The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils

Despite recent progress in understanding soil microbial responses to carbon (C) limitation, the functional shifts in microbial community structure associated with decreasing soil C availability and changes in organic matter chemistry remain poorly known. It has been proposed that Gram-negative (GN)...

Full description

Saved in:
Bibliographic Details
Published in:Soil biology & biochemistry Vol. 128; pp. 111 - 114
Main Authors: Fanin, Nicolas, Kardol, Paul, Farrell, Mark, Nilsson, Marie-Charlotte, Gundale, Michael J., Wardle, David A.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-01-2019
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Despite recent progress in understanding soil microbial responses to carbon (C) limitation, the functional shifts in microbial community structure associated with decreasing soil C availability and changes in organic matter chemistry remain poorly known. It has been proposed that Gram-negative (GN) bacteria use more plant-derived C sources that are relatively labile, while Gram-positive (GP) bacteria use C sources derived from soil organic matter that are more recalcitrant. Because these two groups may differ in how they influence the fate of different C forms in soils, it is important to understand how they vary across ecosystems that differ in their vegetation cover and ecosystem productivity or across environmental gradients. In this study, we used a 19-year plant functional group removal experiment across a long term post-fire chronosequence to assess how microbial community structure (assessed using phospholipids fatty acids; PLFAs) and the association of bacterial functional groups (specifically, the GP:GN ratio) responded to changes in organic matter chemistry (measured via nuclear magnetic resonance; NMR). We found that the GP:GN ratio increased upon removal of shrubs and tree roots and with decreasing ecosystem productivity along the chronosequence, thus showing the greater dependence of GN than GP bacteria on more labile plant-derived C. Overall, GN bacteria were associated with simple C compounds (alkyls) whereas GP bacteria were more strongly associated with more complex C forms (carbonyls). Therefore, we conclude that the GP:GN ratio has potential as a useful indicator of the relative C availability for soil bacterial communities in organic soils, and can be used as a coarse indicator of energy limitation in natural ecosystems. •GN bacteria are more dependent on simple C compounds derived from plants.•GP bacteria are more dependent on complex C compounds in organic soils.•GP:GN ratio can be used as a useful indicator of the relative C availability for soil bacterial communities in organic soils.
AbstractList Despite recent progress in understanding soil microbial responses to carbon (C) limitation, the functional shifts in microbial community structure associated with decreasing soil C availability and changes in organic matter chemistry remain poorly known. It has been proposed that Gram-negative (GN) bacteria use more plant-derived C sources that are relatively labile, while Gram-positive (GP) bacteria use C sources derived from soil organic matter that are more recalcitrant. Because these two groups may differ in how they influence the fate of different C forms in soils, it is important to understand how they vary across ecosystems that differ in their vegetation cover and ecosystem productivity or across environmental gradients. In this study, we used a 19-year plant functional group removal experiment across a long term post-fire chronosequence to assess how microbial community structure (assessed using phospholipids fatty acids; PLFAs) and the association of bacterial functional groups (specifically, the GP:GN ratio) responded to changes in organic matter chemistry (measured via nuclear magnetic resonance; NMR). We found that the GP:GN ratio increased upon removal of shrubs and tree roots and with decreasing ecosystem productivity along the chronosequence, thus showing the greater dependence of GN than GP bacteria on more labile plant-derived C. Overall, GN bacteria were associated with simple C compounds (alkyls) whereas GP bacteria were more strongly associated with more complex C forms (carbonyls). Therefore, we conclude that the GP:GN ratio has potential as a useful indicator of the relative C availability for soil bacterial communities in organic soils, and can be used as a coarse indicator of energy limitation in natural ecosystems.
Despite recent progress in understanding soil microbial responses to carbon (C) limitation, the functional shifts in microbial community structure associated with decreasing soil C availability and changes in organic matter chemistry remain poorly known. It has been proposed that Gram-negative (GN) bacteria use more plant-derived C sources that are relatively labile, while Gram-positive (GP) bacteria use C sources derived from soil organic matter that are more recalcitrant. Because these two groups may differ in how they influence the fate of different C forms in soils, it is important to understand how they vary across ecosystems that differ in their vegetation cover and ecosystem productivity or across environmental gradients. In this study, we used a 19-year plant functional group removal experiment across a long term post-fire chronosequence to assess how microbial community structure (assessed using phospholipids fatty acids; PLFAs) and the association of bacterial functional groups (specifically, the GP:GN ratio) responded to changes in organic matter chemistry (measured via nuclear magnetic resonance; NMR). We found that the GP:GN ratio increased upon removal of shrubs and tree roots and with decreasing ecosystem productivity along the chronosequence, thus showing the greater dependence of GN than GP bacteria on more labile plant-derived C. Overall, GN bacteria were associated with simple C compounds (alkyls) whereas GP bacteria were more strongly associated with more complex C forms (carbonyls). Therefore, we conclude that the GP:GN ratio has potential as a useful indicator of the relative C availability for soil bacterial communities in organic soils, and can be used as a coarse indicator of energy limitation in natural ecosystems. •GN bacteria are more dependent on simple C compounds derived from plants.•GP bacteria are more dependent on complex C compounds in organic soils.•GP:GN ratio can be used as a useful indicator of the relative C availability for soil bacterial communities in organic soils.
Author Farrell, Mark
Gundale, Michael J.
Fanin, Nicolas
Kardol, Paul
Wardle, David A.
