Renal fractional flow reserve: A hemodynamic evaluation of moderate renal artery stenoses

The objective of this study was to perform a hemodynamic evaluation of moderate (50–90%) renal artery stenosis (RAS) under conditions of rest and maximum hyperemia. Identifying patients with RAS who have hemodynamically significant stenoses and are most likely to benefit from revascularization is cl...

Full description

Saved in:
Bibliographic Details
Published in:Catheterization and cardiovascular interventions Vol. 64; no. 4; pp. 480 - 486
Main Authors: Subramanian, Rajesh, White, Christopher J., Rosenfield, Kenneth, Bashir, Riyaz, Almagor, Yaron, Meerkin, David, Shalman, Evgeny
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01-04-2005
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this study was to perform a hemodynamic evaluation of moderate (50–90%) renal artery stenosis (RAS) under conditions of rest and maximum hyperemia. Identifying patients with RAS who have hemodynamically significant stenoses and are most likely to benefit from revascularization is clinically important. Current methods used to evaluate RAS, including angiography, have limitations. Physiologic evaluation of RAS may have a role in identifying patients with hemodynamically significant stenosis. Patients with suspected renovascular hypertension due to aorto‐ostial RAS were included in the study. Hyperemia was induced by administration of intrarenal papavarine. Translesional pressure gradients were measured and renal fractional flow reserve (FFR) was calculated using a 0.014″ pressure guidewire. Thirteen patients and 14 arteries with moderately severe (50–90%) RAS were studied. The mean translesional pressure gradient rose from a baseline of 6.3 ± 3.9 to 17.5 ± 10.8 mm Hg with maximal hyperemia. The renal FFR ranged from 0.58 to 0.95. There was a poor correlation between angiographic stenosis measurement and the renal FFR (r = −0.18; P = 0.54) and the hyperemic translesional mean pressure gradient (r = 0.22; P = 0.44). There was an excellent correlation between renal FFR and the resting mean translesional pressure gradient (r = −0.76; P = 0.0016) and the hyperemic mean translesional pressure gradient (r = −0.94; P < 0.0001). Selective renal arterial papavarine administration induces maximum hyperemia, permitting the calculation of renal FFR in renal arteries with aorto‐ostial stenoses. The renal FFR correlates well with other hemodynamic parameters of lesion severity, but poorly with angiographic measures of lesion severity. Catheter Cardiovasc Interv 2005;64:480–486. © 2005 Wiley‐Liss, Inc.
Bibliography:istex:E87EDF284AF26D91B3A9FD7C62C2D1A33642BC28
ArticleID:CCD20318
ark:/67375/WNG-0L5NT02T-J
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1522-1946
1522-726X
DOI:10.1002/ccd.20318