Evaluation of analytical methodologies used to derive vulnerability functions
SUMMARY The recognition of fragility and vulnerability functions as a fundamental tool in seismic risk assessment has led to the development of more and more complex and elaborate procedures for their computation. Although these functions have been traditionally produced using observed damage and lo...
Saved in:
Published in: | Earthquake engineering & structural dynamics Vol. 43; no. 2; pp. 181 - 204 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Chichester
Blackwell Publishing Ltd
01-02-2014
Wiley Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | SUMMARY
The recognition of fragility and vulnerability functions as a fundamental tool in seismic risk assessment has led to the development of more and more complex and elaborate procedures for their computation. Although these functions have been traditionally produced using observed damage and loss data, more recent studies propose the employment of analytical methodologies as a way to overcome the frequent lack of post‐earthquake data. The variation of the structural modelling approach on the estimation of building capacity has been the target of many studies in the past; however, its influence on the resulting vulnerability model for classes of buildings, the impact in loss estimations or propagation of the uncertainty to the seismic risk calculations has so far been the object of limited scrutiny. In this paper, an extensive study of static and dynamic procedures for estimating the nonlinear response of buildings has been carried out to evaluate the impact of the chosen methodology on the resulting capacity, fragility, vulnerability and risk outputs. Moreover, the computational effort and numerical stability provided by each approach have been evaluated and conclusions drawn regarding the optimal balance between accuracy and complexity. Copyright © 2013 John Wiley & Sons, Ltd. |
---|---|
AbstractList | The recognition of fragility and vulnerability functions as a fundamental tool in seismic risk assessment has led to the development of more and more complex and elaborate procedures for their computation. Although these functions have been traditionally produced using observed damage and loss data, more recent studies propose the employment of analytical methodologies as a way to overcome the frequent lack of post‐earthquake data. The variation of the structural modelling approach on the estimation of building capacity has been the target of many studies in the past; however, its influence on the resulting vulnerability model for classes of buildings, the impact in loss estimations or propagation of the uncertainty to the seismic risk calculations has so far been the object of limited scrutiny. In this paper, an extensive study of static and dynamic procedures for estimating the nonlinear response of buildings has been carried out to evaluate the impact of the chosen methodology on the resulting capacity, fragility, vulnerability and risk outputs. Moreover, the computational effort and numerical stability provided by each approach have been evaluated and conclusions drawn regarding the optimal balance between accuracy and complexity. Copyright © 2013 John Wiley & Sons, Ltd. SUMMARY The recognition of fragility and vulnerability functions as a fundamental tool in seismic risk assessment has led to the development of more and more complex and elaborate procedures for their computation. Although these functions have been traditionally produced using observed damage and loss data, more recent studies propose the employment of analytical methodologies as a way to overcome the frequent lack of post-earthquake data. The variation of the structural modelling approach on the estimation of building capacity has been the target of many studies in the past; however, its influence on the resulting vulnerability model for classes of buildings, the impact in loss estimations or propagation of the uncertainty to the seismic risk calculations has so far been the object of limited scrutiny. In this paper, an extensive study of static and dynamic procedures for estimating the nonlinear response of buildings has been carried out to evaluate the impact of the chosen methodology on the resulting capacity, fragility, vulnerability and risk outputs. Moreover, the computational effort and numerical stability provided by each approach have been evaluated and conclusions drawn regarding the optimal balance between accuracy and complexity. Copyright © 2013 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT] The recognition of fragility and vulnerability functions as a fundamental tool in seismic risk assessment has led to the development of more and more complex and elaborate procedures for their computation. Although these functions have been traditionally produced using observed damage and loss data, more recent studies propose the employment of analytical