Nilsson, Marie-Charlotte
Author_xml – sequence: 1
  givenname: Nicolas
  orcidid: 0000-0003-4195-855X
  surname: Fanin
  fullname: Fanin, Nicolas
  email: nicolas.fanin@inra.fr
  organization: Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83 Umeå, Sweden
– sequence: 2
  givenname: Paul
  orcidid: 0000-0001-7065-3435
  surname: Kardol
  fullname: Kardol, Paul
  organization: Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83 Umeå, Sweden
– sequence: 3
  givenname: Mark
  orcidid: 0000-0003-4562-2738
  surname: Farrell
  fullname: Farrell, Mark
  organization: CSIRO Agriculture & Food, Locked Bag 2, Glen Osmond, SA, 5064, Australia
– sequence: 4
  givenname: Marie-Charlotte
  surname: Nilsson
  fullname: Nilsson, Marie-Charlotte
  organization: Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83 Umeå, Sweden
– sequence: 5
  givenname: Michael J.
  surname: Gundale
  fullname: Gundale, Michael J.
  organization: Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83 Umeå, Sweden
– sequence: 6
  givenname: David A.
  surname: Wardle
  fullname: Wardle, David A.
  organization: Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83 Umeå, Sweden
BackLink https://hal.inrae.fr/hal-02624611$$DView record in HAL
https://res.slu.se/id/publ/97575$$DView record from Swedish Publication Index
BookMark eNqFkUtLJDEUhcOgMO3jJwxk66LaJPVI1UoaGR_QoAtdh5vktt6estIkZQ_6601ZIsxqIHDh8J3DCeeIHQxhQMZ-SbGUQjbn22UK1FsKSyVkm7WlkOIHW8hWd0VZqfaALYQo20JoqX-yo5S2QghVy3LB3h-ekUcYKfCw4dcRXopdSDTSHvkYZmHAJ_gULLgRI0HP79dXK_4C8Q_GxCG_gdPgycEY4hTkINowcNgD9WCpp_EtAzzEJxjI8alvOmGHG-gTnn7dY_Z49fvh8qZY313fXq7WhcvVx6IphRVQAkpsoLLa267TziutrVadb3yral95VXWdr7VoXdmgwApw05RK2q48ZsWcm_7i7tWaXaTc_M0EIJP6VwtxOiah6XSt68yfzfwz9P_AN6u1mTShGlU1Uu5lZuuZdTGkFHHzbZDCTOOYrfkax0zjTHIeJ_suZh_mj-8JcwVHODj0FNGNxgf6T8IHvf-eIw
CitedBy_id crossref_primary_10_1016_j_apsoil_2022_104394
crossref_primary_10_1002_ecs2_4747
crossref_primary_10_1134_S1064229321110107
crossref_primary_10_1016_j_geoderma_2019_06_017
crossref_primary_10_1002_ldr_3979
crossref_primary_10_1016_j_geoderma_2022_115947
crossref_primary_10_3390_soilsystems6010021
crossref_primary_10_1016_j_scitotenv_2022_157022
crossref_primary_10_32604_phyton_2022_021076
crossref_primary_10_1016_j_soilbio_2024_109344
crossref_primary_10_1016_j_pedobi_2022_150862
crossref_primary_10_1016_j_soilbio_2021_108533
crossref_primary_10_1016_j_geoderma_2021_115425
crossref_primary_10_1007_s11104_023_05878_y
crossref_primary_10_1016_j_scitotenv_2021_151429
crossref_primary_10_1016_j_soilbio_2023_109186
crossref_primary_10_1016_j_scitotenv_2023_167463
crossref_primary_10_1016_j_envres_2024_118518
crossref_primary_10_1016_j_jhazmat_2020_124293
crossref_primary_10_1016_j_scitotenv_2024_172767
crossref_primary_10_3390_f14112209
crossref_primary_10_1111_nph_16001
crossref_primary_10_1007_s00374_022_01620_5
crossref_primary_10_1016_j_soilbio_2021_108428
crossref_primary_10_1016_j_scitotenv_2021_149924
crossref_primary_10_3390_su12219161
crossref_primary_10_1007_s11104_021_05023_7
crossref_primary_10_1007_s11368_022_03349_y
crossref_primary_10_1111_ejss_13319
crossref_primary_10_1016_j_apsoil_2024_105466
crossref_primary_10_3390_d13090408
crossref_primary_10_1016_j_ejsobi_2023_103490
crossref_primary_10_1007_s11104_022_05320_9
crossref_primary_10_1080_10549811_2020_1822871
crossref_primary_10_1111_ejss_13303
crossref_primary_10_1002_jpln_202200232
crossref_primary_10_1007_s11258_020_01037_w
crossref_primary_10_1016_j_geoderma_2023_116736
crossref_primary_10_1016_j_soilbio_2022_108590
crossref_primary_10_3390_f10100879
crossref_primary_10_3390_app11041473
crossref_primary_10_3390_microorganisms9091831
crossref_primary_10_1016_j_apsoil_2022_104625
crossref_primary_10_1016_j_ejsobi_2021_103330
crossref_primary_10_1016_j_foreco_2021_119867
crossref_primary_10_1111_gcb_17245
crossref_primary_10_1111_sum_12676
crossref_primary_10_1111_1365_2435_14521
crossref_primary_10_1016_j_ecolind_2022_109280
crossref_primary_10_1111_1365_2435_13677
crossref_primary_10_3390_f14030470
crossref_primary_10_1016_j_apsoil_2022_104590
crossref_primary_10_1016_j_scitotenv_2024_171126
crossref_primary_10_1111_nph_18353
crossref_primary_10_1038_s41579_022_00695_z
crossref_primary_10_1007_s42965_021_00155_4
crossref_primary_10_1126_sciadv_abq3958
crossref_primary_10_5194_bg_20_719_2023
crossref_primary_10_1016_j_soilbio_2021_108457
crossref_primary_10_1002_agj2_21008
crossref_primary_10_1007_s11368_023_03688_4
crossref_primary_10_3389_fmicb_2023_1242217
crossref_primary_10_1016_j_soilbio_2020_107760
crossref_primary_10_1016_j_soilbio_2020_107881
crossref_primary_10_1016_j_soilbio_2022_108697
crossref_primary_10_3389_fmicb_2024_1347016
crossref_primary_10_13080_z_a_2022_109_013
crossref_primary_10_1007_s10021_020_00512_9
crossref_primary_10_1016_j_rhisph_2019_100183
crossref_primary_10_1002_ece3_6862
crossref_primary_10_3390_f11050483
crossref_primary_10_1016_j_apsoil_2022_104489
crossref_primary_10_3390_agronomy12123136
crossref_primary_10_1016_j_still_2021_105188
crossref_primary_10_1002_jpln_202300252
crossref_primary_10_3390_agronomy14010081
crossref_primary_10_1007_s11104_020_04554_9
crossref_primary_10_2139_ssrn_4183274
crossref_primary_10_1016_j_chemosphere_2022_135637
crossref_primary_10_1016_j_soilbio_2023_109037
crossref_primary_10_3389_fsufs_2022_838635
crossref_primary_10_1016_j_jenvman_2024_120880
crossref_primary_10_1111_gcb_16456
crossref_primary_10_1126_science_aba2225
crossref_primary_10_1016_j_scitotenv_2020_140919
crossref_primary_10_3390_app12062973
crossref_primary_10_3390_agriculture13040764
crossref_primary_10_3390_f12010004
crossref_primary_10_3390_agronomy11112183
crossref_primary_10_1016_j_agee_2022_108248
crossref_primary_10_2139_ssrn_4199869
crossref_primary_10_1016_j_soilbio_2023_109009
crossref_primary_10_1016_j_still_2021_104995
crossref_primary_10_1002_agg2_20532
crossref_primary_10_1016_j_ejsobi_2021_103364
crossref_primary_10_1016_j_scitotenv_2020_143996
crossref_primary_10_1016_j_scitotenv_2023_167925
crossref_primary_10_1016_j_soilbio_2021_108351
crossref_primary_10_1016_j_soilbio_2023_109127
crossref_primary_10_1016_j_soilbio_2023_109128
crossref_primary_10_1007_s11368_021_02881_7
crossref_primary_10_3390_microorganisms10112287
crossref_primary_10_1016_j_catena_2024_107912
crossref_primary_10_3389_ffgc_2022_1024656
crossref_primary_10_2139_ssrn_4200225
crossref_primary_10_1016_j_jenvman_2023_119387
crossref_primary_10_1016_j_scitotenv_2022_155760
crossref_primary_10_1016_j_ejsobi_2021_103381
crossref_primary_10_1111_1365_2745_14009
crossref_primary_10_1007_s00284_021_02532_7
crossref_primary_10_1007_s10123_021_00167_z
crossref_primary_10_7717_peerj_13188
crossref_primary_10_1016_j_agee_2024_109000
crossref_primary_10_1002_ldr_4673
crossref_primary_10_1016_j_geoderma_2020_114922
crossref_primary_10_1016_j_soilbio_2019_107577
crossref_primary_10_3389_fmicb_2022_1024128
crossref_primary_10_1002_pei3_10035
crossref_primary_10_1002_ajp_23370
crossref_primary_10_1016_j_scitotenv_2023_167472
crossref_primary_10_1073_pnas_2013759118
crossref_primary_10_1016_j_apsoil_2023_105243
crossref_primary_10_1016_j_scitotenv_2024_172259
crossref_primary_10_5194_soil_9_461_2023
crossref_primary_10_1016_j_scitotenv_2023_168397
crossref_primary_10_1016_j_geoderma_2023_116598
crossref_primary_10_1016_j_soilbio_2022_108779
crossref_primary_10_1002_ecy_3844
crossref_primary_10_1016_j_pedobi_2021_150748
crossref_primary_10_1007_s11104_024_06664_0
crossref_primary_10_1016_j_soilbio_2024_109508
crossref_primary_10_1038_s41467_024_49240_x
crossref_primary_10_1038_s41467_024_47323_3
crossref_primary_10_1007_s10021_021_00624_w
crossref_primary_10_1016_j_apsoil_2023_104838
crossref_primary_10_1016_j_apsoil_2023_104839
crossref_primary_10_1016_j_soilbio_2024_109503
crossref_primary_10_1007_s11104_022_05419_z
crossref_primary_10_1016_j_apsoil_2021_104269
crossref_primary_10_1016_j_apsoil_2021_104024
crossref_primary_10_1016_j_scitotenv_2020_136600
crossref_primary_10_1016_j_jclepro_2023_138113
crossref_primary_10_1071_SR20138
crossref_primary_10_1016_j_geoderma_2024_116884
crossref_primary_10_3390_f14050955
crossref_primary_10_5194_soil_7_477_2021
crossref_primary_10_1016_j_agee_2020_107169
crossref_primary_10_1016_j_jhazmat_2023_132255
crossref_primary_10_1016_j_apsoil_2020_103566
crossref_primary_10_1016_j_jhazmat_2022_130570
crossref_primary_10_3390_pr11010130
crossref_primary_10_3390_agriculture14030508
crossref_primary_10_1002_agg2_20509
crossref_primary_10_1016_j_scitotenv_2023_165552
crossref_primary_10_1016_j_catena_2023_107306
crossref_primary_10_3390_land12081517
crossref_primary_10_5194_we_22_21_2022
crossref_primary_10_1016_j_ecolind_2021_108053
crossref_primary_10_1016_j_catena_2023_107509
crossref_primary_10_1002_ece3_9020
crossref_primary_10_1016_j_scitotenv_2021_145298
crossref_primary_10_1016_j_mimet_2021_106271
crossref_primary_10_1016_j_agee_2022_108049
crossref_primary_10_1038_s43247_024_01333_7
crossref_primary_10_3390_antibiotics13010029
crossref_primary_10_1016_j_gca_2021_11_014
crossref_primary_10_1016_j_scitotenv_2020_143945
crossref_primary_10_1016_j_foreco_2020_118641
crossref_primary_10_1016_j_soilbio_2021_108155
crossref_primary_10_1016_j_gca_2021_03_010
crossref_primary_10_1016_j_soilbio_2022_108754
crossref_primary_10_3390_chemosensors10100409
crossref_primary_10_3389_fmicb_2024_1367725
crossref_primary_10_1021_acsearthspacechem_2c00380
crossref_primary_10_1111_1365_2435_13832
crossref_primary_10_1016_j_scitotenv_2023_168363
crossref_primary_10_4236_as_2024_155031
crossref_primary_10_1111_nph_16982
crossref_primary_10_1016_j_ecss_2023_108307
crossref_primary_10_1016_j_ecolind_2021_108047
crossref_primary_10_3389_fmicb_2023_1330149
crossref_primary_10_31545_intagr_155096
crossref_primary_10_1016_j_soilbio_2024_109512
crossref_primary_10_1007_s42832_022_0152_4
crossref_primary_10_1016_j_geoderma_2022_116309
crossref_primary_10_1016_j_soilbio_2019_107536
crossref_primary_10_1038_s43247_024_01405_8
crossref_primary_10_2139_ssrn_4058782
crossref_primary_10_2139_ssrn_4167068
crossref_primary_10_1111_ele_13903
crossref_primary_10_1016_j_agee_2024_108906
crossref_primary_10_3390_f15060921
crossref_primary_10_3390_agronomy13082169
crossref_primary_10_1007_s40333_023_0009_4
crossref_primary_10_1016_j_envres_2022_114993
crossref_primary_10_5194_soil_8_59_2022
crossref_primary_10_1016_j_geoderma_2021_115460
crossref_primary_10_1007_s10533_023_01022_1
crossref_primary_10_1007_s00284_022_02937_y
crossref_primary_10_3390_agronomy10060771
crossref_primary_10_1002_ldr_5150
crossref_primary_10_3390_land9120511
crossref_primary_10_1016_j_soilbio_2020_107915
crossref_primary_10_1016_j_geoderma_2022_116160
crossref_primary_10_1016_j_apsoil_2023_104982
crossref_primary_10_1016_j_geodrs_2023_e00636
crossref_primary_10_1016_j_soilbio_2021_108501
crossref_primary_10_3390_f14081514
crossref_primary_10_1016_j_apsoil_2023_104984
crossref_primary_10_1016_j_geoderma_2022_115750
crossref_primary_10_3390_su141911968
crossref_primary_10_1002_saj2_20118
crossref_primary_10_1002_ece3_8767
crossref_primary_10_1016_j_apsoil_2022_104409
crossref_primary_10_1016_j_catena_2022_106197
crossref_primary_10_1016_j_apsoil_2021_103941
crossref_primary_10_1016_j_jenvman_2020_111137
crossref_primary_10_1016_j_soilbio_2021_108189
crossref_primary_10_3390_agronomy13061590
crossref_primary_10_1016_j_soilbio_2019_107634
crossref_primary_10_1016_j_catena_2023_107348
crossref_primary_10_3389_ffgc_2023_1136354
crossref_primary_10_1007_s40333_023_0023_6
crossref_primary_10_1016_j_scitotenv_2021_145930
crossref_primary_10_1016_j_rser_2022_112963
crossref_primary_10_1016_j_soilbio_2022_108715
crossref_primary_10_1007_s00374_021_01613_w
crossref_primary_10_1016_j_soilbio_2021_108198
crossref_primary_10_1016_j_apsoil_2021_104248
crossref_primary_10_1016_j_indcrop_2023_116705
crossref_primary_10_1002_ldr_3510
crossref_primary_10_1016_j_soilbio_2021_108195
crossref_primary_10_1007_s11104_024_06508_x
crossref_primary_10_1007_s42770_020_00418_7
crossref_primary_10_1016_j_apsoil_2023_105133
crossref_primary_10_1093_aob_mcaa134
crossref_primary_10_1016_j_envexpbot_2019_103826
crossref_primary_10_1016_j_geoderma_2023_116368
crossref_primary_10_1016_j_pedsph_2024_05_011
crossref_primary_10_1016_j_apsoil_2022_104420
crossref_primary_10_1016_j_jhazmat_2021_128149
crossref_primary_10_3390_agriculture12111940
crossref_primary_10_1002_ece3_9632
crossref_primary_10_1186_s13717_024_00522_8
crossref_primary_10_1007_s11104_020_04788_7
crossref_primary_10_3390_ma15093287
crossref_primary_10_1016_j_apsoil_2021_103962
crossref_primary_10_1016_j_soilbio_2024_109399
crossref_primary_10_1016_j_agee_2024_109080
crossref_primary_10_3390_microorganisms11051352
crossref_primary_10_1016_j_catena_2023_107327
crossref_primary_10_1016_j_catena_2023_107449
crossref_primary_10_1016_j_geoderma_2021_114947
Cites_doi 10.1016/j.soilbio.2014.10.008
10.1016/j.scitotenv.2014.07.080
10.1126/science.1082709
10.1038/s41586-018-0138-7
10.1038/s41559-017-0415-0
10.1016/j.soilbio.2007.09.016
10.1016/j.soilbio.2009.09.025
10.1111/nph.13208
10.1016/j.soilbio.2015.11.007
10.1007/s10021-013-9650-7
10.1016/j.soilbio.2008.10.024
10.1890/05-1839
10.1111/gcb.12113
10.1111/1365-2435.12329
10.1016/j.soilbio.2010.08.010
10.1016/S0038-0717(02)00251-1
10.3389/fmicb.2012.00348
10.1111/j.1365-2435.2007.01331.x
10.1111/j.1365-2745.2011.01907.x
10.3389/fmicb.2013.00265
10.1126/science.277.5330.1296
10.1126/science.1231923
10.1007/s11104-014-2051-7
10.1111/gcb.12175
10.1890/11-1877.1
10.1038/nature03611
10.1111/j.1365-2435.2008.01435.x
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor Sveriges lantbruksuniversitet
CorporateAuthor_xml – name: Sveriges lantbruksuniversitet
DBID AAYXX
CITATION
1XC
ADTPV
AOWAS
DOI 10.1016/j.soilbio.2018.10.010
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
SwePub
SwePub Articles
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Agriculture
Environmental Sciences
EISSN 1879-3428
EndPage 114
ExternalDocumentID oai_slubar_slu_se_97575
oai_HAL_hal_02624611v1
10_1016_j_soilbio_2018_10_010
S0038071718303584
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CNWQP
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HMA
HMC
HMG
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LW9
LX3
LY3
LY9
M41
MO0
N9A
NHB
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SIN
SPCBC
SSA
SSJ
SSU
SSZ
T5K
TN5
TWZ
WUQ
XPP
Y6R
ZMT
~02
~G-
~KM
AAHBH
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
1XC
ADTPV
AOWAS
ID FETCH-LOGICAL-c428t-630b0a3ae1e6a4b7db997cd277b729d6d825d4d2499d5708c36e0e4aef6321b93
ISSN 0038-0717
1879-3428
IngestDate Tue Oct 01 22:25:38 EDT 2024
Mon Nov 18 06:31:56 EST 2024
Thu Sep 26 18:15:40 EDT 2024
Fri Feb 23 02:48:27 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Carbon cycle
PLFA
Phospholipid fatty acids
Gram-positive bacteria
Energy limitation
Copiotroph-oligotroph model
Gram-negative bacteria
Microbial community structure
Soil carbon
gram-positive bacteria
gram-negative bacteria
phospholipid fatty acids
energy limitation
copiotroph-oligotroph model
soil carbon
carbon cycle
microbial community structure
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c428t-630b0a3ae1e6a4b7db997cd277b729d6d825d4d2499d5708c36e0e4aef6321b93
ORCID 0000-0003-4562-2738
0000-0003-4195-855X
0000-0001-7065-3435
OpenAccessLink https://dr.ntu.edu.sg/bitstream/10356/104696/1/The%20ratio%20of%20Gram-positive%20to%20Gram-negative%20bacterial%20PLFA%20markers%20as%20an%20indicator%20of%20carbon%20availability%20in%20organic%20soils.pdf
PageCount 4
ParticipantIDs swepub_primary_oai_slubar_slu_se_97575
hal_primary_oai_HAL_hal_02624611v1
crossref_primary_10_1016_j_soilbio_2018_10_010
elsevier_sciencedirect_doi_10_1016_j_soilbio_2018_10_010
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationTitle Soil biology & biochemistry
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Fierer, Schimel, Holden (bib15) 2003; 35
Wardle, Zackrisson (bib26) 2005; 435
Bird, Herman, Firestone (bib2) 2011; 43
Schimel, Schaeffer (bib23) 2012; 3
Fanin, Hättenschwiler, Schimann, Fromin (bib12) 2015; 29
Bastian, Bouziri, Nicolardot, Ranjard (bib1) 2009; 41
Crutsinger, Sanders, Albrectsen, Abreu, Wardle (bib8) 2008; 22
Fanin, Bertrand (bib10) 2016; 94
Wardle, Jonsson, Bansal, Bardgett, Gundale, Metcalfe (bib25) 2012; 100
Kardol, Fanin, Wardle (bib17) 2018; 557
Gundale, Hyodo, Nilsson, Wardle (bib16) 2012; 93
Wardle, Zackrisson, Hörnberg, Gallet (bib27) 1997; 277
Cotrufo, Wallenstein, Boot, Denef, Paul (bib7) 2013; 19
Lagerström, Nilsson, Zackrisson, Wardle (bib19) 2007; 21
Creamer, de Menezes, Krull, Sanderman, Newton-Walters, Farrell (bib6) 2015; 80
Fierer, Bradford, Jackson (bib14) 2007; 88
Potthast, Hamer, Makeschin (bib22) 2010; 42
Kramer, Gleixner (bib18) 2008; 40
Fanin, Gundale, Farrell, Ciobanu, Baldock, Nilsson, Kardol, Wardle (bib11) 2018; 2
Fanin, Hättenschwiler, Fromin (bib13) 2014; 379
Breulmann, Masyutenko, Kogut, Schroll, Dörfler, Buscot, Schulz (bib3) 2014; 497
Clemmensen, Bahr, Ovaskainen, Dahlberg, Ekblad, Wallander, Stenlid, Finlay, Wardle, Lindahl (bib4) 2013; 339
De Vries, Shade (bib9) 2013; 4
Clemmensen, Finlay, Dahlberg, Stenlid, Wardle, Lindahl (bib5) 2015; 205
Pascault, Ranjard, Kaisermann, Bachar, Christen, Terrat, Mathieu, Lévêque, Mougel, Henault (bib21) 2013; 16
Wardle, Hörnberg, Zackrisson, Kalela-Brundin, Coomes (bib24) 2003; 300
Lindo, Nilsson, Gundale (bib20) 2013; 19
Fanin (10.1016/j.soilbio.2018.10.010_bib13) 2014; 379
Lindo (10.1016/j.soilbio.2018.10.010_bib20) 2013; 19
Fanin (10.1016/j.soilbio.2018.10.010_bib11) 2018; 2
Potthast (10.1016/j.soilbio.2018.10.010_bib22) 2010; 42
Lagerström (10.1016/j.soilbio.2018.10.010_bib19) 2007; 21
Wardle (10.1016/j.soilbio.2018.10.010_bib25) 2012; 100
Fanin (10.1016/j.soilbio.2018.10.010_bib10) 2016; 94
Fanin (10.1016/j.soilbio.2018.10.010_bib12) 2015; 29
Wardle (10.1016/j.soilbio.2018.10.010_bib26) 2005; 435
Fierer (10.1016/j.soilbio.2018.10.010_bib15) 2003; 35
Bird (10.1016/j.soilbio.2018.10.010_bib2) 2011; 43
Clemmensen (10.1016/j.soilbio.2018.10.010_bib5) 2015; 205
Gundale (10.1016/j.soilbio.2018.10.010_bib16) 2012; 93
Breulmann (10.1016/j.soilbio.2018.10.010_bib3) 2014; 497
Fierer (10.1016/j.soilbio.2018.10.010_bib14) 2007; 88
Wardle (10.1016/j.soilbio.2018.10.010_bib24) 2003; 300
Cotrufo (10.1016/j.soilbio.2018.10.010_bib7) 2013; 19
Crutsinger (10.1016/j.soilbio.2018.10.010_bib8) 2008; 22
Creamer (10.1016/j.soilbio.2018.10.010_bib6) 2015; 80
Wardle (10.1016/j.soilbio.2018.10.010_bib27) 1997; 277
Pascault (10.1016/j.soilbio.2018.10.010_bib21) 2013; 16
Schimel (10.1016/j.soilbio.2018.10.010_bib23) 2012; 3
Clemmensen (10.1016/j.soilbio.2018.10.010_bib4) 2013; 339
Kardol (10.1016/j.soilbio.2018.10.010_bib17) 2018; 557
Kramer (10.1016/j.soilbio.2018.10.010_bib18) 2008; 40
Bastian (10.1016/j.soilbio.2018.10.010_bib1) 2009; 41
De Vries (10.1016/j.soilbio.2018.10.010_bib9) 2013; 4
References_xml – volume: 40
  start-page: 425
  year: 2008
  end-page: 433
  ident: bib18
  article-title: Soil organic matter in soil depth profiles: distinct carbon preferences of microbial groups during carbon transformation
  publication-title: Soil Biology and Biochemistry
  contributor:
    fullname: Gleixner
– volume: 41
  start-page: 262
  year: 2009
  end-page: 275
  ident: bib1
  article-title: Impact of wheat straw decomposition on successional patterns of soil microbial community structure
  publication-title: Soil Biology and Biochemistry
  contributor:
    fullname: Ranjard
– volume: 35
  start-page: 167
  year: 2003
  end-page: 176
  ident: bib15
  article-title: Variations in microbial community composition through two soil depth profiles
  publication-title: Soil Biology and Biochemistry
  contributor:
    fullname: Holden
– volume: 94
  start-page: 48
  year: 2016
  end-page: 60
  ident: bib10
  article-title: Aboveground litter quality is a better predictor than belowground microbial communities when estimating carbon mineralization along a land-use gradient
  publication-title: Soil Biology and Biochemistry
  contributor:
    fullname: Bertrand
– volume: 379
  start-page: 79
  year: 2014
  end-page: 91
  ident: bib13
  article-title: Litter fingerprint on microbial biomass, activity, and community structure in the underlying soil
  publication-title: Plant and Soil
  contributor:
    fullname: Fromin
– volume: 80
  start-page: 175
  year: 2015
  end-page: 188
  ident: bib6
  article-title: Microbial community structure mediates response of soil C decomposition to litter addition and warming
  publication-title: Soil Biology and Biochemistry
  contributor:
    fullname: Farrell
– volume: 21
  start-page: 1027
  year: 2007
  end-page: 1033
  ident: bib19
  article-title: Ecosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogression
  publication-title: Functional Ecology
  contributor:
    fullname: Wardle
– volume: 497
  start-page: 29
  year: 2014
  end-page: 37
  ident: bib3
  article-title: Short-term bioavailability of carbon in soil organic matter fractions of different particle sizes and densities in grassland ecosystems
  publication-title: The Science of the Total Environment
  contributor:
    fullname: Schulz
– volume: 43
  start-page: 718
  year: 2011
  end-page: 725
  ident: bib2
  article-title: Rhizosphere priming of soil organic matter by bacterial groups in a grassland soil
  publication-title: Soil Biology and Biochemistry
  contributor:
    fullname: Firestone
– volume: 16
  start-page: 810
  year: 2013
  end-page: 822
  ident: bib21
  article-title: Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect
  publication-title: Ecosystems
  contributor:
    fullname: Henault
– volume: 557
  start-page: 710
  year: 2018
  end-page: 713
  ident: bib17
  article-title: Long-term effects of species loss on community properties across contrasting ecosystems
  publication-title: Nature
  contributor:
    fullname: Wardle
– volume: 93
  start-page: 1695
  year: 2012
  end-page: 1706
  ident: bib16
  article-title: Nitrogen niches revealed through species and functional group removal in a boreal shrub community
  publication-title: Ecology
  contributor:
    fullname: Wardle
– volume: 205
  start-page: 1525
  year: 2015
  end-page: 1536
  ident: bib5
  article-title: Carbon sequestration is related to mycorrhizal fungal community shifts during long‐term succession in boreal forests
  publication-title: New Phytologist
  contributor:
    fullname: Lindahl
– volume: 300
  start-page: 972
  year: 2003
  end-page: 975
  ident: bib24
  article-title: Long-term effects of wildfire on ecosystem properties across an island area gradient
  publication-title: Science
  contributor:
    fullname: Coomes
– volume: 4
  start-page: 265
  year: 2013
  ident: bib9
  article-title: Controls on soil microbial community stability under climate change
  publication-title: Frontiers in Microbiology
  contributor:
    fullname: Shade
– volume: 19
  start-page: 988
  year: 2013
  end-page: 995
  ident: bib7
  article-title: The Microbial Efficiency‐Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?
  publication-title: Global Change Biology
  contributor:
    fullname: Paul
– volume: 435
  start-page: 806
  year: 2005
  ident: bib26
  article-title: Effects of species and functional group loss on island ecosystem properties
  publication-title: Nature
  contributor:
    fullname: Zackrisson
– volume: 88
  start-page: 1354
  year: 2007
  end-page: 1364
  ident: bib14
  article-title: Toward an ecological classification of soil bacteria
  publication-title: Ecology
  contributor:
    fullname: Jackson
– volume: 100
  start-page: 16
  year: 2012
  end-page: 30
  ident: bib25
  article-title: Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long‐term natural experiment
  publication-title: Journal of Ecology
  contributor:
    fullname: Metcalfe
– volume: 19
  start-page: 2022
  year: 2013
  end-page: 2035
  ident: bib20
  article-title: Bryophyte‐cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change
  publication-title: Global Change Biology
  contributor:
    fullname: Gundale
– volume: 2
  start-page: 269
  year: 2018
  ident: bib11
  article-title: Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems
  publication-title: Nature Ecology & Evolution
  contributor:
    fullname: Wardle
– volume: 29
  start-page: 140
  year: 2015
  end-page: 150
  ident: bib12
  article-title: Interactive effects of C, N and P fertilization on soil microbial community structure and function in an Amazonian rain forest
  publication-title: Functional Ecology
  contributor:
    fullname: Fromin
– volume: 3
  start-page: 348
  year: 2012
  ident: bib23
  article-title: Microbial control over carbon cycling in soil
  publication-title: Frontiers in Microbiology
  contributor:
    fullname: Schaeffer
– volume: 277
  start-page: 1296
  year: 1997
  end-page: 1299
  ident: bib27
  article-title: The influence of island area on ecosystem properties
  publication-title: Science
  contributor:
    fullname: Gallet
– volume: 339
  start-page: 1615
  year: 2013
  end-page: 1618
  ident: bib4
  article-title: Roots and associated fungi drive long-term carbon sequestration in boreal forest
  publication-title: Science
  contributor:
    fullname: Lindahl
– volume: 22
  start-page: 816
  year: 2008
  end-page: 823
  ident: bib8
  article-title: Ecosystem retrogression leads to increased insect abundance and herbivory across an island chronosequence
  publication-title: Functional Ecology
  contributor:
    fullname: Wardle
– volume: 42
  start-page: 56
  year: 2010
  end-page: 64
  ident: bib22
  article-title: Impact of litter quality on mineralization processes in managed and abandoned pasture soils in Southern Ecuador
  publication-title: Soil Biology and Biochemistry
  contributor:
    fullname: Makeschin
– volume: 80
  start-page: 175
  year: 2015
  ident: 10.1016/j.soilbio.2018.10.010_bib6
  article-title: Microbial community structure mediates response of soil C decomposition to litter addition and warming
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2014.10.008
  contributor:
    fullname: Creamer
– volume: 497
  start-page: 29
  year: 2014
  ident: 10.1016/j.soilbio.2018.10.010_bib3
  article-title: Short-term bioavailability of carbon in soil organic matter fractions of different particle sizes and densities in grassland ecosystems
  publication-title: The Science of the Total Environment
  doi: 10.1016/j.scitotenv.2014.07.080
  contributor:
    fullname: Breulmann
– volume: 300
  start-page: 972
  year: 2003
  ident: 10.1016/j.soilbio.2018.10.010_bib24
  article-title: Long-term effects of wildfire on ecosystem properties across an island area gradient
  publication-title: Science
  doi: 10.1126/science.1082709
  contributor:
    fullname: Wardle
– volume: 557
  start-page: 710
  year: 2018
  ident: 10.1016/j.soilbio.2018.10.010_bib17
  article-title: Long-term effects of species loss on community properties across contrasting ecosystems
  publication-title: Nature
  doi: 10.1038/s41586-018-0138-7
  contributor:
    fullname: Kardol
– volume: 2
  start-page: 269
  year: 2018
  ident: 10.1016/j.soilbio.2018.10.010_bib11
  article-title: Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems
  publication-title: Nature Ecology & Evolution
  doi: 10.1038/s41559-017-0415-0
  contributor:
    fullname: Fanin
– volume: 40
  start-page: 425
  year: 2008
  ident: 10.1016/j.soilbio.2018.10.010_bib18
  article-title: Soil organic matter in soil depth profiles: distinct carbon preferences of microbial groups during carbon transformation
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2007.09.016
  contributor:
    fullname: Kramer
– volume: 42
  start-page: 56
  year: 2010
  ident: 10.1016/j.soilbio.2018.10.010_bib22
  article-title: Impact of litter quality on mineralization processes in managed and abandoned pasture soils in Southern Ecuador
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2009.09.025
  contributor:
    fullname: Potthast
– volume: 205
  start-page: 1525
  year: 2015
  ident: 10.1016/j.soilbio.2018.10.010_bib5
  article-title: Carbon sequestration is related to mycorrhizal fungal community shifts during long‐term succession in boreal forests
  publication-title: New Phytologist
  doi: 10.1111/nph.13208
  contributor:
    fullname: Clemmensen
– volume: 94
  start-page: 48
  year: 2016
  ident: 10.1016/j.soilbio.2018.10.010_bib10
  article-title: Aboveground litter quality is a better predictor than belowground microbial communities when estimating carbon mineralization along a land-use gradient
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2015.11.007
  contributor:
    fullname: Fanin
– volume: 16
  start-page: 810
  year: 2013
  ident: 10.1016/j.soilbio.2018.10.010_bib21
  article-title: Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect
  publication-title: Ecosystems
  doi: 10.1007/s10021-013-9650-7
  contributor:
    fullname: Pascault
– volume: 41
  start-page: 262
  year: 2009
  ident: 10.1016/j.soilbio.2018.10.010_bib1
  article-title: Impact of wheat straw decomposition on successional patterns of soil microbial community structure
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2008.10.024
  contributor:
    fullname: Bastian
– volume: 88
  start-page: 1354
  year: 2007
  ident: 10.1016/j.soilbio.2018.10.010_bib14
  article-title: Toward an ecological classification of soil bacteria
  publication-title: Ecology
  doi: 10.1890/05-1839
  contributor:
    fullname: Fierer
– volume: 19
  start-page: 988
  year: 2013
  ident: 10.1016/j.soilbio.2018.10.010_bib7
  article-title: The Microbial Efficiency‐Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?
  publication-title: Global Change Biology
  doi: 10.1111/gcb.12113
  contributor:
    fullname: Cotrufo
– volume: 29
  start-page: 140
  year: 2015
  ident: 10.1016/j.soilbio.2018.10.010_bib12
  article-title: Interactive effects of C, N and P fertilization on soil microbial community structure and function in an Amazonian rain forest
  publication-title: Functional Ecology
  doi: 10.1111/1365-2435.12329
  contributor:
    fullname: Fanin
– volume: 43
  start-page: 718
  year: 2011
  ident: 10.1016/j.soilbio.2018.10.010_bib2
  article-title: Rhizosphere priming of soil organic matter by bacterial groups in a grassland soil
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2010.08.010
  contributor:
    fullname: Bird
– volume: 35
  start-page: 167
  year: 2003
  ident: 10.1016/j.soilbio.2018.10.010_bib15
  article-title: Variations in microbial community composition through two soil depth profiles
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/S0038-0717(02)00251-1
  contributor:
    fullname: Fierer
– volume: 3
  start-page: 348
  year: 2012
  ident: 10.1016/j.soilbio.2018.10.010_bib23
  article-title: Microbial control over carbon cycling in soil
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2012.00348
  contributor:
    fullname: Schimel
– volume: 21
  start-page: 1027
  year: 2007
  ident: 10.1016/j.soilbio.2018.10.010_bib19
  article-title: Ecosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogression
  publication-title: Functional Ecology
  doi: 10.1111/j.1365-2435.2007.01331.x
  contributor:
    fullname: Lagerström
– volume: 100
  start-page: 16
  year: 2012
  ident: 10.1016/j.soilbio.2018.10.010_bib25
  article-title: Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long‐term natural experiment
  publication-title: Journal of Ecology
  doi: 10.1111/j.1365-2745.2011.01907.x
  contributor:
    fullname: Wardle
– volume: 4
  start-page: 265
  year: 2013
  ident: 10.1016/j.soilbio.2018.10.010_bib9
  article-title: Controls on soil microbial community stability under climate change
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2013.00265
  contributor:
    fullname: De Vries
– volume: 277
  start-page: 1296
  year: 1997
  ident: 10.1016/j.soilbio.2018.10.010_bib27
  article-title: The influence of island area on ecosystem properties
  publication-title: Science
  doi: 10.1126/science.277.5330.1296
  contributor:
    fullname: Wardle
– volume: 339
  start-page: 1615
  year: 2013
  ident: 10.1016/j.soilbio.2018.10.010_bib4
  article-title: Roots and associated fungi drive long-term carbon sequestration in boreal forest
  publication-title: Science
  doi: 10.1126/science.1231923
  contributor:
    fullname: Clemmensen
– volume: 379
  start-page: 79
  year: 2014
  ident: 10.1016/j.soilbio.2018.10.010_bib13
  article-title: Litter fingerprint on microbial biomass, activity, and community structure in the underlying soil
  publication-title: Plant and Soil
  doi: 10.1007/s11104-014-2051-7
  contributor:
    fullname: Fanin
– volume: 19
  start-page: 2022
  year: 2013
  ident: 10.1016/j.soilbio.2018.10.010_bib20
  article-title: Bryophyte‐cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change
  publication-title: Global Change Biology
  doi: 10.1111/gcb.12175
  contributor:
    fullname: Lindo
– volume: 93
  start-page: 1695
  year: 2012
  ident: 10.1016/j.soilbio.2018.10.010_bib16
  article-title: Nitrogen niches revealed through species and functional group removal in a boreal shrub community
  publication-title: Ecology
  doi: 10.1890/11-1877.1
  contributor:
    fullname: Gundale
– volume: 435
  start-page: 806
  year: 2005
  ident: 10.1016/j.soilbio.2018.10.010_bib26
  article-title: Effects of species and functional group loss on island ecosystem properties
  publication-title: Nature
  doi: 10.1038/nature03611
  contributor:
    fullname: Wardle
– volume: 22
  start-page: 816
  year: 2008
  ident: 10.1016/j.soilbio.2018.10.010_bib8
  article-title: Ecosystem retrogression leads to increased insect abundance and herbivory across an island chronosequence
  publication-title: Functional Ecology
  doi: 10.1111/j.1365-2435.2008.01435.x
  contributor:
    fullname: Crutsinger
SSID ssj0002513
Score 2.6884558
Snippet Despite recent progress in understanding soil microbial responses to carbon (C) limitation, the functional shifts in microbial community structure associated...
SourceID swepub
hal
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 111
SubjectTerms Carbon cycle
Copiotroph-oligotroph model
Energy limitation
Environmental Sciences
Gram-negative bacteria
Gram-positive bacteria
Life Sciences
Markvetenskap
Microbial community structure
Phospholipid fatty acids
PLFA
Soil carbon
Soil Science
Title The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils
URI https://dx.doi.org/10.1016/j.soilbio.2018.10.010
https://hal.inrae.fr/hal-02624611
https://res.slu.se/id/publ/97575
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9pAEF4Rcmh7qFraKPSlVVX1gpwCfh-tBEpahCKRSrlZ-yIhIqaygUN_fWe8u8aWqJoeKiFjBnvB_j6PZ7zzIOQT8ETKWDKHS7VwPD-K4ZISvhOwPsd-hULEmCg8mYezm-hi5I1aLdsVcy_7r0iDDLDGzNl_QLsaFASwDpjDElCH5aNxL1FFM_Brzh4cHZe1K3tklIJM3epy31yXagaUrqbjpPeAoTp5ga1nGAZA4hQOuORl5DnLOcYt79hypSt7l_mCuieU6BXr5aqo27lzEPRsgSdkF6wL21uu4gzsm1V0ZPtpJWCtbvxVj1vEcpFmkqSeYDRb4hnNjHipnDKAYG0DmMwDjZrCtDk2dX0N6hg9zoa-NtnkWuNaXa3MJ-_gfUE_orjHAskrOGAM6YvOMKrPxNQ26nBPknl6dTFOp5ez781vq4Lck2Sa3gE3wIPFgnyDHTjgx0PQdV6bHCeXo5tvlTkABqSp_KwPZZ9G9uXg__mTgXR0h5G6jXq2pQ10_YI8N84LTTTrXpKWyjrkWXKbmwIuqkOenFuUO-RktM-ihN3MbaR4RX4BSWlJUrpe0AZJ6WZNGySlFUkpkpQaklIGr4xWJMWBNElpnaSwATUkpSVJX5Mf49H1-cQxTUAcAZ7xxgncPu8zl6mBCpjHQ8njOBRyGIYc_EIZyGjoS08OwXOXftiPhBuovvKYWgTucMBj94S0s3WmTgldgL0rwL0WYOZ7wuUsFoMA7l8ydP0FuOZdcmbPfPpT13pJbRDkfWqgShEqFANUXRJZfFJjsGpDNAXe_W3Xj8gf-zOHOdUlnzXcje2K1ZazHN_SQqVxCA7Xm8eM9pY8xctNPz98R9qbfKvek6NCbj8Yzv4GVY3TKg
link.rule.ids 230,315,782,786,887,4030,27934,27935,27936
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ratio+of+Gram-positive+to+Gram-negative+bacterial+PLFA+markers+as+an+indicator+of+carbon+availability+in+organic+soils&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Fanin%2C+Nicolas&rft.au=Kardol%2C+Paul&rft.au=Farrell%2C+Mark&rft.au=Nilsson%2C+Marie-Charlotte&rft.date=2019&rft.pub=Elsevier&rft.issn=0038-0717&rft.volume=128&rft.spage=111&rft.epage=114&rft_id=info:doi/10.1016%2Fj.soilbio.2018.10.010&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02624611v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon