The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils
Despite recent progress in understanding soil microbial responses to carbon (C) limitation, the functional shifts in microbial community structure associated with decreasing soil C availability and changes in organic matter chemistry remain poorly known. It has been proposed that Gram-negative (GN)...
Saved in:
Published in: | Soil biology & biochemistry Vol. 128; pp. 111 - 114 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-01-2019
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Despite recent progress in understanding soil microbial responses to carbon (C) limitation, the functional shifts in microbial community structure associated with decreasing soil C availability and changes in organic matter chemistry remain poorly known. It has been proposed that Gram-negative (GN) bacteria use more plant-derived C sources that are relatively labile, while Gram-positive (GP) bacteria use C sources derived from soil organic matter that are more recalcitrant. Because these two groups may differ in how they influence the fate of different C forms in soils, it is important to understand how they vary across ecosystems that differ in their vegetation cover and ecosystem productivity or across environmental gradients. In this study, we used a 19-year plant functional group removal experiment across a long term post-fire chronosequence to assess how microbial community structure (assessed using phospholipids fatty acids; PLFAs) and the association of bacterial functional groups (specifically, the GP:GN ratio) responded to changes in organic matter chemistry (measured via nuclear magnetic resonance; NMR). We found that the GP:GN ratio increased upon removal of shrubs and tree roots and with decreasing ecosystem productivity along the chronosequence, thus showing the greater dependence of GN than GP bacteria on more labile plant-derived C. Overall, GN bacteria were associated with simple C compounds (alkyls) whereas GP bacteria were more strongly associated with more complex C forms (carbonyls). Therefore, we conclude that the GP:GN ratio has potential as a useful indicator of the relative C availability for soil bacterial communities in organic soils, and can be used as a coarse indicator of energy limitation in natural ecosystems.
•GN bacteria are more dependent on simple C compounds derived from plants.•GP bacteria are more dependent on complex C compounds in organic soils.•GP:GN ratio can be used as a useful indicator of the relative C availability for soil bacterial communities in organic soils. |
---|---|
AbstractList | Despite recent progress in understanding soil microbial responses to carbon (C) limitation, the functional shifts in microbial community structure associated with decreasing soil C availability and changes in organic matter chemistry remain poorly known. It has been proposed that Gram-negative (GN) bacteria use more plant-derived C sources that are relatively labile, while Gram-positive (GP) bacteria use C sources derived from soil organic matter that are more recalcitrant. Because these two groups may differ in how they influence the fate of different C forms in soils, it is important to understand how they vary across ecosystems that differ in their vegetation cover and ecosystem productivity or across environmental gradients. In this study, we used a 19-year plant functional group removal experiment across a long term post-fire chronosequence to assess how microbial community structure (assessed using phospholipids fatty acids; PLFAs) and the association of bacterial functional groups (specifically, the GP:GN ratio) responded to changes in organic matter chemistry (measured via nuclear magnetic resonance; NMR). We found that the GP:GN ratio increased upon removal of shrubs and tree roots and with decreasing ecosystem productivity along the chronosequence, thus showing the greater dependence of GN than GP bacteria on more labile plant-derived C. Overall, GN bacteria were associated with simple C compounds (alkyls) whereas GP bacteria were more strongly associated with more complex C forms (carbonyls). Therefore, we conclude that the GP:GN ratio has potential as a useful indicator of the relative C availability for soil bacterial communities in organic soils, and can be used as a coarse indicator of energy limitation in natural ecosystems. Despite recent progress in understanding soil microbial responses to carbon (C) limitation, the functional shifts in microbial community structure associated with decreasing soil C availability and changes in organic matter chemistry remain poorly known. It has been proposed that Gram-negative (GN) bacteria use more plant-derived C sources that are relatively labile, while Gram-positive (GP) bacteria use C sources derived from soil organic matter that are more recalcitrant. Because these two groups may differ in how they influence the fate of different C forms in soils, it is important to understand how they vary across ecosystems that differ in their vegetation cover and ecosystem productivity or across environmental gradients. In this study, we used a 19-year plant functional group removal experiment across a long term post-fire chronosequence