methodologies as a way to overcome the frequent lack of post-earthquake data. The variation of the structural modelling approach on the estimation of building capacity has been the target of many studies in the past; however, its influence on the resulting vulnerability model for classes of buildings, the impact in loss estimations or propagation of the uncertainty to the seismic risk calculations has so far been the object of limited scrutiny. In this paper, an extensive study of static and dynamic procedures for estimating the nonlinear response of buildings has been carried out to evaluate the impact of the chosen methodology on the resulting capacity, fragility, vulnerability and risk outputs. Moreover, the computational effort and numerical stability provided by each approach have been evaluated and conclusions drawn regarding the optimal balance between accuracy and complexity. Copyright copyright 2013 John Wiley & Sons, Ltd. SUMMARY The recognition of fragility and vulnerability functions as a fundamental tool in seismic risk assessment has led to the development of more and more complex and elaborate procedures for their computation. Although these functions have been traditionally produced using observed damage and loss data, more recent studies propose the employment of analytical methodologies as a way to overcome the frequent lack of post‐earthquake data. The variation of the structural modelling approach on the estimation of building capacity has been the target of many studies in the past; however, its influence on the resulting vulnerability model for classes of buildings, the impact in loss estimations or propagation of the uncertainty to the seismic risk calculations has so far been the object of limited scrutiny. In this paper, an extensive study of static and dynamic procedures for estimating the nonlinear response of buildings has been carried out to evaluate the impact of the chosen methodology on the resulting capacity, fragility, vulnerability and risk outputs. Moreover, the computational effort and numerical stability provided by each approach have been evaluated and conclusions drawn regarding the optimal balance between accuracy and complexity. Copyright © 2013 John Wiley & Sons, Ltd. |
Author | Varum, H. Pinho, R. Sousa, R. Crowley, H. Silva, V. |
Author_xml | – sequence: 1 givenname: V. surname: Silva fullname: Silva, V. email: Correspondence to: V. Silva, University of Aveiro, Portugal., vitor.silva@eucentre.it organization: University of Aveiro, Portugal – sequence: 2 givenname: H. surname: Crowley fullname: Crowley, H. organization: EUCENTRE, Pavia, Italy – sequence: 3 givenname: H. surname: Varum fullname: Varum, H. organization: University of Aveiro, Portugal – sequence: 4 givenname: R. surname: Pinho fullname: Pinho, R. organization: University of Pavia, Italy – sequence: 5 givenname: R. surname: Sousa fullname: Sousa, R. organization: ROSE Programme, UME School, IUSS Pavia, Italy |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28068139$$DView record in Pascal Francis |
BookMark | eNqF0d9LHDEQwPFQLPS0hf4JC0Xoy-pks_n1KHJelbOl0OJjyGUnbTS30WT36v337uFhQSh9mpcPX5iZQ3LQpx4J-UjhhAI0p_iAJw1j8g2ZUdCi1qrlB2QGoFWtVCvfkcNSbgGACZAzcj3f2DjaIaS-Sr6yvY3bITgbqzUOv1OXYvoVsFRjwa4aUtVhDhusNmPsMdtViGHYVn7s3a5Q3pO33saCH_bziPy8mP84_1Ivvy0uz8-WtWsbKWtnW2aR-7YB2mDHWas4FxxBKUq1bbrOA0imnVCOM-u81NrJldSwkn7FOTsin5-79zk9jFgGsw7FYYy2xzQWQyWbFuZUyP_TVreMcqWbiX56RW_TmKeL7JTkjAql1d-gy6mUjN7c57C2eWsomN0LzPQCs3vBRI_3QVumk_psexfKi28UCEWZnlz97P6EiNt_9sz8-3zf3ftQBnx88TbfmWljyc3N14XRy4VYwI0wV-wJhPikFQ |
CODEN | IJEEBG |
CitedBy_id | crossref_primary_10_1007_s13369_015_1758_y crossref_primary_10_1016_j_ijdrr_2022_103162 crossref_primary_10_3390_ma10080895 crossref_primary_10_1016_j_engstruct_2024_118302 crossref_primary_10_1002_eqe_2906 crossref_primary_10_1007_s41024_019_0047_7 crossref_primary_10_1007_s10518_022_01411_1 crossref_primary_10_1007_s10518_020_00822_2 crossref_primary_10_1193_090517EQS174M crossref_primary_10_1016_j_istruc_2023_105111 crossref_primary_10_1177_87552930231162385 crossref_primary_10_1177_8755293020919857 crossref_primary_10_1016_j_soildyn_2023_108194 crossref_primary_10_1002_eqe_3552 crossref_primary_10_1177_8755293020938816 crossref_primary_10_1002_eqe_3597 crossref_primary_10_1193_112514eqs198m crossref_primary_10_1016_j_engstruct_2015_02_017 crossref_primary_10_1007_s10518_018_0413_x crossref_primary_10_3390_app11135997 crossref_primary_10_1016_j_engstruct_2017_11_023 crossref_primary_10_1016_j_tust_2021_103981 crossref_primary_10_1007_s10518_018_0371_3 crossref_primary_10_1007_s00707_023_03670_8 crossref_primary_10_1016_j_soildyn_2021_106678 crossref_primary_10_1016_j_ijdrr_2018_12_022 crossref_primary_10_1007_s41062_024_01399_4 crossref_primary_10_1193_013018EQS031M crossref_primary_10_1007_s10518_014_9669_y crossref_primary_10_3390_su16062501 crossref_primary_10_1002_eqe_2873 crossref_primary_10_1080_19648189_2018_1548380 crossref_primary_10_1007_s11803_018_0434_0 crossref_primary_10_1177_87552930241245940 crossref_primary_10_1061__ASCE_ST_1943_541X_0002141 crossref_primary_10_3390_app131910634 crossref_primary_10_2174_1874836801610010042 crossref_primary_10_1016_j_soildyn_2021_106829 crossref_primary_10_1016_j_istruc_2022_05_110 crossref_primary_10_1007_s11069_019_03622_3 crossref_primary_10_1016_j_asej_2020_04_001 crossref_primary_10_1016_j_istruc_2021_10_059 crossref_primary_10_1007_s10518_020_01036_2 crossref_primary_10_1177_8755293020981981 crossref_primary_10_1193_010716EQS005M crossref_primary_10_1016_j_soildyn_2018_09_037 crossref_primary_10_1007_s11709_024_0982_5 crossref_primary_10_1016_j_istruc_2024_106421 crossref_primary_10_1080_13632469_2024_2302039 crossref_primary_10_1016_j_ress_2023_109104 crossref_primary_10_1080_13632469_2021_1964648 crossref_primary_10_1016_j_engstruct_2021_112463 crossref_primary_10_1051_matecconf_201710302017 crossref_primary_10_1007_s40999_017_0237_0 crossref_primary_10_1016_j_engstruct_2016_06_043 crossref_primary_10_1007_s10518_023_01636_8 crossref_primary_10_1177_87552930211043894 crossref_primary_10_1002_eqe_2734 crossref_primary_10_1193_083116eqs140m crossref_primary_10_1016_j_istruc_2021_06_002 crossref_primary_10_1007_s10518_023_01783_y crossref_primary_10_1007_s10518_022_01472_2 crossref_primary_10_2174_1874836801610010158 crossref_primary_10_1088_1755_1315_479_1_012012 crossref_primary_10_1193_042418EQS101O crossref_primary_10_1007_s10518_021_01065_5 crossref_primary_10_1080_15732479_2021_1956551 crossref_primary_10_1016_j_engstruct_2023_116730 crossref_primary_10_1007_s11069_016_2646_9 crossref_primary_10_1007_s10950_015_9478_z crossref_primary_10_1016_j_engstruct_2015_12_008 |
Cites_doi | 10.1080/13632460802014188 10.1080/13632460409350504 10.1023/A:1020095711419 10.1080/13632469909350343 10.1080/13632460509350572 10.1007/s10518-006-9023-0 10.1016/j.engstruct.2004.11.002 10.12989/sem.2001.12.1.051 10.5459/bnzsee.42.2.111-121 10.1061/(ASCE)0733-9445(1997)123:1(3) 10.1016/j.engstruct.2007.07.016 10.1061/(ASCE)0733-9445(2006)132:11(1721) 10.1016/S0141-0296(03)00060-9 10.1016/j.soildyn.2007.10.010 10.1016/j.soildyn.2005.07.001 10.1002/eqe.336 10.1193/1.2084232 10.1080/13632460409350498 10.1016/j.soildyn.2007.10.005 10.1080/13632469.2011.586085 10.1061/(ASCE)0733-9445(2000)126:4(482) 10.1002/eqe.144 10.1002/eqe.411 10.1007/s10518-007-9031-8 10.1016/j.soildyn.2009.10.005 10.1016/S0141-0296(97)00092-8 10.1193/1.1586011 10.1002/(SICI)1096-9845(199909)28:9<979::AID-EQE850>3.0.CO;2-1 10.1193/1.3608002 |
ContentType | Journal Article |
Copyright | Copyright © 2013 John Wiley & Sons, Ltd. 2015 INIST-CNRS Copyright © 2014 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2013 John Wiley & Sons, Ltd. – notice: 2015 INIST-CNRS – notice: Copyright © 2014 John Wiley & Sons, Ltd. |
DBID | BSCLL IQODW AAYXX CITATION 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI 7U1 7U2 7SM 7SU |
DOI | 10.1002/eqe.2337 |
DatabaseName | Istex Pascal-Francis CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Risk Abstracts Safety Science and Risk Earthquake Engineering Abstracts Environmental Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management Risk Abstracts Safety Science and Risk Earthquake Engineering Abstracts Environmental Engineering Abstracts |
DatabaseTitleList | CrossRef Civil Engineering Abstracts Earthquake Engineering Abstracts Risk Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1096-9845 |
EndPage | 204 |
ExternalDocumentID | 3176337491 10_1002_eqe_2337 28068139 EQE2337 ark_67375_WNG_9LG6G0W6_J |
Genre | article |
GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AABCJ AAESR AAEVG AAHHS AAIKC AAMNW AANLZ AAONW AASGY AAXRX AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACKIV ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CKXBT CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M58 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WLBEL WOHZO WQJ WRC WWC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~02 ~IA ~WT 08R 6XO 8W4 ABHUG ACXME ADAWD ADDAD AFVGU AGJLS IPNFZ IQODW AAMNL AAYXX CITATION 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI 7U1 7U2 7SM 7SU |
ID | FETCH-LOGICAL-c4277-ca43ae5f42012ed53485565e088119a2ddf00739c68c53acf799c7b790b7fb553 |
IEDL.DBID | 33P |
ISSN | 0098-8847 |
IngestDate | Fri Aug 16 09:20:09 EDT 2024 Sat Aug 17 01:48:17 EDT 2024 Tue Nov 19 06:17:04 EST 2024 Fri Nov 22 01:09:20 EST 2024 Fri Nov 25 01:09:23 EST 2022 Sat Aug 24 00:49:05 EDT 2024 Wed Oct 30 09:51:36 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | risk assessment damage models accuracy vulnerability earthquakes loss assessment propagation balance buildings earthquake engineering uncertainties fragility stability seismic risk analytical methodologies |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4277-ca43ae5f42012ed53485565e088119a2ddf00739c68c53acf799c7b790b7fb553 |
Notes | istex:3B3E4774F622214948D8B2234212E38A614E8247 ark:/67375/WNG-9LG6G0W6-J ArticleID:EQE2337 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1475316898 |
PQPubID | 866380 |
PageCount | 24 |
ParticipantIDs | proquest_miscellaneous_1730095167 proquest_miscellaneous_1494315892 proquest_journals_1475316898 crossref_primary_10_1002_eqe_2337 pascalfrancis_primary_28068139 wiley_primary_10_1002_eqe_2337_EQE2337 istex_primary_ark_67375_WNG_9LG6G0W6_J |
PublicationCentury | 2000 |
PublicationDate | February 2014 |
PublicationDateYYYYMMDD | 2014-02-01 |
PublicationDate_xml | – month: 02 year: 2014 text: February 2014 |
PublicationDecade | 2010 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester – name: Bognor Regis |
PublicationTitle | Earthquake engineering & structural dynamics |
PublicationTitleAlternate | Earthquake Engng Struct. Dyn |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley – name: Wiley Subscription Services, Inc |
References | Bracci JM, Kunnath SK, Reinhorn AM. Seismic performance and retrofit evaluation of reinforced concrete structures. Journal of Structural Engineering 1997; 123(1):3-10. Antoniou S, Pinho R. Development and verification of a displacement-based adaptive pushover procedure. Journal of Earthquake Engineering 2004; 8(5):643-661. Rota M, Penna A, Strobbia C. Processing Italian damage data to derive typological fragility curves. Soil Dynamics and Earthquake Engineering 2008; 28(10-11):933-947. Bommer JJ, Martínez-Pereira A. The effective duration of earthquake strong motion. Journal of Earthquake Engineering 1999; 3(2):127-172. Kalkan E, Kunnath SK. Adaptive modal combination procedure for nonlinear static analysis of building structures. Journal of Structural Engineering 2006; 132(11):1721-1731. Pinho R, Marques M, Monteiro R, Casarotti C, Delgado R. Evaluation of nonlinear static procedures in the assessment of building frames. Earthquake Spectra 2013, in press. Bal I, Crowley H, Pinho R, Gulay, FG. Detailed assessment of structural characteristics of Turkish RC building stock for loss assessment models. Soil Dynamics and Earthquake Engineering 2008; 28:914-932. Giuffrè A, Pinto PE. Il comportamento del cemento armato per sollecitazioni cicliché di forte intensità. Giornale del Génio Civile 1970. Lin YY, Chang KC, Wang YL. Comparison of displacement coefficient method and capacity spectrum method with experimental results of RC columns. Earthquake Engineering and Structural Dynamics 2004; 33:35-48. Erberik MA. Fragility-based assessment of typical mid-rise and low-rise RC buildings in Turkey. Engineering Structures 2007; 30(5):1360-1374. Jayaram N, Lin T, Baker J. A computationally efficient ground-motion selection algorithm for matching a target response spectrum mean and variance. Earthquake Spectra 2011; 27(3):797-815. Dolsek M, Fajfar P. Simplified non-linear seismic analysis of infilled reinforced concrete frames. Earthquake Engineering and Structural Dynamics 2005; 34(1):49-66. Watson-Lamprey J, Abrahamson N. Selection of ground motion time series and limits on scaling. Soil Dynamics and Earthquake Engineering 2006; 26:477-482. Priestley, MJN, Calvi GM, Kowalsky MJ. Displacement-based Seismic Design of Structures. IUSS Press: Pavia, Italy, 2007. Kappos A, Panagopoulos G, Panagiotopoulos C, Penelis G. A hybrid method for the vulnerability assessment of R/C and URM buildings. Bulletin of Earthquake Engineering 2006; 4(4):391-413. Fajfar P. Capacity spectrum method based on inelastic demand spectra. Earthquake Engineering and Structural Dynamics 1999; 28(9):979-993. Freeman S. Review of the development of the capacity spectrum method. ISET Journal of Earthquake Technology 2004; 41(1):1-13. Bhatt C, Bento E. Comparison of nonlinear static methods for the seismic assessment of plan irregular frame buildings with non seismic details. Journal of Earthquake Engineering 2012; 16(1):15-39. Rossetto T, Elnashai A. A new analytical procedure for the derivation of displacement-based vulnerability curves for populations of RC structures. Engineering Structures 2005; 27(3):397-409. Katsanos EI, Sextos AG, Manolis GD. Selection of earthquake ground motion records: A state-of-the-art review from a structural engineering perspective. Soil Dynamics and Earthquake Engineering 2010; 26:157-169. Bommer JJ, Spence R, Erdik M, Tabuchi S, Aydinoglu N, Booth E, Re DD, Pterken D. Development of an earthquake loss model for Turkish catastrophe insurance. Journal of Seismology 2002; 6:431-446. Shome N, Cornell CA, Bazzurro P, Carballo JE. Earthquakes, records and nonlinear responses. Earthquake Spectra 1998; 14(4):469-500. Bal I, Yildiz M. Evaluation of concrete quality of existing buildings in the regional municipalities of Istanbul. Journal of the Turkish Chamber Civil Engineering 2005; 80:10-7. Rossetto T, Elnashai A. Derivation of vulnerability functions for European-type RC structures based on observational data. Engineering Structures 2003; 25(10):1241-1263. Scott BD, Park R, Priestley MJN. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates. ACI Journal Proceedings 1982; 79(1):13-27. Casarotti C, Monteiro R, Pinho R. Verification of spectral reduction factors for seismic assessment of bridges. Bulletin of the New Zealand Society for Earthquake Engineering 2009; 42(2):111-121. Gulkan P, Sozen MA. Inelastic responses of reinforced concrete structure to earthquake motions. ACI Journal Proceedings 1974; 71(12):604-610. Casarotti C, Pinho R. An adaptive capacity spectrum method for assessment of bridges subjected to earthquake action. Bulletin of Earthquake Engineering 2007; 5(3):377-390. Krawinkler H, Seneviratna G. Pros and cons of a pushover analysis of seismic performance evaluation. Engineering Structures 1998; 20(4-6):452-464. Antoniou S, Pinho R. Advantages and limitations of adaptive and non-adaptive force-based pushover procedures. Journal of Earthquake Engineering 2004; 8(4):497-522. Papanikolaou V, Elnashai A. Evaluation of conventional and adaptive pushover analysis I: methodology. Journal of Earthquake Engineering 2005; 9(6):923-941. Akyuz S, Uyan M. A study on the concrete steel bars used in Turkey. Technical Journal of the Turkish Assembly of Civil Engineering 1992; 35:497-508. Chopra AK, Goel RK. Evaluation of NSP to estimate seismic deformation: SDF systems. Journal of Structural Engineering 2000; 126(4):482-490. Strasser FO, Bommer JJ, Sesetyan K, Erdik M, Cagnan Z, Irizarry J, Goula X, Lucantoni A, Sabetta F, Bal I, Crowley H, Lindholm C. A comparative study of European earthquake loss estimation tools for an earthquake scenario in Istanbul. Journal of Earthquake Engineering 2008; 12(S2):246-256. Elnashai AS. Advanced inelastic static (pushover) analysis for earthquake applications. Structural Engineering and Mechanics 2001; 12(1):51-69. Akkar S, Sucuoglu H, Yakut A. Displacement-based fragility functions for low- and mid-rise ordinary concrete buildings. Earthquake Spectra 2005; 21(4):901-927. Chopra AK, Goel RK. A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering and Structural Dynamics 2002; 31(3):561-582. 1982; 79 2004; 41 2009; 42 2002; 31 2011 1974; 71 2004; 8 1999; 28 2002; 6 1998 1997 2008 1975 2008; 12 1996 2006; 132 2007 2005; 21 2005 1992; 35 2005; 80 2004 1999; 3 2006; 4 1970 2012; 16 2003 2007; 30 2002 2005; 27 1998; 20 2004; 33 2010; 26 2001 2000 2000; 126 2005; 9 2008; 28 2006; 26 1997; 123 2003; 25 2007; 5 2013 2011; 27 2001; 12 2005; 34 1998; 14 Casarotti C (e_1_2_8_13_1) 2009; 42 e_1_2_8_28_1 Akyuz S (e_1_2_8_22_1) 1992; 35 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 Erberik MA (e_1_2_8_8_1) 2007; 30 e_1_2_8_9_1 e_1_2_8_20_1 Bal I (e_1_2_8_23_1) 2005; 80 e_1_2_8_43_1 Shome N (e_1_2_8_19_1) 1998; 14 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 Gulkan P (e_1_2_8_37_1) 1974; 71 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Scott BD (e_1_2_8_26_1) 1982; 79 Giuffrè A (e_1_2_8_27_1) 1970 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 Priestley MJN (e_1_2_8_53_1) 2007 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_48_1 Freeman S (e_1_2_8_49_1) 2004; 41 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 Pinho R (e_1_2_8_56_1) 2013 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 Strasser FO (e_1_2_8_10_1) 2008; 12 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 25 start-page: 1241 issue: 10 year: 2003 end-page: 1263 article-title: Derivation of vulnerability functions for European‐type RC structures based on observational data publication-title: Engineering Structures – year: 2011 – volume: 12 start-page: 246 issue: S2 year: 2008 end-page: 256 article-title: A comparative study of European earthquake loss estimation tools for an earthquake scenario in Istanbul publication-title: Journal of Earthquake Engineering – volume: 71 start-page: 604 issue: 12 year: 1974 end-page: 610 article-title: Inelastic responses of reinforced concrete structure to earthquake motions publication-title: ACI Journal Proceedings – volume: 28 start-page: 933 issue: 10‐11 year: 2008 end-page: 947 article-title: Processing Italian damage data to derive typological fragility curves publication-title: Soil Dynamics and Earthquake Engineering – year: 2005 – volume: 123 start-page: 3 issue: 1 year: 1997 end-page: 10 article-title: Seismic performance and retrofit evaluation of reinforced concrete structures publication-title: Journal of Structural Engineering – year: 2001 – volume: 14 start-page: 469 issue: 4 year: 1998 end-page: 500 article-title: Earthquakes, records and nonlinear responses publication-title: Earthquake Spectra – volume: 79 start-page: 13 issue: 1 year: 1982 end-page: 27 article-title: Stress‐strain behavior of concrete confined by overlapping hoops at low and high strain rates publication-title: ACI Journal Proceedings – year: 1975 – volume: 42 start-page: 111 issue: 2 year: 2009 end-page: 121 article-title: Verification of spectral reduction factors for seismic assessment of bridges publication-title: Bulletin of the New Zealand Society for Earthquake Engineering – volume: 132 start-page: 1721 issue: 11 year: 2006 end-page: 1731 article-title: Adaptive modal combination procedure for nonlinear static analysis of building structures publication-title: Journal of Structural Engineering – volume: 9 start-page: 923 issue: 6 year: 2005 end-page: 941 article-title: Evaluation of conventional and adaptive pushover analysis I: methodology publication-title: Journal of Earthquake Engineering – volume: 27 start-page: 397 issue: 3 year: 2005 end-page: 409 article-title: A new analytical procedure for the derivation of displacement‐based vulnerability curves for populations of RC structures publication-title: Engineering Structures – volume: 33 start-page: 35 year: 2004 end-page: 48 article-title: Comparison of displacement coefficient method and capacity spectrum method with experimental results of RC columns publication-title: Earthquake Engineering and Structural Dynamics – year: 1998 – volume: 35 start-page: 497 year: 1992 end-page: 508 article-title: A study on the concrete steel bars used in Turkey publication-title: Technical Journal of the Turkish Assembly of Civil Engineering – volume: 20 start-page: 452 issue: 4‐6 year: 1998 end-page: 464 article-title: Pros and cons of a pushover analysis of seismic performance evaluation publication-title: Engineering Structures – volume: 34 start-page: 49 issue: 1 year: 2005 end-page: 66 article-title: Simplified non‐linear seismic analysis of infilled reinforced concrete frames publication-title: Earthquake Engineering and Structural Dynamics – volume: 28 start-page: 979 issue: 9 year: 1999 end-page: 993 article-title: Capacity spectrum method based on inelastic demand spectra publication-title: Earthquake Engineering and Structural Dynamics – volume: 6 start-page: 431 year: 2002 end-page: 446 article-title: Development of an earthquake loss model for Turkish catastrophe insurance publication-title: Journal of Seismology – volume: 3 start-page: 127 issue: 2 year: 1999 end-page: 172 article-title: The effective duration of earthquake strong motion publication-title: Journal of Earthquake Engineering – volume: 26 start-page: 157 year: 2010 end-page: 169 article-title: Selection of earthquake ground motion records: A state‐of‐the‐art review from a structural engineering perspective publication-title: Soil Dynamics and Earthquake Engineering – year: 2008 – year: 2004 – volume: 126 start-page: 482 issue: 4 year: 2000 end-page: 490 article-title: Evaluation of NSP to estimate seismic deformation: SDF systems publication-title: Journal of Structural Engineering – year: 1997 – volume: 8 start-page: 643 issue: 5 year: 2004 end-page: 661 article-title: Development and verification of a displacement‐based adaptive pushover procedure publication-title: Journal of Earthquake Engineering – volume: 41 start-page: 1 issue: 1 year: 2004 end-page: 13 article-title: Review of the development of the capacity spectrum method publication-title: ISET Journal of Earthquake Technology – volume: 30 start-page: 1360 issue: 5 year: 2007 end-page: 1374 article-title: Fragility‐based assessment of typical mid‐rise and low‐rise RC buildings in Turkey publication-title: Engineering Structures – volume: 21 start-page: 901 issue: 4 year: 2005 end-page: 927 article-title: Displacement‐based fragility functions for low‐ and mid‐rise ordinary concrete buildings publication-title: Earthquake Spectra – year: 1970 article-title: Il comportamento del cemento armato per sollecitazioni cicliché di forte intensità publication-title: Giornale del Génio Civile – year: 2013 article-title: Evaluation of nonlinear static procedures in the assessment of building frames publication-title: Earthquake Spectra – year: 2007 – volume: 5 start-page: 377 issue: 3 year: 2007 end-page: 390 article-title: An adaptive capacity spectrum method for assessment of bridges subjected to earthquake action publication-title: Bulletin of Earthquake Engineering – year: 2003 – year: 1996 – year: 2000 – volume: 31 start-page: 561 issue: 3 year: 2002 end-page: 582 article-title: A modal pushover analysis procedure for estimating seismic demands for buildings publication-title: Earthquake Engineering and Structural Dynamics – volume: 26 start-page: 477 year: 2006 end-page: 482 article-title: Selection of ground motion time series and limits on scaling publication-title: Soil Dynamics and Earthquake Engineering – volume: 12 start-page: 51 issue: 1 year: 2001 end-page: 69 article-title: Advanced inelastic static (pushover) analysis for earthquake applications publication-title: Structural Engineering and Mechanics – volume: 80 start-page: 10 year: 2005 end-page: 7 article-title: Evaluation of concrete quality of existing buildings in the regional municipalities of Istanbul publication-title: Journal of the Turkish Chamber Civil Engineering – volume: 27 start-page: 797 issue: 3 year: 2011 end-page: 815 article-title: A computationally efficient ground‐motion selection algorithm for matching a target response spectrum mean and variance publication-title: Earthquake Spectra – year: 2002 – volume: 4 start-page: 391 issue: 4 year: 2006 end-page: 413 article-title: A hybrid method for the vulnerability assessment of R/C and URM buildings publication-title: Bulletin of Earthquake Engineering – volume: 8 start-page: 497 issue: 4 year: 2004 end-page: 522 article-title: Advantages and limitations of adaptive and non‐adaptive force‐based pushover procedures publication-title: Journal of Earthquake Engineering – volume: 28 start-page: 914 year: 2008 end-page: 932 article-title: Detailed assessment of structural characteristics of Turkish RC building stock for loss assessment models publication-title: Soil Dynamics and Earthquake Engineering – volume: 16 start-page: 15 issue: 1 year: 2012 end-page: 39 article-title: Comparison of nonlinear static methods for the seismic assessment of plan irregular frame buildings with non seismic details publication-title: Journal of Earthquake Engineering – volume: 80 start-page: 10 year: 2005 ident: e_1_2_8_23_1 article-title: Evaluation of concrete quality of existing buildings in the regional municipalities of Istanbul publication-title: Journal of the Turkish Chamber Civil Engineering contributor: fullname: Bal I – volume: 12 start-page: 246 issue: 2 year: 2008 ident: e_1_2_8_10_1 article-title: A comparative study of European earthquake loss estimation tools for an earthquake scenario in Istanbul publication-title: Journal of Earthquake Engineering doi: 10.1080/13632460802014188 contributor: fullname: Strasser FO – ident: e_1_2_8_31_1 – ident: e_1_2_8_41_1 doi: 10.1080/13632460409350504 – ident: e_1_2_8_20_1 doi: 10.1023/A:1020095711419 – ident: e_1_2_8_62_1 – ident: e_1_2_8_54_1 doi: 10.1080/13632469909350343 – ident: e_1_2_8_59_1 – ident: e_1_2_8_55_1 doi: 10.1080/13632460509350572 – ident: e_1_2_8_58_1 doi: 10.1007/s10518-006-9023-0 – ident: e_1_2_8_32_1 – ident: e_1_2_8_36_1 – ident: e_1_2_8_44_1 – year: 2013 ident: e_1_2_8_56_1 article-title: Evaluation of nonlinear static procedures in the assessment of building frames publication-title: Earthquake Spectra contributor: fullname: Pinho R – ident: e_1_2_8_9_1 doi: 10.1016/j.engstruct.2004.11.002 – ident: e_1_2_8_63_1 – ident: e_1_2_8_40_1 doi: 10.12989/sem.2001.12.1.051 – volume: 42 start-page: 111 issue: 2 year: 2009 ident: e_1_2_8_13_1 article-title: Verification of spectral reduction factors for seismic assessment of bridges publication-title: Bulletin of the New Zealand Society for Earthquake Engineering doi: 10.5459/bnzsee.42.2.111-121 contributor: fullname: Casarotti C – ident: e_1_2_8_39_1 doi: 10.1061/(ASCE)0733-9445(1997)123:1(3) – volume: 30 start-page: 1360 issue: 5 year: 2007 ident: e_1_2_8_8_1 article-title: Fragility‐based assessment of typical mid‐rise and low‐rise RC buildings in Turkey publication-title: Engineering Structures doi: 10.1016/j.engstruct.2007.07.016 contributor: fullname: Erberik MA – ident: e_1_2_8_47_1 doi: 10.1061/(ASCE)0733-9445(2006)132:11(1721) – ident: e_1_2_8_61_1 – ident: e_1_2_8_15_1 – ident: e_1_2_8_64_1 – ident: e_1_2_8_3_1 doi: 10.1016/S0141-0296(03)00060-9 – volume: 79 start-page: 13 issue: 1 year: 1982 ident: e_1_2_8_26_1 article-title: Stress‐strain behavior of concrete confined by overlapping hoops at low and high strain rates publication-title: ACI Journal Proceedings contributor: fullname: Scott BD – ident: e_1_2_8_4_1 doi: 10.1016/j.soildyn.2007.10.010 – ident: e_1_2_8_42_1 – ident: e_1_2_8_28_1 doi: 10.1016/j.soildyn.2005.07.001 – ident: e_1_2_8_50_1 – ident: e_1_2_8_34_1 – ident: e_1_2_8_48_1 – volume-title: Displacement‐based Seismic Design of Structures year: 2007 ident: e_1_2_8_53_1 contributor: fullname: Priestley MJN – ident: e_1_2_8_52_1 doi: 10.1002/eqe.336 – ident: e_1_2_8_6_1 – ident: e_1_2_8_7_1 doi: 10.1193/1.2084232 – ident: e_1_2_8_14_1 doi: 10.1080/13632460409350498 – ident: e_1_2_8_18_1 doi: 10.1016/j.soildyn.2007.10.005 – ident: e_1_2_8_51_1 – ident: e_1_2_8_57_1 doi: 10.1080/13632469.2011.586085 – ident: e_1_2_8_11_1 doi: 10.1061/(ASCE)0733-9445(2000)126:4(482) – ident: e_1_2_8_43_1 – ident: e_1_2_8_46_1 doi: 10.1002/eqe.144 – ident: e_1_2_8_25_1 – ident: e_1_2_8_33_1 – volume: 71 start-page: 604 issue: 12 year: 1974 ident: e_1_2_8_37_1 article-title: Inelastic responses of reinforced concrete structure to earthquake motions publication-title: ACI Journal Proceedings contributor: fullname: Gulkan P – ident: e_1_2_8_12_1 doi: 10.1002/eqe.411 – ident: e_1_2_8_45_1 doi: 10.1007/s10518-007-9031-8 – ident: e_1_2_8_21_1 – ident: e_1_2_8_29_1 doi: 10.1016/j.soildyn.2009.10.005 – ident: e_1_2_8_38_1 doi: 10.1016/S0141-0296(97)00092-8 – ident: e_1_2_8_2_1 – ident: e_1_2_8_5_1 – ident: e_1_2_8_16_1 – ident: e_1_2_8_60_1 – ident: e_1_2_8_24_1 – volume: 14 start-page: 469 issue: 4 year: 1998 ident: e_1_2_8_19_1 article-title: Earthquakes, records and nonlinear responses publication-title: Earthquake Spectra doi: 10.1193/1.1586011 contributor: fullname: Shome N – ident: e_1_2_8_35_1 – year: 1970 ident: e_1_2_8_27_1 article-title: Il comportamento del cemento armato per sollecitazioni cicliché di forte intensità publication-title: Giornale del Génio Civile contributor: fullname: Giuffrè A – ident: e_1_2_8_17_1 doi: 10.1002/(SICI)1096-9845(199909)28:9<979::AID-EQE850>3.0.CO;2-1 – volume: 35 start-page: 497 year: 1992 ident: e_1_2_8_22_1 article-title: A study on the concrete steel bars used in Turkey publication-title: Technical Journal of the Turkish Assembly of Civil Engineering contributor: fullname: Akyuz S – ident: e_1_2_8_30_1 doi: 10.1193/1.3608002 – volume: 41 start-page: 1 issue: 1 year: 2004 ident: e_1_2_8_49_1 article-title: Review of the development of the capacity spectrum method publication-title: ISET Journal of Earthquake Technology contributor: fullname: Freeman S |
SSID | ssj0003607 |
Score | 2.4122672 |
Snippet | SUMMARY
The recognition of fragility and vulnerability functions as a fundamental tool in seismic risk assessment has led to the development of more and more... The recognition of fragility and vulnerability functions as a fundamental tool in seismic risk assessment has led to the development of more and more complex... SUMMARY The recognition of fragility and vulnerability functions as a fundamental tool in seismic risk assessment has led to the development of more and more... |
SourceID | proquest crossref pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 181 |
SubjectTerms | analytical methodologies Computation Earth sciences Earth, ocean, space Earthquakes, seismology Engineering and environment geology. Geothermics Engineering geology Estimating Exact sciences and technology Fragility Internal geophysics loss assessment Mathematical analysis Mathematical models Seismic hazard Seismic phenomena vulnerability |
Title | Evaluation of analytical methodologies used to derive vulnerability functions |
URI | https://api.istex.fr/ark:/67375/WNG-9LG6G0W6-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.2337 https://www.proquest.com/docview/1475316898 https://search.proquest.com/docview/1494315892 https://search.proquest.com/docview/1730095167 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ4XODQFtqqS7fISIhbShK_e6sgLEKAQBTRm2XH9qXVbkvIiv77epxNYA-tKvUUKRlLzoxnPPbMfIPQviQkUBpURpTMMxpYyEzBXFYG4R00RuEcipNPb8TlV3lcAUzOp74WpsOHGC7cQDOSvQYFN7Y5fAIN9T_9x5IQKCSPh4RUvUGuBiNMeD7AZcpogXvc2bw87Acu7UTrwNRHyIw0TWRO6LpaLLmdz53XtPucvPyfeb9CLxY-J_7cLZIttOKn22jzGRLha3RRDajfeBawAaiSdMuNuxbTyUT6BreNd_hhhl0cN_d43n4H1OqUYPsLwx6ZlvEbdHtSfTk6zRadFrKaQgy3NpQYzwKN7kDpHSMAGcOZjyaoKJQpnQsppFdzWTNi6iCUqoUVKrciWMbIW7Q2nU39O4SJ59ZKQy33nhalNbYwNL5SLDe5E2KE9nqu6x8doIbuoJNLHVmjgTUjdJDEMRCY-2-QgCaYvrucaHU-4ZP8juuzEdpdktcwAOLFMjq3IzTuBagXytnE0048oxVcKhknM3yOagWxEjP1sxZoVHStmFTlX2gA6z96qBwmnET-xz_S1XUFz51_JXyPNqIsaJcfPkZrD_et_4BWG9fupoX-G6mK_4w |
link.rule.ids | 315,782,786,1408,27934,27935,46065,46489 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7R9gAcyrNiSylGQtxCk_gtTgjSXWC7AlFUbpYT2xfQLjRNBf8ej7MJ3QMIiVOkZCw58_LYM_4G4KmiNDAWdEa1yjMWeMhswV1WBukdNkYRAi8nzz7KxWf1ukKYnBfDXZgeH2I8cEPLSP4aDRwPpI9-o4b67_55Sancgh0mmEKVpvT96IapyEfATBV98IA8m5dHw8iNtWgH2foDayNtG9kT-r4WG4Hn1fA1rT_Ht_5r5rdhdx12kpe9ntyBa355F25eASO8ByfVCPxNVoFYRCtJB92k7zKdvKRvSdd6Ry5WxMVxl55cdl8RuDrV2P4kuEwmTb4Pn46r01ezbN1sIWsYpnEby6j1PLAYEZTecYqoMYL76IWKQtvSuZCyeo1QDae2CVLrRtZS57UMNed0D7aXq6V_AIR6UdfKslp4z4qytnVhWXyleW5zJ-UEngxsN996TA3ToyeXJrLGIGsm8CzJYySw51-wBk1yc7aYGj2fiml-JszbCRxuCGwcgCljFePbCRwMEjRr-2zjhidu0wqhtIqTGT9Hy8J0iV36VYc0OkZXXOnyLzQI9x-DVIETTjL_4x-Z6kOFz_1_JXwM12enJ3Mzf7N49xBuRLmwvlz8ALYvzjv_CLZa1x0mrf8FxtUDxA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RVkJwoDzFQilGQtxCk_jdW9Vmt0BZFQEqN8uJ7QtotzRNBf8ej7MJ3QMIiVOkZCw5M57xZ8_4M8BLRWlgLOiMapVnLPCQ2YK7rAzSO7wYRQg8nHz8Uc6_qKMKaXL2h7MwPT_EuOGGnpHiNTr4uQt7v0lD_Xf_uqRUbsAWiygcy_koPR2jMBX5yJepYggeiGfzcm9ouTYVbaFWf2BppG2jdkJ_rcUa7ryOXtP0M93-n47fhTsr0EkO-lFyD274xX24fY2K8AG8r0bab7IMxCJXSdrmJv0d0ylG-pZ0rXfkcklcbHflyVX3DWmrU4XtT4KTZBrHD-HztPp0eJytrlrIGoZJ3MYyaj0PLOKB0jtOkTNGcB9jUFFoWzoXUk6vEarh1DZBat3IWuq8lqHmnD6CzcVy4R8DoV7UtbKsFt6zoqxtXVgWX2me29xJOYEXg9bNec-oYXru5NJE1RhUzQReJXOMAvbiK1agSW7O5jOjT2Zilp8J83YCu2v2GhtgwlhFdDuBncGAZuWdbVzuxEVaIZRWsTPj5-hXmCyxC7_sUEZHbMWVLv8ig2T_EaIK7HAy-R__yFQfKnw--VfB53Dz9GhqTt7M3z2FW9EsrK8V34HNy4vOP4ON1nW7acz_Ap_YAmo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+analytical+methodologies+used+to+derive+vulnerability+functions&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Silva%2C+V.&rft.au=Crowley%2C+H.&rft.au=Varum%2C+H.&rft.au=Pinho%2C+R.&rft.date=2014-02-01&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=43&rft.issue=2&rft.spage=181&rft.epage=204&rft_id=info:doi/10.1002%2Feqe.2337&rft.externalDBID=10.1002%252Feqe.2337&rft.externalDocID=EQE2337 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon |