Analysis of DNA and single-base mutations using magnetic particles for purification, amplification and DNAzyme detection
The amplified detection of DNA or of single-base mismatches in DNA is achieved by the use of nucleic acid-functionalized magnetic particles that separate the recognition duplexes and, upon amplification, yield chemiluminescence-generating DNAzymes as reporter units. The analysis of M13 phage ssDNA i...
Saved in:
Published in: | Analyst (London) Vol. 133; no. 7; p. 923 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
01-01-2008
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The amplified detection of DNA or of single-base mismatches in DNA is achieved by the use of nucleic acid-functionalized magnetic particles that separate the recognition duplexes and, upon amplification, yield chemiluminescence-generating DNAzymes as reporter units. The analysis of M13 phage ssDNA is achieved by the hybridization of the analyte to capture nucleic acid-functionalized magnetic particles followed by the binding of a DNA machine unit to the analyte domain. The magnetic separation of the multi-component-functionalized magnetic particles, followed by their reaction with polymerase, dNTPs, and the nicking enzyme (Nb.BbvCI) activate the autonomous synthesis of the horseradish peroxidase-mimicking DNAzyme that acts as chemiluminescent reporter. The single-base mutation in DNA is achieved by coupling of the DNA machine to the mutant DNA/capture nucleic acid-functionalized magnetic particles hybrid structure. The activation of the polymerization/nicking cycles yield the chemiluminescent reporting DNAzyme. The magnetic separation of the DNA recognition hybrids improves the signal-to-noise ratio of the analytical protocol as compared to related DNAzyme synthesizing schemes. |
---|---|
ISSN: | 1364-5528 |
DOI: | 10.1039/b802015a |