Single-Exclusion Number and the Stopping Redundancy of MDS Codes
For a linear block code C, its stopping redundancy is defined as the smallest number of check nodes in a Tanner graph for C, such that there exist no stopping sets of size smaller than the minimum distance of C. Schwartz and Vardy conjectured that the stopping redundancy of a maximum-distance separa...
Saved in:
Published in: | IEEE transactions on information theory Vol. 55; no. 9; pp. 4155 - 4166 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
IEEE
01-09-2009
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For a linear block code C, its stopping redundancy is defined as the smallest number of check nodes in a Tanner graph for C, such that there exist no stopping sets of size smaller than the minimum distance of C. Schwartz and Vardy conjectured that the stopping redundancy of a maximum-distance separable (MDS) code should only depend on its length and minimum distance. We define the (n, t)-single-exclusion number, S(n, t) as the smallest number of i-subsets of an n-set, such that for each i-subset of the n-set, i =1,... ,t + 1, there exists a i-subset that contains all but one element of the i-subset. New upper bounds on the single-exclusion number are obtained via probabilistic methods, recurrent inequalities, as well as explicit constructions. The new bounds are used to better understand the stopping redundancy of MDS codes. In particular, it is shown that for [n, k = n - d + 1, d] MDS codes, as n rarr infin , the stopping redundancy is asymptotic to S(n, d - 2), if d = o(radic(n)), or if k = o(radic(n)), k rarr infin, thus giving partial confirmation of the Schwartz-Vardy conjecture in the asymptotic sense. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2009.2025578 |