to assess how microbial community structure (assessed using phospholipids fatty acids; PLFAs) and the association of bacterial functional groups (specifically, the GP:GN ratio) responded to changes in organic matter chemistry (measured via nuclear magnetic resonance; NMR). We found that the GP:GN ratio increased upon removal of shrubs and tree roots and with decreasing ecosystem productivity along the chronosequence, thus showing the greater dependence of GN than GP bacteria on more labile plant-derived C. Overall, GN bacteria were associated with simple C compounds (alkyls) whereas GP bacteria were more strongly associated with more complex C forms (carbonyls). Therefore, we conclude that the GP:GN ratio has potential as a useful indicator of the relative C availability for soil bacterial communities in organic soils, and can be used as a coarse indicator of energy limitation in natural ecosystems. •GN bacteria are more dependent on simple C compounds derived from plants.•GP bacteria are more dependent on complex C compounds in organic soils.•GP:GN ratio can be used as a useful indicator of the relative C availability for soil bacterial communities in organic soils. |
Author | Farrell, Mark Gundale, Michael J. Fanin, Nicolas Kardol, Paul Wardle, David A. Nilsson, Marie-Charlotte |
Author_xml | – sequence: 1 givenname: Nicolas orcidid: 0000-0003-4195-855X surname: Fanin fullname: Fanin, Nicolas email: nicolas.fanin@inra.fr organization: Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83 Umeå, Sweden – sequence: 2 givenname: Paul orcidid: 0000-0001-7065-3435 surname: Kardol fullname: Kardol, Paul organization: Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83 Umeå, Sweden – sequence: 3 givenname: Mark orcidid: 0000-0003-4562-2738 surname: Farrell fullname: Farrell, Mark organization: CSIRO Agriculture & Food, Locked Bag 2, Glen Osmond, SA, 5064, Australia – sequence: 4 givenname: Marie-Charlotte surname: Nilsson fullname: Nilsson, Marie-Charlotte organization: Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83 Umeå, Sweden – sequence: 5 givenname: Michael J. surname: Gundale fullname: Gundale, Michael J. organization: Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83 Umeå, Sweden – sequence: 6 givenname: David A. surname: Wardle fullname: Wardle, David A. organization: Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83 Umeå, Sweden |
BackLink | https://hal.inrae.fr/hal-02624611$$DView record in HAL https://res.slu.se/id/publ/97575$$DView record from Swedish Publication Index |
BookMark | eNqFkUtLJDEUhcOgMO3jJwxk66LaJPVI1UoaGR_QoAtdh5vktt6estIkZQ_6601ZIsxqIHDh8J3DCeeIHQxhQMZ-SbGUQjbn22UK1FsKSyVkm7WlkOIHW8hWd0VZqfaALYQo20JoqX-yo5S2QghVy3LB3h-ekUcYKfCw4dcRXopdSDTSHvkYZmHAJ_gULLgRI0HP79dXK_4C8Q_GxCG_gdPgycEY4hTkINowcNgD9WCpp_EtAzzEJxjI8alvOmGHG-gTnn7dY_Z49fvh8qZY313fXq7WhcvVx6IphRVQAkpsoLLa267TziutrVadb3yral95VXWdr7VoXdmgwApw05RK2q48ZsWcm_7i7tWaXaTc_M0EIJP6VwtxOiah6XSt68yfzfwz9P_AN6u1mTShGlU1Uu5lZuuZdTGkFHHzbZDCTOOYrfkax0zjTHIeJ_suZh_mj-8JcwVHODj0FNGNxgf6T8IHvf-eIw |
CitedBy_id | crossref_primary_10_1016_j_apsoil_2022_104394 crossref_primary_10_1002_ecs2_4747 crossref_primary_10_1134_S1064229321110107 crossref_primary_10_1016_j_geoderma_2019_06_017 crossref_primary_10_1002_ldr_3979 crossref_primary_10_1016_j_geoderma_2022_115947 crossref_primary_10_3390_soilsystems6010021 crossref_primary_10_1016_j_scitotenv_2022_157022 crossref_primary_10_32604_phyton_2022_021076 crossref_primary_10_1016_j_soilbio_2024_109344 crossref_primary_10_1016_j_pedobi_2022_150862 crossref_primary_10_1016_j_soilbio_2021_108533 crossref_primary_10_1016_j_geoderma_2021_115425 crossref_primary_10_1007_s11104_023_05878_y crossref_primary_10_1016_j_scitotenv_2021_151429 crossref_primary_10_1016_j_soilbio_2023_109186 crossref_primary_10_1016_j_scitotenv_2023_167463 crossref_primary_10_1016_j_envres_2024_118518 crossref_primary_10_1016_j_jhazmat_2020_124293 crossref_primary_10_1016_j_scitotenv_2024_172767 crossref_primary_10_3390_f14112209 crossref_primary_10_1111_nph_16001 crossref_primary_10_1007_s00374_022_01620_5 crossref_primary_10_1016_j_soilbio_2021_108428 crossref_primary_10_1016_j_scitotenv_2021_149924 crossref_primary_10_3390_su12219161 crossref_primary_10_1007_s11104_021_05023_7 crossref_primary_10_1007_s11368_022_03349_y crossref_primary_10_1111_ejss_13319 crossref_primary_10_1016_j_apsoil_2024_105466 crossref_primary_10_3390_d13090408 crossref_primary_10_1016_j_ejsobi_2023_103490 crossref_primary_10_1007_s11104_022_05320_9 crossref_primary_10_1080_10549811_2020_1822871 crossref_primary_10_1111_ejss_13303 crossref_primary_10_1002_jpln_202200232 crossref_primary_10_1007_s11258_020_01037_w crossref_primary_10_1016_j_geoderma_2023_116736 crossref_primary_10_1016_j_soilbio_2022_108590 crossref_primary_10_3390_f10100879 crossref_primary_10_3390_app11041473 crossref_primary_10_3390_microorganisms9091831 crossref_primary_10_1016_j_apsoil_2022_104625 crossref_primary_10_1016_j_ejsobi_2021_103330 crossref_primary_10_1016_j_foreco_2021_119867 crossref_primary_10_1111_gcb_17245 crossref_primary_10_1111_sum_12676 crossref_primary_10_1111_1365_2435_14521 crossref_primary_10_1016_j_ecolind_2022_109280 crossref_primary_10_1111_1365_2435_13677 crossref_primary_10_3390_f14030470 crossref_primary_10_1016_j_apsoil_2022_104590 crossref_primary_10_1016_j_scitotenv_2024_171126 crossref_primary_10_1111_nph_18353 crossref_primary_10_1038_s41579_022_00695_z crossref_primary_10_1007_s42965_021_00155_4 crossref_primary_10_1126_sciadv_abq3958 crossref_primary_10_5194_bg_20_719_2023 crossref_primary_10_1016_j_soilbio_2021_108457 crossref_primary_10_1002_agj2_21008 crossref_primary_10_1007_s11368_023_03688_4 crossref_primary_10_3389_fmicb_2023_1242217 crossref_primary_10_1016_j_soilbio_2020_107760 crossref_primary_10_1016_j_soilbio_2020_107881 crossref_primary_10_1016_j_soilbio_2022_108697 crossref_primary_10_3389_fmicb_2024_1347016 crossref_primary_10_13080_z_a_2022_109_013 crossref_primary_10_1007_s10021_020_00512_9 crossref_primary_10_1016_j_rhisph_2019_100183 crossref_primary_10_1002_ece3_6862 crossref_primary_10_3390_f11050483 crossref_primary_10_1016_j_apsoil_2022_104489 crossref_primary_10_3390_agronomy12123136 crossref_primary_10_1016_j_still_2021_105188 crossref_primary_10_1002_jpln_202300252 crossref_primary_10_3390_agronomy14010081 crossref_primary_10_1007_s11104_020_04554_9 crossref_primary_10_2139_ssrn_4183274 crossref_primary_10_1016_j_chemosphere_2022_135637 crossref_primary_10_1016_j_soilbio_2023_109037 crossref_primary_10_3389_fsufs_2022_838635 crossref_primary_10_1016_j_jenvman_2024_120880 crossref_primary_10_1111_gcb_16456 crossref_primary_10_1126_science_aba2225 crossref_primary_10_1016_j_scitotenv_2020_140919 crossref_primary_10_3390_app12062973 crossref_primary_10_3390_agriculture13040764 crossref_primary_10_3390_f12010004 crossref_primary_10_3390_agronomy11112183 crossref_primary_10_1016_j_agee_2022_108248 crossref_primary_10_2139_ssrn_4199869 crossref_primary_10_1016_j_soilbio_2023_109009 crossref_primary_10_1016_j_still_2021_104995 crossref_primary_10_1002_agg2_20532 crossref_primary_10_1016_j_ejsobi_2021_103364 crossref_primary_10_1016_j_scitotenv_2020_143996 crossref_primary_10_1016_j_scitotenv_2023_167925 crossref_primary_10_1016_j_soilbio_2021_108351 crossref_primary_10_1016_j_soilbio_2023_109127 crossref_primary_10_1016_j_soilbio_2023_109128 crossref_primary_10_1007_s11368_021_02881_7 crossref_primary_10_3390_microorganisms10112287 crossref_primary_10_1016_j_catena_2024_107912 crossref_primary_10_3389_ffgc_2022_1024656 crossref_primary_10_2139_ssrn_4200225 crossref_primary_10_1016_j_jenvman_2023_119387 crossref_primary_10_1016_j_scitotenv_2022_155760 crossref_primary_10_1016_j_ejsobi_2021_103381 crossref_primary_10_1111_1365_2745_14009 crossref_primary_10_1007_s00284_021_02532_7 crossref_primary_10_1007_s10123_021_00167_z crossref_primary_10_7717_peerj_13188 crossref_primary_10_1016_j_agee_2024_109000 crossref_primary_10_1002_ldr_4673 crossref_primary_10_1016_j_geoderma_2020_114922 crossref_primary_10_1016_j_soilbio_2019_107577 crossref_primary_10_3389_fmicb_2022_1024128 crossref_primary_10_1002_pei3_10035 crossref_primary_10_1002_ajp_23370 crossref_primary_10_1016_j_scitotenv_2023_167472 crossref_primary_10_1073_pnas_2013759118 crossref_primary_10_1016_j_apsoil_2023_105243 crossref_primary_10_1016_j_scitotenv_2024_172259 crossref_primary_10_5194_soil_9_461_2023 crossref_primary_10_1016_j_scitotenv_2023_168397 crossref_primary_10_1016_j_geoderma_2023_116598 crossref_primary_10_1016_j_soilbio_2022_108779 crossref_primary_10_1002_ecy_3844 crossref_primary_10_1016_j_pedobi_2021_150748 crossref_primary_10_1007_s11104_024_06664_0 crossref_primary_10_1016_j_soilbio_2024_109508 crossref_primary_10_1038_s41467_024_49240_x crossref_primary_10_1038_s41467_024_47323_3 crossref_primary_10_1007_s10021_021_00624_w crossref_primary_10_1016_j_apsoil_2023_104838 crossref_primary_10_1016_j_apsoil_2023_104839 crossref_primary_10_1016_j_soilbio_2024_109503 crossref_primary_10_1007_s11104_022_05419_z crossref_primary_10_1016_j_apsoil_2021_104269 crossref_primary_10_1016_j_apsoil_2021_104024 crossref_primary_10_1016_j_scitotenv_2020_136600 crossref_primary_10_1016_j_jclepro_2023_138113 crossref_primary_10_1071_SR20138 crossref_primary_10_1016_j_geoderma_2024_116884 crossref_primary_10_3390_f14050955 crossref_primary_10_5194_soil_7_477_2021 crossref_primary_10_1016_j_agee_2020_107169 crossref_primary_10_1016_j_jhazmat_2023_132255 crossref_primary_10_1016_j_apsoil_2020_103566 crossref_primary_10_1016_j_jhazmat_2022_130570 crossref_primary_10_3390_pr11010130 crossref_primary_10_3390_agriculture14030508 crossref_primary_10_1002_agg2_20509 crossref_primary_10_1016_j_scitotenv_2023_165552 crossref_primary_10_1016_j_catena_2023_107306 crossref_primary_10_3390_land12081517 crossref_primary_10_5194_we_22_21_2022 crossref_primary_10_1016_j_ecolind_2021_108053 crossref_primary_10_1016_j_catena_2023_107509 crossref_primary_10_1002_ece3_9020 crossref_primary_10_1016_j_scitotenv_2021_145298 crossref_primary_10_1016_j_mimet_2021_106271 crossref_primary_10_1016_j_agee_2022_108049 crossref_primary_10_1038_s43247_024_01333_7 crossref_primary_10_3390_antibiotics13010029 crossref_primary_10_1016_j_gca_2021_11_014 crossref_primary_10_1016_j_scitotenv_2020_143945 crossref_primary_10_1016_j_foreco_2020_118641 crossref_primary_10_1016_j_soilbio_2021_108155 crossref_primary_10_1016_j_gca_2021_03_010 crossref_primary_10_1016_j_soilbio_2022_108754 crossref_primary_10_3390_chemosensors10100409 crossref_primary_10_3389_fmicb_2024_1367725 crossref_primary_10_1021_acsearthspacechem_2c00380 crossref_primary_10_1111_1365_2435_13832 crossref_primary_10_1016_j_scitotenv_2023_168363 crossref_primary_10_4236_as_2024_155031 crossref_primary_10_1111_nph_16982 crossref_primary_10_1016_j_ecss_2023_108307 crossref_primary_10_1016_j_ecolind_2021_108047 crossref_primary_10_3389_fmicb_2023_1330149 crossref_primary_10_31545_intagr_155096 crossref_primary_10_1016_j_soilbio_2024_109512 crossref_primary_10_1007_s42832_022_0152_4 crossref_primary_10_1016_j_geoderma_2022_116309 crossref_primary_10_1016_j_soilbio_2019_107536 crossref_primary_10_1038_s43247_024_01405_8 crossref_primary_10_2139_ssrn_4058782 crossref_primary_10_2139_ssrn_4167068 crossref_primary_10_1111_ele_13903 crossref_primary_10_1016_j_agee_2024_108906 crossref_primary_10_3390_f15060921 crossref_primary_10_3390_agronomy13082169 crossref_primary_10_1007_s40333_023_0009_4 crossref_primary_10_1016_j_envres_2022_114993 crossref_primary_10_5194_soil_8_59_2022 crossref_primary_10_1016_j_geoderma_2021_115460 crossref_primary_10_1007_s10533_023_01022_1 crossref_primary_10_1007_s00284_022_02937_y crossref_primary_10_3390_agronomy10060771 crossref_primary_10_1002_ldr_5150 crossref_primary_10_3390_land9120511 crossref_primary_10_1016_j_soilbio_2020_107915 crossref_primary_10_1016_j_geoderma_2022_116160 crossref_primary_10_1016_j_apsoil_2023_104982 crossref_primary_10_1016_j_geodrs_2023_e00636 crossref_primary_10_1016_j_soilbio_2021_108501 crossref_primary_10_3390_f14081514 crossref_primary_10_1016_j_apsoil_2023_104984 crossref_primary_10_1016_j_geoderma_2022_115750 crossref_primary_10_3390_su141911968 crossref_primary_10_1002_saj2_20118 crossref_primary_10_1002_ece3_8767 crossref_primary_10_1016_j_apsoil_2022_104409 crossref_primary_10_1016_j_catena_2022_106197 crossref_primary_10_1016_j_apsoil_2021_103941 crossref_primary_10_1016_j_jenvman_2020_111137 crossref_primary_10_1016_j_soilbio_2021_108189 crossref_primary_10_3390_agronomy13061590 crossref_primary_10_1016_j_soilbio_2019_107634 crossref_primary_10_1016_j_catena_2023_107348 crossref_primary_10_3389_ffgc_2023_1136354 crossref_primary_10_1007_s40333_023_0023_6 crossref_primary_10_1016_j_scitotenv_2021_145930 crossref_primary_10_1016_j_rser_2022_112963 crossref_primary_10_1016_j_soilbio_2022_108715 crossref_primary_10_1007_s00374_021_01613_w crossref_primary_10_1016_j_soilbio_2021_108198 crossref_primary_10_1016_j_apsoil_2021_104248 crossref_primary_10_1016_j_indcrop_2023_116705 crossref_primary_10_1002_ldr_3510 crossref_primary_10_1016_j_soilbio_2021_108195 crossref_primary_10_1007_s11104_024_06508_x crossref_primary_10_1007_s42770_020_00418_7 crossref_primary_10_1016_j_apsoil_2023_105133 crossref_primary_10_1093_aob_mcaa134 crossref_primary_10_1016_j_envexpbot_2019_103826 crossref_primary_10_1016_j_geoderma_2023_116368 crossref_primary_10_1016_j_pedsph_2024_05_011 crossref_primary_10_1016_j_apsoil_2022_104420 crossref_primary_10_1016_j_jhazmat_2021_128149 crossref_primary_10_3390_agriculture12111940 crossref_primary_10_1002_ece3_9632 crossref_primary_10_1186_s13717_024_00522_8 crossref_primary_10_1007_s11104_020_04788_7 crossref_primary_10_3390_ma15093287 crossref_primary_10_1016_j_apsoil_2021_103962 crossref_primary_10_1016_j_soilbio_2024_109399 crossref_primary_10_1016_j_agee_2024_109080 crossref_primary_10_3390_microorganisms11051352 crossref_primary_10_1016_j_catena_2023_107327 crossref_primary_10_1016_j_catena_2023_107449 crossref_primary_10_1016_j_geoderma_2021_114947 |
Cites_doi | 10.1016/j.soilbio.2014.10.008 10.1016/j.scitotenv.2014.07.080 10.1126/science.1082709 10.1038/s41586-018-0138-7 10.1038/s41559-017-0415-0 10.1016/j.soilbio.2007.09.016 10.1016/j.soilbio.2009.09.025 10.1111/nph.13208 10.1016/j.soilbio.2015.11.007 10.1007/s10021-013-9650-7 10.1016/j.soilbio.2008.10.024 10.1890/05-1839 10.1111/gcb.12113 10.1111/1365-2435.12329 10.1016/j.soilbio.2010.08.010 10.1016/S0038-0717(02)00251-1 10.3389/fmicb.2012.00348 10.1111/j.1365-2435.2007.01331.x 10.1111/j.1365-2745.2011.01907.x 10.3389/fmicb.2013.00265 10.1126/science.277.5330.1296 10.1126/science.1231923 10.1007/s11104-014-2051-7 10.1111/gcb.12175 10.1890/11-1877.1 10.1038/nature03611 10.1111/j.1365-2435.2008.01435.x |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
CorporateAuthor | Sveriges lantbruksuniversitet |
CorporateAuthor_xml | – name: Sveriges lantbruksuniversitet |
DBID | AAYXX CITATION 1XC ADTPV AOWAS |
DOI | 10.1016/j.soilbio.2018.10.010 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) SwePub SwePub Articles |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Agriculture Environmental Sciences |
EISSN | 1879-3428 |
EndPage | 114 |
ExternalDocumentID | oai_slubar_slu_se_97575 oai_HAL_hal_02624611v1 10_1016_j_soilbio_2018_10_010 S0038071718303584 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CNWQP CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HMA HMC HMG HVGLF HZ~ IHE J1W K-O KCYFY KOM LW9 LX3 LY3 LY9 M41 MO0 N9A NHB O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCU SDF SDG SDP SEN SEP SES SEW SIN SPCBC SSA SSJ SSU SSZ T5K TN5 TWZ WUQ XPP Y6R ZMT ~02 ~G- ~KM AAHBH AAXKI AAYXX AFJKZ AKRWK CITATION 1XC ADTPV AOWAS |
ID | FETCH-LOGICAL-c428t-630b0a3ae1e6a4b7db997cd277b729d6d825d4d2499d5708c36e0e4aef6321b93 |
ISSN | 0038-0717 1879-3428 |
IngestDate | Tue Oct 01 22:25:38 EDT 2024 Mon Nov 18 06:31:56 EST 2024 Thu Sep 26 18:15:40 EDT 2024 Fri Feb 23 02:48:27 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Carbon cycle PLFA Phospholipid fatty acids Gram-positive bacteria Energy limitation Copiotroph-oligotroph model Gram-negative bacteria Microbial community structure Soil carbon gram-positive bacteria gram-negative bacteria phospholipid fatty acids energy limitation copiotroph-oligotroph model soil carbon carbon cycle microbial community structure |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c428t-630b0a3ae1e6a4b7db997cd277b729d6d825d4d2499d5708c36e0e4aef6321b93 |
ORCID | 0000-0003-4562-2738 0000-0003-4195-855X 0000-0001-7065-3435 |
OpenAccessLink | https://dr.ntu.edu.sg/bitstream/10356/104696/1/The%20ratio%20of%20Gram-positive%20to%20Gram-negative%20bacterial%20PLFA%20markers%20as%20an%20indicator%20of%20carbon%20availability%20in%20organic%20soils.pdf |
PageCount | 4 |
ParticipantIDs | swepub_primary_oai_slubar_slu_se_97575 hal_primary_oai_HAL_hal_02624611v1 crossref_primary_10_1016_j_soilbio_2018_10_010 elsevier_sciencedirect_doi_10_1016_j_soilbio_2018_10_010 |
PublicationCentury | 2000 |
PublicationDate | January 2019 2019-01-00 2019 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationTitle | Soil biology & biochemistry |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Fierer, Schimel, Holden (bib15) 2003; 35 Wardle, Zackrisson (bib26) 2005; 435 Bird, Herman, Firestone (bib2) 2011; 43 Schimel, Schaeffer (bib23) 2012; 3 Fanin, Hättenschwiler, Schimann, Fromin (bib12) 2015; 29 Bastian, Bouziri, Nicolardot, Ranjard (bib1) 2009; 41 Crutsinger, Sanders, Albrectsen, Abreu, Wardle (bib8) 2008; 22 Fanin, Bertrand (bib10) 2016; 94 Wardle, Jonsson, Bansal, Bardgett, Gundale, Metcalfe (bib25) 2012; 100 Kardol, Fanin, Wardle (bib17) 2018; 557 Gundale, Hyodo, Nilsson, Wardle (bib16) 2012; 93 Wardle, Zackrisson, Hörnberg, Gallet (bib27) 1997; 277 Cotrufo, Wallenstein, Boot, Denef, Paul (bib7) 2013; 19 Lagerström, Nilsson, Zackrisson, Wardle (bib19) 2007; 21 Creamer, de Menezes, Krull, Sanderman, Newton-Walters, Farrell (bib6) 2015; 80 Fierer, Bradford, Jackson (bib14) 2007; 88 Potthast, Hamer, Makeschin (bib22) 2010; 42 Kramer, Gleixner (bib18) 2008; 40 Fanin, Gundale, Farrell, Ciobanu, Baldock, Nilsson, Kardol, Wardle (bib11) 2018; 2 Fanin, Hättenschwiler, Fromin (bib13) 2014; 379 Breulmann, Masyutenko, Kogut, Schroll, Dörfler, Buscot, Schulz (bib3) 2014; 497 Clemmensen, Bahr, Ovaskainen, Dahlberg, Ekblad, Wallander, Stenlid, Finlay, Wardle, Lindahl (bib4) 2013; 339 De Vries, Shade (bib9) 2013; 4 Clemmensen, Finlay, Dahlberg, Stenlid, Wardle, Lindahl (bib5) 2015; 205 Pascault, Ranjard, Kaisermann, Bachar, Christen, Terrat, Mathieu, Lévêque, Mougel, Henault (bib21) 2013; 16 Wardle, Hörnberg, Zackrisson, Kalela-Brundin, Coomes (bib24) 2003; 300 Lindo, Nilsson, Gundale (bib20) 2013; 19 Fanin (10.1016/j.soilbio.2018.10.010_bib13) 2014; 379 Lindo (10.1016/j.soilbio.2018.10.010_bib20) 2013; 19 Fanin (10.1016/j.soilbio.2018.10.010_bib11) 2018; 2 Potthast (10.1016/j.soilbio.2018.10.010_bib22) 2010; 42 Lagerström (10.1016/j.soilbio.2018.10.010_bib19) 2007; 21 Wardle (10.1016/j.soilbio.2018.10.010_bib25) 2012; 100 Fanin (10.1016/j.soilbio.2018.10.010_bib10) 2016; 94 Fanin (10.1016/j.soilbio.2018.10.010_bib12) 2015; 29 Wardle (10.1016/j.soilbio.2018.10.010_bib26) 2005; 435 Fierer (10.1016/j.soilbio.2018.10.010_bib15) 2003; 35 Bird (10.1016/j.soilbio.2018.10.010_bib2) 2011; 43 Clemmensen (10.1016/j.soilbio.2018.10.010_bib5) 2015; 205 Gundale (10.1016/j.soilbio.2018.10.010_bib16) 2012; 93 Breulmann (10.1016/j.soilbio.2018.10.010_bib3) 2014; 497 Fierer (10.1016/j.soilbio.2018.10.010_bib14) 2007; 88 Wardle (10.1016/j.soilbio.2018.10.010_bib24) 2003; 300 Cotrufo (10.1016/j.soilbio.2018.10.010_bib7) 2013; 19 Crutsinger (10.1016/j.soilbio.2018.10.010_bib8) 2008; 22 Creamer (10.1016/j.soilbio.2018.10.010_bib6) 2015; 80 Wardle (10.1016/j.soilbio.2018.10.010_bib27) 1997; 277 Pascault (10.1016/j.soilbio.2018.10.010_bib21) 2013; 16 Schimel (10.1016/j.soilbio.2018.10.010_bib23) 2012; 3 Clemmensen (10.1016/j.soilbio.2018.10.010_bib4) 2013; 339 Kardol (10.1016/j.soilbio.2018.10.010_bib17) 2018; 557 Kramer (10.1016/j.soilbio.2018.10.010_bib18) 2008; 40 Bastian (10.1016/j.soilbio.2018.10.010_bib1) 2009; 41 De Vries (10.1016/j.soilbio.2018.10.010_bib9) 2013; 4 |
References_xml | – volume: 40 start-page: 425 year: 2008 end-page: 433 ident: bib18 article-title: Soil organic matter in soil depth profiles: distinct carbon preferences of microbial groups during carbon transformation publication-title: Soil Biology and Biochemistry contributor: fullname: Gleixner – volume: 41 start-page: 262 year: 2009 end-page: 275 ident: bib1 article-title: Impact of wheat straw decomposition on successional patterns of soil microbial community structure publication-title: Soil Biology and Biochemistry contributor: fullname: Ranjard – volume: 35 start-page: 167 year: 2003 end-page: 176 ident: bib15 article-title: Variations in microbial community composition through two soil depth profiles publication-title: Soil Biology and Biochemistry contributor: fullname: Holden – volume: 94 start-page: 48 year: 2016 end-page: 60 ident: bib10 article-title: Aboveground litter quality is a better predictor than belowground microbial communities when estimating carbon mineralization along a land-use gradient publication-title: Soil Biology and Biochemistry contributor: fullname: Bertrand – volume: 379 start-page: 79 year: 2014 end-page: 91 ident: bib13 article-title: Litter fingerprint on microbial biomass, activity, and community structure in the underlying soil publication-title: Plant and Soil contributor: fullname: Fromin – volume: 80 start-page: 175 year: 2015 end-page: 188 ident: bib6 article-title: Microbial community structure mediates response of soil C decomposition to litter addition and warming publication-title: Soil Biology and Biochemistry contributor: fullname: Farrell – volume: 21 start-page: 1027 year: 2007 end-page: 1033 ident: bib19 article-title: Ecosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogression publication-title: Functional Ecology contributor: fullname: Wardle – volume: 497 start-page: 29 year: 2014 end-page: 37 ident: bib3 article-title: Short-term bioavailability of carbon in soil organic matter fractions of different particle sizes and densities in grassland ecosystems publication-title: The Science of the Total Environment contributor: fullname: Schulz – volume: 43 start-page: 718 year: 2011 end-page: 725 ident: bib2 article-title: Rhizosphere priming of soil organic matter by bacterial groups in a grassland soil publication-title: Soil Biology and Biochemistry contributor: fullname: Firestone – volume: 16 start-page: 810 year: 2013 end-page: 822 ident: bib21 article-title: Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect publication-title: Ecosystems contributor: fullname: Henault – volume: 557 start-page: 710 year: 2018 end-page: 713 ident: bib17 article-title: Long-term effects of species loss on community properties across contrasting ecosystems publication-title: Nature contributor: fullname: Wardle – volume: 93 start-page: 1695 year: 2012 end-page: 1706 ident: bib16 article-title: Nitrogen niches revealed through species and functional group removal in a boreal shrub community publication-title: Ecology contributor: fullname: Wardle – volume: 205 start-page: 1525 year: 2015 end-page: 1536 ident: bib5 article-title: Carbon sequestration is related to mycorrhizal fungal community shifts during long‐term succession in boreal forests publication-title: New Phytologist contributor: fullname: Lindahl – volume: 300 start-page: 972 year: 2003 end-page: 975 ident: bib24 article-title: Long-term effects of wildfire on ecosystem properties across an island area gradient publication-title: Science contributor: fullname: Coomes – volume: 4 start-page: 265 year: 2013 ident: bib9 article-title: Controls on soil microbial community stability under climate change publication-title: Frontiers in Microbiology contributor: fullname: Shade – volume: 19 start-page: 988 year: 2013 end-page: 995 ident: bib7 article-title: The Microbial Efficiency‐Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? publication-title: Global Change Biology contributor: fullname: Paul – volume: 435 start-page: 806 year: 2005 ident: bib26 article-title: Effects of species and functional group loss on island ecosystem properties publication-title: Nature contributor: fullname: Zackrisson – volume: 88 start-page: 1354 year: 2007 end-page: 1364 ident: bib14 article-title: Toward an ecological classification of soil bacteria publication-title: Ecology contributor: fullname: Jackson – volume: 100 start-page: 16 year: 2012 end-page: 30 ident: bib25 article-title: Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long‐term natural experiment publication-title: Journal of Ecology contributor: fullname: Metcalfe – volume: 19 start-page: 2022 year: 2013 end-page: 2035 ident: bib20 article-title: Bryophyte‐cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change publication-title: Global Change Biology contributor: fullname: Gundale – volume: 2 start-page: 269 year: 2018 ident: bib11 article-title: Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems publication-title: Nature Ecology & Evolution contributor: fullname: Wardle – volume: 29 start-page: 140 year: 2015 end-page: 150 ident: bib12 article-title: Interactive effects of C, N and P fertilization on soil microbial community structure and function in an Amazonian rain forest publication-title: Functional Ecology contributor: fullname: Fromin – volume: 3 start-page: 348 year: 2012 ident: bib23 article-title: Microbial control over carbon cycling in soil publication-title: Frontiers in Microbiology contributor: fullname: Schaeffer – volume: 277 start-page: 1296 year: 1997 end-page: 1299 ident: bib27 article-title: The influence of island area on ecosystem properties publication-title: Science contributor: fullname: Gallet – volume: 339 start-page: 1615 year: 2013 end-page: 1618 ident: bib4 article-title: Roots and associated fungi drive long-term carbon sequestration in boreal forest publication-title: Science contributor: fullname: Lindahl – volume: 22 start-page: 816 year: 2008 end-page: 823 ident: bib8 article-title: Ecosystem retrogression leads to increased insect abundance and herbivory across an island chronosequence publication-title: Functional Ecology contributor: fullname: Wardle – volume: 42 start-page: 56 year: 2010 end-page: 64 ident: bib22 article-title: Impact of litter quality on mineralization processes in managed and abandoned pasture soils in Southern Ecuador publication-title: Soil Biology and Biochemistry contributor: fullname: Makeschin – volume: 80 start-page: 175 year: 2015 ident: 10.1016/j.soilbio.2018.10.010_bib6 article-title: Microbial community structure mediates response of soil C decomposition to litter addition and warming publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2014.10.008 contributor: fullname: Creamer – volume: 497 start-page: 29 year: 2014 ident: 10.1016/j.soilbio.2018.10.010_bib3 article-title: Short-term bioavailability of carbon in soil organic matter fractions of different particle sizes and densities in grassland ecosystems publication-title: The Science of the Total Environment doi: 10.1016/j.scitotenv.2014.07.080 contributor: fullname: Breulmann – volume: 300 start-page: 972 year: 2003 ident: 10.1016/j.soilbio.2018.10.010_bib24 article-title: Long-term effects of wildfire on ecosystem properties across an island area gradient publication-title: Science doi: 10.1126/science.1082709 contributor: fullname: Wardle – volume: 557 start-page: 710 year: 2018 ident: 10.1016/j.soilbio.2018.10.010_bib17 article-title: Long-term effects of species loss on community properties across contrasting ecosystems publication-title: Nature doi: 10.1038/s41586-018-0138-7 contributor: fullname: Kardol – volume: 2 start-page: 269 year: 2018 ident: 10.1016/j.soilbio.2018.10.010_bib11 article-title: Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems publication-title: Nature Ecology & Evolution doi: 10.1038/s41559-017-0415-0 contributor: fullname: Fanin – volume: 40 start-page: 425 year: 2008 ident: 10.1016/j.soilbio.2018.10.010_bib18 article-title: Soil organic matter in soil depth profiles: distinct carbon preferences of microbial groups during carbon transformation publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2007.09.016 contributor: fullname: Kramer – volume: 42 start-page: 56 year: 2010 ident: 10.1016/j.soilbio.2018.10.010_bib22 article-title: Impact of litter quality on mineralization processes in managed and abandoned pasture soils in Southern Ecuador publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2009.09.025 contributor: fullname: Potthast – volume: 205 start-page: 1525 year: 2015 ident: 10.1016/j.soilbio.2018.10.010_bib5 article-title: Carbon sequestration is related to mycorrhizal fungal community shifts during long‐term succession in boreal forests publication-title: New Phytologist doi: 10.1111/nph.13208 contributor: fullname: Clemmensen – volume: 94 start-page: 48 year: 2016 ident: 10.1016/j.soilbio.2018.10.010_bib10 article-title: Aboveground litter quality is a better predictor than belowground microbial communities when estimating carbon mineralization along a land-use gradient publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2015.11.007 contributor: fullname: Fanin – volume: 16 start-page: 810 year: 2013 ident: 10.1016/j.soilbio.2018.10.010_bib21 article-title: Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect publication-title: Ecosystems doi: 10.1007/s10021-013-9650-7 contributor: fullname: Pascault – volume: 41 start-page: 262 year: 2009 ident: 10.1016/j.soilbio.2018.10.010_bib1 article-title: Impact of wheat straw decomposition on successional patterns of soil microbial community structure publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2008.10.024 contributor: fullname: Bastian – volume: 88 start-page: 1354 year: 2007 ident: 10.1016/j.soilbio.2018.10.010_bib14 article-title: Toward an ecological classification of soil bacteria publication-title: Ecology doi: 10.1890/05-1839 contributor: fullname: Fierer – volume: 19 start-page: 988 year: 2013 ident: 10.1016/j.soilbio.2018.10.010_bib7 article-title: The Microbial Efficiency‐Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? publication-title: Global Change Biology doi: 10.1111/gcb.12113 contributor: fullname: Cotrufo – volume: 29 start-page: 140 year: 2015 ident: 10.1016/j.soilbio.2018.10.010_bib12 article-title: Interactive effects of C, N and P fertilization on soil microbial community structure and function in an Amazonian rain forest publication-title: Functional Ecology doi: 10.1111/1365-2435.12329 contributor: fullname: Fanin – volume: 43 start-page: 718 year: 2011 ident: 10.1016/j.soilbio.2018.10.010_bib2 article-title: Rhizosphere priming of soil organic matter by bacterial groups in a grassland soil publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2010.08.010 contributor: fullname: Bird – volume: 35 start-page: 167 year: 2003 ident: 10.1016/j.soilbio.2018.10.010_bib15 article-title: Variations in microbial community composition through two soil depth profiles publication-title: Soil Biology and Biochemistry doi: 10.1016/S0038-0717(02)00251-1 contributor: fullname: Fierer – volume: 3 start-page: 348 year: 2012 ident: 10.1016/j.soilbio.2018.10.010_bib23 article-title: Microbial control over carbon cycling in soil publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2012.00348 contributor: fullname: Schimel – volume: 21 start-page: 1027 year: 2007 ident: 10.1016/j.soilbio.2018.10.010_bib19 article-title: Ecosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogression publication-title: Functional Ecology doi: 10.1111/j.1365-2435.2007.01331.x contributor: fullname: Lagerström – volume: 100 start-page: 16 year: 2012 ident: 10.1016/j.soilbio.2018.10.010_bib25 article-title: Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long‐term natural experiment publication-title: Journal of Ecology doi: 10.1111/j.1365-2745.2011.01907.x contributor: fullname: Wardle – volume: 4 start-page: 265 year: 2013 ident: 10.1016/j.soilbio.2018.10.010_bib9 article-title: Controls on soil microbial community stability under climate change publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2013.00265 contributor: fullname: De Vries – volume: 277 start-page: 1296 year: 1997 ident: 10.1016/j.soilbio.2018.10.010_bib27 article-title: The influence of island area on ecosystem properties publication-title: Science doi: 10.1126/science.277.5330.1296 contributor: fullname: Wardle – volume: 339 start-page: 1615 year: 2013 ident: 10.1016/j.soilbio.2018.10.010_bib4 article-title: Roots and associated fungi drive long-term carbon sequestration in boreal forest publication-title: Science doi: 10.1126/science.1231923 contributor: fullname: Clemmensen – volume: 379 start-page: 79 year: 2014 ident: 10.1016/j.soilbio.2018.10.010_bib13 article-title: Litter fingerprint on microbial biomass, activity, and community structure in the underlying soil publication-title: Plant and Soil doi: 10.1007/s11104-014-2051-7 contributor: fullname: Fanin – volume: 19 start-page: 2022 year: 2013 ident: 10.1016/j.soilbio.2018.10.010_bib20 article-title: Bryophyte‐cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change publication-title: Global Change Biology doi: 10.1111/gcb.12175 contributor: fullname: Lindo – volume: 93 start-page: 1695 year: 2012 ident: 10.1016/j.soilbio.2018.10.010_bib16 article-title: Nitrogen niches revealed through species and functional group removal in a boreal shrub community publication-title: Ecology doi: 10.1890/11-1877.1 contributor: fullname: Gundale – volume: 435 start-page: 806 year: 2005 ident: 10.1016/j.soilbio.2018.10.010_bib26 article-title: Effects of species and functional group loss on island ecosystem properties publication-title: Nature doi: 10.1038/nature03611 contributor: fullname: Wardle – volume: 22 start-page: 816 year: 2008 ident: 10.1016/j.soilbio.2018.10.010_bib8 article-title: Ecosystem retrogression leads to increased insect abundance and herbivory across an island chronosequence publication-title: Functional Ecology doi: 10.1111/j.1365-2435.2008.01435.x contributor: fullname: Crutsinger |
SSID | ssj0002513 |
Score | 2.6884558 |
Snippet | Despite recent progress in understanding soil microbial responses to carbon (C) limitation, the functional shifts in microbial community structure associated... |
SourceID | swepub hal crossref elsevier |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 111 |
SubjectTerms | Carbon cycle Copiotroph-oligotroph model Energy limitation Environmental Sciences Gram-negative bacteria Gram-positive bacteria Life Sciences Markvetenskap Microbial community structure Phospholipid fatty acids PLFA Soil carbon Soil Science |
Title | The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils |
URI | https://dx.doi.org/10.1016/j.soilbio.2018.10.010 https://hal.inrae.fr/hal-02624611 https://res.slu.se/id/publ/97575 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9pAEF4Rcmh7qFraKPSlVVX1gpwCfh-tBEpahCKRSrlZ-yIhIqaygUN_fWe8u8aWqJoeKiFjBnvB_j6PZ7zzIOQT8ETKWDKHS7VwPD-K4ZISvhOwPsd-hULEmCg8mYezm-hi5I1aLdsVcy_7r0iDDLDGzNl_QLsaFASwDpjDElCH5aNxL1FFM_Brzh4cHZe1K3tklIJM3epy31yXagaUrqbjpPeAoTp5ga1nGAZA4hQOuORl5DnLOcYt79hypSt7l_mCuieU6BXr5aqo27lzEPRsgSdkF6wL21uu4gzsm1V0ZPtpJWCtbvxVj1vEcpFmkqSeYDRb4hnNjHipnDKAYG0DmMwDjZrCtDk2dX0N6hg9zoa-NtnkWuNaXa3MJ-_gfUE_orjHAskrOGAM6YvOMKrPxNQ26nBPknl6dTFOp5ez781vq4Lck2Sa3gE3wIPFgnyDHTjgx0PQdV6bHCeXo5tvlTkABqSp_KwPZZ9G9uXg__mTgXR0h5G6jXq2pQ10_YI8N84LTTTrXpKWyjrkWXKbmwIuqkOenFuUO-RktM-ihN3MbaR4RX4BSWlJUrpe0AZJ6WZNGySlFUkpkpQaklIGr4xWJMWBNElpnaSwATUkpSVJX5Mf49H1-cQxTUAcAZ7xxgncPu8zl6mBCpjHQ8njOBRyGIYc_EIZyGjoS08OwXOXftiPhBuovvKYWgTucMBj94S0s3WmTgldgL0rwL0WYOZ7wuUsFoMA7l8ydP0FuOZdcmbPfPpT13pJbRDkfWqgShEqFANUXRJZfFJjsGpDNAXe_W3Xj8gf-zOHOdUlnzXcje2K1ZazHN_SQqVxCA7Xm8eM9pY8xctNPz98R9qbfKvek6NCbj8Yzv4GVY3TKg |
link.rule.ids | 230,315,782,786,887,4030,27934,27935,27936 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ratio+of+Gram-positive+to+Gram-negative+bacterial+PLFA+markers+as+an+indicator+of+carbon+availability+in+organic+soils&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Fanin%2C+Nicolas&rft.au=Kardol%2C+Paul&rft.au=Farrell%2C+Mark&rft.au=Nilsson%2C+Marie-Charlotte&rft.date=2019&rft.pub=Elsevier&rft.issn=0038-0717&rft.volume=128&rft.spage=111&rft.epage=114&rft_id=info:doi/10.1016%2Fj.soilbio.2018.10.010&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02624611v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon |