007.01.001 10.1021/acs.iecr.7b00427 10.1016/j.cej.2016.01.026 10.1021/acs.chemrev.5b00745 10.1016/j.jngse.2015.04.030 10.1016/j.apenergy.2021.116576 10.1016/j.fluid.2011.11.012 10.1016/j.energy.2019.116201 10.1016/j.jiec.2021.01.022 10.1016/j.clay.2020.105618 10.3390/app10051701 10.1039/C9TA07071K 10.18520/cs/v114/i06/1163-1165 10.1021/jp411873m |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2022 This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2022 – notice: This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/d1ra07585c |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 282 |
ExternalDocumentID | 10_1039_D1RA07585C 35425253 d1ra07585c |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: Unassigned |
GroupedDBID | 0-7 0R AAGNR AAIWI ABGFH ACGFS ADBBV ADMRA AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BCNDV BLAPV BSQNT C6K CKLOX EBS EE0 EF- GROUPED_DOAJ HZ H~N J3I JG O9- OK1 R7C R7E R7G RCNCU ROYLF RPMJG RRC RSCEA RVUXY SLH SMJ ZCN -JG 0R~ 53G AAFWJ AAHBH AAJAE AARTK AAWGC AAXHV ABEMK ABPDG ABXOH AEFDR AESAV AFLYV AGEGJ AGRSR AHGCF AKBGW ANUXI APEMP H13 HZ~ M~E NPM PGMZT RPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 5PM AFPKN |
ID | FETCH-LOGICAL-c428t-c970218b1a4483223315ba5d9a03bcef6856ba2a9710a5dbb22f1482489e025a3 |
IEDL.DBID | RPM |
ISSN | 2046-2069 |
IngestDate | Tue Sep 17 21:21:35 EDT 2024 Sat Oct 26 04:12:28 EDT 2024 Thu Oct 10 18:51:57 EDT 2024 Thu Nov 21 23:44:33 EST 2024 Sat Nov 02 12:28:36 EDT 2024 Fri Jan 21 11:44:34 EST 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-c970218b1a4483223315ba5d9a03bcef6856ba2a9710a5dbb22f1482489e025a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4954-1321 0000-0003-1473-5510 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979132/ |
PMID | 35425253 |
PQID | 2621197952 |
PQPubID | 2047525 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8979132 pubmed_primary_35425253 crossref_primary_10_1039_D1RA07585C rsc_primary_d1ra07585c proquest_journals_2621197952 proquest_miscellaneous_2651685664 |
PublicationCentury | 2000 |
PublicationDate | 2022-01-12 |
PublicationDateYYYYMMDD | 2022-01-12 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | RSC advances |
PublicationTitleAlternate | RSC Adv |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Sahu (D1RA07585C/cit9/1) 2020; 34 Zhang (D1RA07585C/cit19/1) 2021; 287 Kumar (D1RA07585C/cit71/1) 2015; 54 Oppo (D1RA07585C/cit5/1) 2020; 10 Pandey (D1RA07585C/cit17/1) 2020; 8 Saha (D1RA07585C/cit49/1) 2016; 116 Kim (D1RA07585C/cit39/1) 2020; 82 Sloan (D1RA07585C/cit47/1) 2003; 426 Asadi (D1RA07585C/cit68/1) 2020; 34 Prasad (D1RA07585C/cit58/1) 2015; 25 Nasir (D1RA07585C/cit75/1) 2020; 76 Prasad (D1RA07585C/cit12/1) 2018; 8 Collett (D1RA07585C/cit4/1) 2019; 108 Goodness (D1RA07585C/cit36/1) 2020; 38 Kanda (D1RA07585C/cit43/1) 2006 Babu (D1RA07585C/cit21/1) 2021; 35 Hao (D1RA07585C/cit76/1) 2008; 49 Claßen (D1RA07585C/cit29/1) 2019; 29 Veluswamy (D1RA07585C/cit50/1) 2017; 56 Zhang (D1RA07585C/cit34/1) 2020; 262 Lee (D1RA07585C/cit38/1) 2020; 263 (D1RA07585C/cit42/1) 2006 Zheng (D1RA07585C/cit22/1) 2020; 478 Yue (D1RA07585C/cit56/1) 2019; 64 He (D1RA07585C/cit70/1) 2019; 7 Seol (D1RA07585C/cit57/1) 2020; 56 Lee (D1RA07585C/cit53/1) 2019; 375 Prasad (D1RA07585C/cit10/1) 2020; 10 Pandey (D1RA07585C/cit69/1) 2019; 7 Rossi (D1RA07585C/cit77/1) 2012; 99 Kumar (D1RA07585C/cit3/1) 2019; 108 Kiran (D1RA07585C/cit31/1) 2020; 4 Kiran (D1RA07585C/cit13/1) 2018; 3 Li (D1RA07585C/cit52/1) 2020; 13 Wang (D1RA07585C/cit55/1) 2020; 197 Shi (D1RA07585C/cit51/1) 2019; 180 Mu (D1RA07585C/cit37/1) 2020; 188 Sloan (D1RA07585C/cit1/1) 2007 Linga (D1RA07585C/cit61/1) 2016; 31 Prasad (D1RA07585C/cit72/1) 2020; 3 Mizandrontsev (D1RA07585C/cit6/1) 2020; 47 Nallakukkala (D1RA07585C/cit20/1) 2021; 9 Raju (D1RA07585C/cit65/1) 2014 Lee (D1RA07585C/cit54/1) 2018; 338 Yang (D1RA07585C/cit46/1) 2015; 06 Bhattacharjee (D1RA07585C/cit14/1) 2020; 13 Dhanunjana Chari (D1RA07585C/cit59/1) 2012; 315 Dewangan (D1RA07585C/cit2/1) 2021; 124 Prasad (D1RA07585C/cit74/1) 2018; 52 Pang (D1RA07585C/cit78/1) 2007; 62 Yuan (D1RA07585C/cit44/1) 2020; 10 Eswari (D1RA07585C/cit63/1) 2014; 58 Veluswamy (D1RA07585C/cit15/1) 2017; 188 Qasim (D1RA07585C/cit35/1) 2020; 259 Yatsuk (D1RA07585C/cit7/1) 2019; 40 Zhang (D1RA07585C/cit33/1) 2020; 34 Chari (D1RA07585C/cit66/1) 2013; 27 Mohammadi (D1RA07585C/cit24/1) 2020; 309 Zheng (D1RA07585C/cit28/1) 2019; 249 (D1RA07585C/cit41/1) 2014 Kiran (D1RA07585C/cit18/1) 2018; 114 Liu (D1RA07585C/cit25/1) 2020; 190 Zhang (D1RA07585C/cit48/1) 2020; 8 Prasad (D1RA07585C/cit73/1) 2018; 114 Mazzini (D1RA07585C/cit8/1) 2004; 212 Liu (D1RA07585C/cit67/1) 2021; 293 Veluswamy (D1RA07585C/cit80/1) 2016; 182 Veluswamy (D1RA07585C/cit79/1) 2016; 290 Javidani (D1RA07585C/cit26/1) 2020; 304 Shin (D1RA07585C/cit60/1) 2009; 113 Wan (D1RA07585C/cit32/1) 2021; 96 Prasad (D1RA07585C/cit62/1) 2014; 118 Stoporev (D1RA07585C/cit23/1) 2020; 191 D1RA07585C/cit40/1 Veluswamy (D1RA07585C/cit16/1) 2020; 34 Chari (D1RA07585C/cit64/1) 2014; 70 Sloan (D1RA07585C/cit30/1) 2010 Cheng (D1RA07585C/cit27/1) 2020; 117 Sai Kiran (D1RA07585C/cit11/1) 2019; 74 Ikealumba (D1RA07585C/cit45/1) 2014; 28 |
References_xml | – issn: 2010 publication-title: Natural gas hydrates in flow assurance doi: Sloan – issn: 2014 publication-title: Methane hydrates with nano/micro size stböer silica doi: Raju Eswari Chari Prasad – issn: 2007 publication-title: Clathrate hydrates of natural gases doi: Sloan Koh – issn: 2006 end-page: p 295-322 publication-title: Handbook of Natural Gas Transmission and Processing – issn: 2014 end-page: p 147-183 publication-title: Handbook of Liquefied Natural Gas – issn: 2006 publication-title: Economic study on natural gas transportation with natural gas hydrate (NGH) pellets doi: Kanda – volume: 38 start-page: 1 year: 2020 ident: D1RA07585C/cit36/1 publication-title: Curr. J. Appl. Sci. Technol. contributor: fullname: Goodness – volume: 212 start-page: 153 year: 2004 ident: D1RA07585C/cit8/1 publication-title: Mar. Geol. doi: 10.1016/j.margeo.2004.08.001 contributor: fullname: Mazzini – volume: 3 start-page: 18984 year: 2018 ident: D1RA07585C/cit13/1 publication-title: ACS Omega doi: 10.1021/acsomega.8b03097 contributor: fullname: Kiran – volume-title: Natural gas hydrates in flow assurance year: 2010 ident: D1RA07585C/cit30/1 contributor: fullname: Sloan – volume: 29 start-page: 48 year: 2019 ident: D1RA07585C/cit29/1 publication-title: Curr. Opin. Food Sci. doi: 10.1016/j.cofs.2019.08.005 contributor: fullname: Claßen – volume: 304 start-page: 112665 year: 2020 ident: D1RA07585C/cit26/1 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.112665 contributor: fullname: Javidani – start-page: 295 volume-title: Handbook of Natural Gas Transmission and Processing year: 2006 ident: D1RA07585C/cit42/1 doi: 10.1016/B978-075067776-9/50013-0 – volume: 259 start-page: 116219 year: 2020 ident: D1RA07585C/cit35/1 publication-title: Fuel doi: 10.1016/j.fuel.2019.116219 contributor: fullname: Qasim – volume: 56 start-page: 8368 year: 2020 ident: D1RA07585C/cit57/1 publication-title: Chem. Commun. doi: 10.1039/D0CC02195D contributor: fullname: Seol – volume: 35 start-page: 2514 year: 2021 ident: D1RA07585C/cit21/1 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c03550 contributor: fullname: Babu – volume: 263 start-page: 116689 year: 2020 ident: D1RA07585C/cit38/1 publication-title: Fuel doi: 10.1016/j.fuel.2019.116689 contributor: fullname: Lee – volume: 3 start-page: 100022 year: 2020 ident: D1RA07585C/cit72/1 publication-title: Adv. Chem. Eng. doi: 10.1016/j.ceja.2020.100022 contributor: fullname: Prasad – volume: 70 start-page: 1125 year: 2014 ident: D1RA07585C/cit64/1 publication-title: Oil Gas Sci. Technol. doi: 10.2516/ogst/2014019 contributor: fullname: Chari – volume: 47 start-page: 122 year: 2020 ident: D1RA07585C/cit6/1 publication-title: Water Resour. doi: 10.1134/S0097807820010108 contributor: fullname: Mizandrontsev – volume: 34 start-page: 15257 year: 2020 ident: D1RA07585C/cit16/1 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c01862 contributor: fullname: Veluswamy – volume: 34 start-page: 9971 year: 2020 ident: D1RA07585C/cit68/1 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c01725 contributor: fullname: Asadi – volume: 9 start-page: 105053 year: 2021 ident: D1RA07585C/cit20/1 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.105053 contributor: fullname: Nallakukkala – volume: 117 start-page: 109492 year: 2020 ident: D1RA07585C/cit27/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2019.109492 contributor: fullname: Cheng – volume: 182 start-page: 907 year: 2016 ident: D1RA07585C/cit80/1 publication-title: Fuel doi: 10.1016/j.fuel.2016.05.068 contributor: fullname: Veluswamy – volume: 06 start-page: 306 year: 2015 ident: D1RA07585C/cit46/1 publication-title: Nat. Resour. contributor: fullname: Yang – volume: 49 start-page: 2546 year: 2008 ident: D1RA07585C/cit76/1 publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2008.05.016 contributor: fullname: Hao – volume: 188 start-page: 190 year: 2017 ident: D1RA07585C/cit15/1 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.12.002 contributor: fullname: Veluswamy – volume: 197 start-page: 117209 year: 2020 ident: D1RA07585C/cit55/1 publication-title: Energy doi: 10.1016/j.energy.2020.117209 contributor: fullname: Wang – volume: 338 start-page: 572 year: 2018 ident: D1RA07585C/cit54/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.01.054 contributor: fullname: Lee – volume: 52 start-page: 461 year: 2018 ident: D1RA07585C/cit74/1 publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2018.02.001 contributor: fullname: Prasad – volume-title: Methane hydrates with nano/micro size stböer silica year: 2014 ident: D1RA07585C/cit65/1 contributor: fullname: Raju – volume: 293 start-page: 120320 year: 2021 ident: D1RA07585C/cit67/1 publication-title: Fuel doi: 10.1016/j.fuel.2021.120320 contributor: fullname: Liu – volume: 31 start-page: 1 year: 2016 ident: D1RA07585C/cit61/1 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.6b02304 contributor: fullname: Linga – volume: 114 start-page: 661 year: 2018 ident: D1RA07585C/cit18/1 publication-title: Curr. Sci. doi: 10.18520/cs/v114/i03/661-666 contributor: fullname: Kiran – volume: 108 start-page: 39 year: 2019 ident: D1RA07585C/cit4/1 publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2019.05.023 contributor: fullname: Collett – volume: 28 start-page: 3556 year: 2014 ident: D1RA07585C/cit45/1 publication-title: Energy Fuels doi: 10.1021/ef500626u contributor: fullname: Ikealumba – volume: 8 start-page: 8560 year: 2018 ident: D1RA07585C/cit12/1 publication-title: Sci. Rep. doi: 10.1038/s41598-018-26916-1 contributor: fullname: Prasad – volume: 40 start-page: 481 year: 2019 ident: D1RA07585C/cit7/1 publication-title: Geo-Mar. Lett. doi: 10.1007/s00367-019-00628-5 contributor: fullname: Yatsuk – volume: 54 start-page: 12217 year: 2015 ident: D1RA07585C/cit71/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b03476 contributor: fullname: Kumar – volume: 82 start-page: 349 year: 2020 ident: D1RA07585C/cit39/1 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2019.10.034 contributor: fullname: Kim – volume: 426 start-page: 353 year: 2003 ident: D1RA07585C/cit47/1 publication-title: Nature doi: 10.1038/nature02135 contributor: fullname: Sloan – volume: 27 start-page: 3679 year: 2013 ident: D1RA07585C/cit66/1 publication-title: Energy Fuels doi: 10.1021/ef400397x contributor: fullname: Chari – volume: 375 start-page: 121974 year: 2019 ident: D1RA07585C/cit53/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.121974 contributor: fullname: Lee – volume-title: Clathrate hydrates of natural gases year: 2007 ident: D1RA07585C/cit1/1 doi: 10.1201/9781420008494 contributor: fullname: Sloan – volume: 74 start-page: 12 year: 2019 ident: D1RA07585C/cit11/1 publication-title: Oil Gas Sci. Technol. doi: 10.2516/ogst/2018092 contributor: fullname: Sai Kiran – volume: 99 start-page: 167 year: 2012 ident: D1RA07585C/cit77/1 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.05.005 contributor: fullname: Rossi – volume: 262 start-page: 116558 year: 2020 ident: D1RA07585C/cit34/1 publication-title: Fuel doi: 10.1016/j.fuel.2019.116558 contributor: fullname: Zhang – volume: 478 start-page: 114284 year: 2020 ident: D1RA07585C/cit22/1 publication-title: Desalination doi: 10.1016/j.desal.2019.114284 contributor: fullname: Zheng – volume: 124 start-page: 104783 year: 2021 ident: D1RA07585C/cit2/1 publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2020.104783 contributor: fullname: Dewangan – start-page: 147 volume-title: Handbook of Liquefied Natural Gas year: 2014 ident: D1RA07585C/cit41/1 doi: 10.1016/B978-0-12-404585-9.00003-9 – volume: 10 start-page: 2562 year: 2020 ident: D1RA07585C/cit5/1 publication-title: Sci. Rep. doi: 10.1038/s41598-020-59431-3 contributor: fullname: Oppo – volume: 180 start-page: 978 year: 2019 ident: D1RA07585C/cit51/1 publication-title: Energy doi: 10.1016/j.energy.2019.05.151 contributor: fullname: Shi – volume: 108 start-page: 3 year: 2019 ident: D1RA07585C/cit3/1 publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2018.11.021 contributor: fullname: Kumar – volume: 4 start-page: 000234 year: 2020 ident: D1RA07585C/cit31/1 publication-title: Petrol. Petrochem. Eng. J. contributor: fullname: Kiran – volume: 34 start-page: 2790 year: 2020 ident: D1RA07585C/cit33/1 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.9b03853 contributor: fullname: Zhang – volume: 76 start-page: 103211 year: 2020 ident: D1RA07585C/cit75/1 publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2020.103211 contributor: fullname: Nasir – volume: 8 start-page: 124 year: 2020 ident: D1RA07585C/cit17/1 publication-title: Processes doi: 10.3390/pr8010124 contributor: fullname: Pandey – volume: 13 start-page: 4946 year: 2020 ident: D1RA07585C/cit14/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02315A contributor: fullname: Bhattacharjee – volume: 64 start-page: 5824 year: 2019 ident: D1RA07585C/cit56/1 publication-title: J. Chem. Eng. Data doi: 10.1021/acs.jced.9b00771 contributor: fullname: Yue – volume: 8 start-page: 70 year: 2020 ident: D1RA07585C/cit48/1 publication-title: Processes doi: 10.3390/pr8010070 contributor: fullname: Zhang – volume: 249 start-page: 190 year: 2019 ident: D1RA07585C/cit28/1 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.04.118 contributor: fullname: Zheng – volume: 7 start-page: 598 year: 2019 ident: D1RA07585C/cit69/1 publication-title: Processes doi: 10.3390/pr7090598 contributor: fullname: Pandey – volume: 309 start-page: 113175 year: 2020 ident: D1RA07585C/cit24/1 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.113175 contributor: fullname: Mohammadi – volume: 58 start-page: 199 year: 2014 ident: D1RA07585C/cit63/1 publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2014.08.010 contributor: fullname: Eswari – volume: 113 start-page: 6415 year: 2009 ident: D1RA07585C/cit60/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp902547d contributor: fullname: Shin – volume: 34 start-page: 11813 year: 2020 ident: D1RA07585C/cit9/1 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c02202 contributor: fullname: Sahu – volume: 10 start-page: 17795 year: 2020 ident: D1RA07585C/cit10/1 publication-title: RSC Adv. doi: 10.1039/D0RA01754J contributor: fullname: Prasad – volume-title: Economic study on natural gas transportation with natural gas hydrate (NGH) pellets year: 2006 ident: D1RA07585C/cit43/1 contributor: fullname: Kanda – volume: 13 start-page: 531 year: 2020 ident: D1RA07585C/cit52/1 publication-title: Energies doi: 10.3390/en13030531 contributor: fullname: Li – volume: 188 start-page: 106940 year: 2020 ident: D1RA07585C/cit37/1 publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.106940 contributor: fullname: Mu – volume: 62 start-page: 2198 year: 2007 ident: D1RA07585C/cit78/1 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2007.01.001 contributor: fullname: Pang – ident: D1RA07585C/cit40/1 – volume: 56 start-page: 6145 year: 2017 ident: D1RA07585C/cit50/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b00427 contributor: fullname: Veluswamy – volume: 290 start-page: 161 year: 2016 ident: D1RA07585C/cit79/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.01.026 contributor: fullname: Veluswamy – volume: 116 start-page: 11436 year: 2016 ident: D1RA07585C/cit49/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00745 contributor: fullname: Saha – volume: 25 start-page: 10 year: 2015 ident: D1RA07585C/cit58/1 publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2015.04.030 contributor: fullname: Prasad – volume: 287 start-page: 116576 year: 2021 ident: D1RA07585C/cit19/1 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116576 contributor: fullname: Zhang – volume: 315 start-page: 126 year: 2012 ident: D1RA07585C/cit59/1 publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2011.11.012 contributor: fullname: Dhanunjana Chari – volume: 190 start-page: 116201 year: 2020 ident: D1RA07585C/cit25/1 publication-title: Energy doi: 10.1016/j.energy.2019.116201 contributor: fullname: Liu – volume: 96 start-page: 183 year: 2021 ident: D1RA07585C/cit32/1 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2021.01.022 contributor: fullname: Wan – volume: 191 start-page: 105618 year: 2020 ident: D1RA07585C/cit23/1 publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2020.105618 contributor: fullname: Stoporev – volume: 10 start-page: 1701 year: 2020 ident: D1RA07585C/cit44/1 publication-title: Appl. Sci. doi: 10.3390/app10051701 contributor: fullname: Yuan – volume: 7 start-page: 21634 year: 2019 ident: D1RA07585C/cit70/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA07071K contributor: fullname: He – volume: 114 start-page: 1163 year: 2018 ident: D1RA07585C/cit73/1 publication-title: Curr. Sci. doi: 10.18520/cs/v114/i06/1163-1165 contributor: fullname: Prasad – volume: 118 start-page: 7759 year: 2014 ident: D1RA07585C/cit62/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp411873m contributor: fullname: Prasad |
SSID | ssj0000651261 |
Score | 2.475457 |
Snippet | Natural gas (NG) is considered a modern source of energy. Gas hydrates are anticipated to be an alternative method for gas storage and transportation... |
SourceID | pubmedcentral proquest crossref pubmed rsc |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 274 |
SubjectTerms | Carbon dioxide Chemistry Energy sources Gas hydrates Kinetics Metal surfaces Methane Natural gas Optimization Storage capacity Transportation applications Water |
Title | Enrichment of gas storage in clathrate hydrates by optimizing the molar liquid water-gas ratio |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35425253 https://www.proquest.com/docview/2621197952 https://www.proquest.com/docview/2651685664 https://pubmed.ncbi.nlm.nih.gov/PMC8979132 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6xPUAviFdpoFRGcE03tuM4PlbbrXoBIR4St-BHwkbazZbdrlB76n_gH_JLmPFuFla9cYoUjxxrZjyPePwNwNtcZ8Zq7VLfZC7NdWPS0jQhNcryxqjci9iL4OKTfv-1PBsTTI7q78LEon3v2pNuOjvp2kmsrbyc-WFfJzb88G5UGm0wixoOYICx4T8p-tr8og8reA9FKs0w8IXNKC72-3BfKtRSoeSuH7oTXN6tkRws-pYg0fWcP4KHm5iRna7X9hju1d0TeDDqW7U9hW_jDs3ZhH70sXnDvtslo6JHNBWs7ZifYpRHiBBsch3ouWTums3RVszaG_RcDGNANqMUl03bH6s2sJ9ItPh9-4smihryDL6cjz-PLtJN64TUYz5xlXqjyXk7bjH9wj0rJVfOqmBsJp2vm6JUhbPCGgww8LVzQjSECJqXpsYoyMoD2OvmXX0ILASLcrMS3ViTyzpzsnRKYBpiHWGBhQTe9IysLtcIGVU82ZamOuMfTyPnRwkc9TyuNrtkWYmC8OW0USKB19th5B0dWtiunq-IRnFabZEn8Hwtku1nelkmoHeEtSUg7OzdEVSpiKG9UaEEDlCsW_q_mvLiv6d8CfuCrkhkPOXiCPauFqv6FQyWYXUcE_7jqK5_AJHb8M0 |
link.rule.ids | 230,315,729,782,786,866,887,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6im8T2MsZlEBhgBK9ZYzuO48ep61TENiEYEm_Bl4RGatPRrprGE_-Bf7hfsmO3KVR721Ok-MiJ8h2fS3z8HYAPqUyUltLEtkpMnMpKxbmqXKyEppUSqWWhF8Hgqzz7nh_1PU2OaM_ChKJ9a-qDZjQ-aOphqK28GNtuWyfW_Xzay5VUmEV1O7CJ6zVJ_kvSFwYYvVhGWzJSrrqOTnXiI2O7DQ-5QD1lgq97ojvh5d0qyc60bQoSnM_xo3u-9i7sLKNNcrgYfgwPyuYJbPXaJm9P4Ue_QUM49L8IyaQiP_WM-HJJNDKkbogdYXzouSTI8Nr564yYazJBKzOuf6PPIxg9krFPjsmo_jWvHblCoenNn79-oqBbz-Dbcf-8N4iXTRdii5nIZWyV9G7fUI2JG652zqkwWjilE25sWWW5yIxmWmFogreNYazyXKJprkqMnzTfg41m0pQvgDinEXHN0QFWKS8Tw3MjGCYw2ngWMRfB-xaA4mLBrVGEPXGuiiP65TAg1otgv8WmWK6vWcEyz0wnlWARvFsN47fz2x26KSdzLyOof9ssjeD5AsrVY1odiECugbwS8Kzb6yOIamDfXqIYwR6qw0r-n4a9vPeUb2FrcH56Upx8PPv0CraZP2iR0Jiyfdi4nM7L19CZufmboOy3BbUFdg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6xrVR6gfIoBFowgmua2I7j-FjtQ0VAVfGQuAU_EjbSbnbZ7QqVE_-Bf8gvYZzdpKx6g1OkeORY-cbziCffALxKZKy0lCa0ZWzCRJYqzFTpQiU0LZVILGt6EZx9kOefs8HQ0-R0rb6aon1rqpN6Mj2pq3FTWzmf2qitE4su3vUzJRVmUdHclVEPdnHPxuyvRH1thNGTpbQlJOUqcnShYx8d233Y4wJ1lQm-7Y1uhJg3KyV7i7YxSOOARnf_Y-kHcGcTdZLTtcg9uFXU9-F2v2329gC-DGs0iGP_qZDMSvJVL4kvm0RjQ6qa2AnGiZ5TgoyvnL8uibkiM7Q20-oH-j6CUSSZ-iSZTKpvq8qR7yi0-P3zl5-o0bGH8Gk0_Ng_CzfNF0KLGcllaJX07t9QjQkc7nrOqTBaOKVjbmxRpplIjWZaYYiCt41hrPScokmmCoyjND-EnXpWF4-BOKcRec3REZYJL2LDMyMYJjLaeDYxF8DLFoR8vubYyJuzca7yAX1_2qDWD-CoxSff7LNlzlLPUCeVYAG86Ibx3fljD10Xs5WXEdSvNk0CeLSGs3tMqwcByC2gOwHPvr09gsg2LNwbJAM4RJXo5K-17Mk_T_kc9i4Go_zt6_M3T2Gf-f8tYhpSdgQ7l4tVcQy9pVs9a_T9Dzg2B_Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enrichment+of+gas+storage+in+clathrate+hydrates+by+optimizing+the+molar+liquid+water%E2%80%93gas+ratio&rft.jtitle=RSC+advances&rft.au=Burla%2C+Sai+Kiran&rft.au=Prasad+Pinnelli%2C+S+R&rft.date=2022-01-12&rft.pub=Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=12&rft.issue=4&rft.spage=2074&rft.epage=2082&rft_id=info:doi/10.1039%2Fd1ra07585c&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |