Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules

The design of new catalysts for polymer electrolyte membrane fuel cells must be guided by two equally important fundamental principles: optimization of their catalytic behaviour as well as the long-term stability of the metal catalysts and supports in hostile electrochemical environments. The method...

Full description

Saved in:
Bibliographic Details
Published in:Nature materials Vol. 9; no. 12; pp. 998 - 1003
Main Authors: Marković, Nenad M, Genorio, Bostjan, Strmcnik, Dusan, Subbaraman, Ram, Tripkovic, Dusan, Karapetrov, Goran, Stamenkovic, Vojislav R, Pejovnik, Stane
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01-12-2010
Nature Publishing Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The design of new catalysts for polymer electrolyte membrane fuel cells must be guided by two equally important fundamental principles: optimization of their catalytic behaviour as well as the long-term stability of the metal catalysts and supports in hostile electrochemical environments. The methods used to improve catalytic activity are diverse, ranging from the alloying and de-alloying of platinum to the synthesis of platinum core–shell catalysts. However, methods to improve the stability of the carbon supports and catalyst nanoparticles are limited, especially during shutdown (when hydrogen is purged from the anode by air) and startup (when air is purged from the anode by hydrogen) conditions when the cathode potential can be pushed up to 1.5 V (ref. 11). Under the latter conditions, stability of the cathode materials is strongly affected (carbon oxidation reaction) by the undesired oxygen reduction reaction (ORR) on the anode side. This emphasizes the importance of designing selective anode catalysts that can efficiently suppress the ORR while fully preserving the Pt-like activity for the hydrogen oxidation reaction. Here, we demonstrate that chemically modified platinum with a self-assembled monolayer of calix[4]arene molecules meets this challenging requirement.
AbstractList Cathode degradation and methods for improving the selectivity of anode catalysts remain crucial challenges for the design of polymer electrolyte membrane fuel cells. A chemically modified Pt electrode with a self-assembled monolayer of calix[4]arene molecules is now shown to selectively block the undesired oxygen reduction reaction. The design of new catalysts for polymer electrolyte membrane fuel cells must be guided by two equally important fundamental principles: optimization of their catalytic behaviour as well as the long-term stability of the metal catalysts and supports in hostile electrochemical environments 1 , 2 . The methods used to improve catalytic activity are diverse 3 , 4 , 5 , 6 , 7 , 8 , ranging from the alloying 3 , 4 and de-alloying 5 of platinum to the synthesis of platinum core–shell catalysts 6 . However, methods to improve the stability of the carbon supports and catalyst nanoparticles are limited 9 , 10 , especially during shutdown (when hydrogen is purged from the anode by air) and startup (when air is purged from the anode by hydrogen) conditions when the cathode potential can be pushed up to 1.5 V (ref.  11 ). Under the latter conditions, stability of the cathode materials is strongly affected (carbon oxidation reaction) by the undesired oxygen reduction reaction (ORR) on the anode side. This emphasizes the importance of designing selective anode catalysts that can efficiently suppress the ORR while fully preserving the Pt-like activity for the hydrogen oxidation reaction. Here, we demonstrate that chemically modified platinum with a self-assembled monolayer of calix[4]arene molecules meets this challenging requirement.
The design of new catalysts for polymer electrolyte membrane fuel cells must be guided by two equally important fundamental principles: optimization of their catalytic behaviour as well as the long-term stability of the metal catalysts and supports in hostile electrochemical environments. The methods used to improve catalytic activity are diverse, ranging from the alloying and de-alloying of platinum to the synthesis of platinum core–shell catalysts. However, methods to improve the stability of the carbon supports and catalyst nanoparticles are limited, especially during shutdown (when hydrogen is purged from the anode by air) and startup (when air is purged from the anode by hydrogen) conditions when the cathode potential can be pushed up to 1.5 V (ref. 11). Under the latter conditions, stability of the cathode materials is strongly affected (carbon oxidation reaction) by the undesired oxygen reduction reaction (ORR) on the anode side. This emphasizes the importance of designing selective anode catalysts that can efficiently suppress the ORR while fully preserving the Pt-like activity for the hydrogen oxidation reaction. Here, we demonstrate that chemically modified platinum with a self-assembled monolayer of calix[4]arene molecules meets this challenging requirement.
The design of new catalysts for polymer electrolyte membrane fuel cells must be guided by two equally important fundamental principles: optimization of their catalytic behaviour as well as the long-term stability of the metal catalysts and supports in hostile electrochemical environments. The methods used to improve catalytic activity are diverse, ranging from the alloying and de-alloying of platinum to the synthesis of platinum core-shell catalysts. However, methods to improve the stability of the carbon supports and catalyst nanoparticles are limited, especially during shutdown (when hydrogen is purged from the anode by air) and startup (when air is purged from the anode by hydrogen) conditions when the cathode potential can be pushed up to 1.5 V (ref. 11). Under the latter conditions, stability of the cathode materials is strongly affected (carbon oxidation reaction) by the undesired oxygen reduction reaction (ORR) on the anode side. This emphasizes the importance of designing selective anode catalysts that can efficiently suppress the ORR while fully preserving the Pt-like activity for the hydrogen oxidation reaction. Here, we demonstrate that chemically modified platinum with a self-assembled monolayer of calix[4]arene molecules meets this challenging requirement.
The design of new catalysts for polymer electrolyte membrane fuel cells must be guided by two equally important fundamental principles: optimization of their catalytic behaviour as well as the long-term stability of the metal catalysts and supports in hostile electrochemical environments. The methods used to improve catalytic activity are diverse, ranging from the alloying and de-alloying of platinum to the synthesis of platinum core-shell catalysts. However, methods to improve the stability of the carbon supports and catalyst nanoparticles are limited, especially during shutdown (when hydrogen is purged from the anode by air) and startup (when air is purged from the anode by hydrogen) conditions when the cathode potential can be pushed up to 1.5V (ref.11). Under the latter conditions, stability of the cathode materials is strongly affected (carbon oxidation reaction) by the undesired oxygen reduction reaction (ORR) on the anode side. This emphasizes the importance of designing selective anode catalysts that can efficiently suppress the ORR while fully preserving the Pt-like activity for the hydrogen oxidation reaction. Here, we demonstrate that chemically modified platinum with a self-assembled monolayer of calix[4]arene molecules meets this challenging requirement.
The design of new catalysts for polymer electrolyte membrane fuel cells must be guided by two equally important fundamental principles: optimization of their catalytic behaviour as well as the long-term stability of the metal catalysts and supports in hostile electrochemical environments1, 2. The methods used to improve catalytic activity are diverse3, 4, 5, 6, 7, 8, ranging from the alloying3, 4 and de-alloying5 of platinum to the synthesis of platinum core-shell catalysts6. However, methods to improve the stability of the carbon supports and catalyst nanoparticles are limited9, 10, especially during shutdown (when hydrogen is purged from the anode by air) and startup (when air is purged from the anode by hydrogen) conditions when the cathode potential can be pushed up to 1.5 V (ref. 11). Under the latter conditions, stability of the cathode materials is strongly affected (carbon oxidation reaction) by the undesired oxygen reduction reaction (ORR) on the anode side. This emphasizes the importance of designing selective anode catalysts that can efficiently suppress the ORR while fully preserving the Pt-like activity for the hydrogen oxidation reaction. Here, we demonstrate that chemically modified platinum with a self-assembled monolayer of calix[4]arene molecules meets this challenging requirement. [PUBLICATION ABSTRACT]
Author Strmcnik, Dusan
Karapetrov, Goran
Stamenkovic, Vojislav R
Genorio, Bostjan
Pejovnik, Stane
Marković, Nenad M
Subbaraman, Ram
Tripkovic, Dusan
Author_xml – sequence: 1
  givenname: Nenad M
  surname: Marković
  fullname: Marković, Nenad M
  organization: Materials Science Division, Argonne National Laboratory
– sequence: 2
  givenname: Bostjan
  surname: Genorio
  fullname: Genorio, Bostjan
  organization: Faculty of Chemistry and Chemical Technology, University of Ljubljana National Institute of Chemistry
– sequence: 3
  givenname: Dusan
  surname: Strmcnik
  fullname: Strmcnik, Dusan
  organization: Materials Science Division, Argonne National Laboratory
– sequence: 4
  givenname: Ram
  surname: Subbaraman
  fullname: Subbaraman, Ram
  organization: Nuclear Engineering Division, Argonne National Laboratory
– sequence: 5
  givenname: Dusan
  surname: Tripkovic
  fullname: Tripkovic, Dusan
  organization: Materials Science Division, Argonne National Laboratory
– sequence: 6
  givenname: Goran
  surname: Karapetrov
  fullname: Karapetrov, Goran
  organization: Materials Science Division, Argonne National Laboratory
– sequence: 7
  givenname: Vojislav R
  surname: Stamenkovic
  fullname: Stamenkovic, Vojislav R
  organization: Materials Science Division, Argonne National Laboratory
– sequence: 8
  givenname: Stane
  surname: Pejovnik
  fullname: Pejovnik, Stane
  organization: Faculty of Chemistry and Chemical Technology, University of Ljubljana
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21037564$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URNsFiV-ALC7AYcHfcY6ogoJUiQNwQiiaxJPdVIm92A40d3543Xa7SEjgi2fGz7zjmTklRz54JOQpZ685k_aNnyALa-UDcsJVZdbKGHa0tzkX4picpnTJmOBam0fkWJSsSht1Qn5_xhG7PPxE2kGGcUk50T5EmrdIt4uLYYOehqvBQR6Cp-Bd8ZabYEQ3d7fBiHBrJNoudAc5Y_SD39DQ091Y8vw80V9D3pYS43D1TX2HiB7pFErpecT0mDzsYUz4ZH-vyNf3776cfVhffDr_ePb2Yt0pYfIa-l5Z4BqqugNbukFmWtGLGm2Ltayd1dZhJQVXxkpE0arWgHZ1K7VyrJYr8uJOdxfDjxlTbqYhdTiO4DHMqbFccGlkOSvy8r8kN1UZqywjL-jzv9DLMEdf-ih6mnOmy2cOel0MKUXsm10cJohLw1lzs8LmfoUFfbbXm9sJ3QG831kBXt0BqTz5DcY_Bf8t5iHPEQ9iB-AaXvOzog
CitedBy_id crossref_primary_10_1016_j_ccr_2021_214173
crossref_primary_10_1021_acscatal_6b01440
crossref_primary_10_1002_adfm_202314281
crossref_primary_10_1002_advs_202307073
crossref_primary_10_1002_ange_201607741
crossref_primary_10_1016_j_electacta_2012_07_005
crossref_primary_10_1007_s12274_024_6505_9
crossref_primary_10_1016_j_jpowsour_2022_232240
crossref_primary_10_1021_acs_nanolett_0c00364
crossref_primary_10_1002_admi_201701322
crossref_primary_10_1002_asia_201100094
crossref_primary_10_1039_D2SC00541G
crossref_primary_10_1039_C8TA06856A
crossref_primary_10_1039_C7EE02641B
crossref_primary_10_1039_C4TA05443A
crossref_primary_10_1007_s10450_015_9747_8
crossref_primary_10_1016_j_mattod_2015_08_021
crossref_primary_10_1039_D1TA06289A
crossref_primary_10_1016_j_jechem_2017_06_007
crossref_primary_10_1038_natrevmats_2016_9
crossref_primary_10_1016_j_jpowsour_2021_229515
crossref_primary_10_1039_c3ta13218h
crossref_primary_10_1039_C5TA06644A
crossref_primary_10_1021_jacs_6b05317
crossref_primary_10_1149_2_017205esl
crossref_primary_10_1016_j_enchem_2021_100066
crossref_primary_10_1021_jz201660t
crossref_primary_10_1016_j_jechem_2020_03_054
crossref_primary_10_1021_acscatal_1c00903
crossref_primary_10_1016_j_electacta_2016_10_201
crossref_primary_10_1039_C1CP22503K
crossref_primary_10_1039_C7CY02101A
crossref_primary_10_1016_j_nanoen_2015_08_012
crossref_primary_10_1007_s12678_019_00517_6
crossref_primary_10_1039_c2cc17945h
crossref_primary_10_1021_cs3000864
crossref_primary_10_1002_anie_201100744
crossref_primary_10_1021_acsami_9b06309
crossref_primary_10_1016_j_ijhydene_2016_07_047
crossref_primary_10_1021_acs_analchem_8b00247
crossref_primary_10_1016_j_etran_2024_100327
crossref_primary_10_1002_cssc_201601274
crossref_primary_10_3390_en14030660
crossref_primary_10_1007_s10562_020_03304_x
crossref_primary_10_1021_jacs_5b09653
crossref_primary_10_1039_C4CC09019E
crossref_primary_10_1021_la402412k
crossref_primary_10_1021_acsenergylett_2c02656
crossref_primary_10_3389_fchem_2022_839867
crossref_primary_10_1007_s12678_014_0221_2
crossref_primary_10_1016_j_snb_2013_09_090
crossref_primary_10_1039_D1CS00270H
crossref_primary_10_1002_ange_201100744
crossref_primary_10_1016_j_checat_2022_06_002
crossref_primary_10_1021_acssuschemeng_0c03355
crossref_primary_10_1038_s41467_022_28346_0
crossref_primary_10_1039_c1jm12952j
crossref_primary_10_1039_C9CP06584A
crossref_primary_10_1016_j_electacta_2016_12_020
crossref_primary_10_1002_fuce_201500019
crossref_primary_10_1002_sus2_7
crossref_primary_10_1016_j_jpowsour_2022_231793
crossref_primary_10_1021_acsaem_1c01397
crossref_primary_10_1021_acscatal_1c03879
crossref_primary_10_1016_j_coelec_2023_101257
crossref_primary_10_1002_eem2_12346
crossref_primary_10_1021_acscatal_6b03049
crossref_primary_10_1002_celc_202000132
crossref_primary_10_1038_s41929_022_00776_5
crossref_primary_10_1016_j_coelec_2020_01_007
crossref_primary_10_1039_D0SC03328F
crossref_primary_10_1039_C5NR08150E
crossref_primary_10_3390_en16031285
crossref_primary_10_1016_j_pecs_2017_10_003
crossref_primary_10_1021_acs_jpcc_6b02993
crossref_primary_10_1016_j_elecom_2015_07_016
crossref_primary_10_1149_2_041605jes
crossref_primary_10_1016_j_ssi_2017_04_007
crossref_primary_10_1021_jp5113894
crossref_primary_10_1016_j_jelechem_2013_12_020
crossref_primary_10_1002_adfm_202003321
crossref_primary_10_3390_nano14110924
crossref_primary_10_3390_polym10091002
crossref_primary_10_1016_S1872_2067_22_64186_X
crossref_primary_10_20964_2022_06_04
crossref_primary_10_1021_acs_nanolett_3c00391
crossref_primary_10_1039_C9TA14002F
crossref_primary_10_1002_celc_202200342
crossref_primary_10_1002_anie_201607741
crossref_primary_10_1021_acsami_3c01224
crossref_primary_10_1038_am_2015_108
crossref_primary_10_1021_nn202896q
crossref_primary_10_1016_j_nantod_2016_08_008
crossref_primary_10_1021_acsami_9b13391
crossref_primary_10_1063_1_4922615
crossref_primary_10_1021_acs_jpcc_5b12230
crossref_primary_10_1038_srep01309
crossref_primary_10_1021_acsami_7b15159
crossref_primary_10_1021_acs_accounts_1c00727
crossref_primary_10_1021_acsami_0c18167
crossref_primary_10_1177_17475198221109123
crossref_primary_10_1002_cctc_201300647
crossref_primary_10_1039_D3CC00845B
crossref_primary_10_1039_C4CP00991F
crossref_primary_10_1002_adma_202211288
crossref_primary_10_1016_j_cattod_2016_11_053
crossref_primary_10_1021_cm504599s
crossref_primary_10_3390_en14051419
crossref_primary_10_1016_j_jcis_2023_05_147
crossref_primary_10_1039_D3TA01313H
crossref_primary_10_1007_s12274_023_5641_y
crossref_primary_10_1126_sciadv_adi5696
crossref_primary_10_1021_acs_jpcc_8b04262
crossref_primary_10_1038_s41929_020_0475_4
crossref_primary_10_1002_chem_202203180
crossref_primary_10_1021_jp300199x
crossref_primary_10_1016_j_jpowsour_2022_232572
crossref_primary_10_1016_j_nanoen_2016_06_055
crossref_primary_10_1039_c3cp44191a
crossref_primary_10_1039_C9CS00869A
crossref_primary_10_1021_cr400523y
crossref_primary_10_1021_acscatal_7b00074
crossref_primary_10_1016_j_catcom_2012_12_014
crossref_primary_10_1016_j_ijhydene_2021_05_041
crossref_primary_10_1021_acs_accounts_5b00172
crossref_primary_10_1016_j_elecom_2015_07_020
crossref_primary_10_1021_acsenergylett_7b00764
crossref_primary_10_1039_c3cs60026b
crossref_primary_10_1039_C4NJ02040E
crossref_primary_10_1021_acsami_6b03854
crossref_primary_10_1021_acsaem_9b00718
crossref_primary_10_1039_C7SC04109H
crossref_primary_10_1149_2_0681503jes
crossref_primary_10_1007_s12274_016_1226_3
crossref_primary_10_1016_j_jpowsour_2011_10_068
crossref_primary_10_1039_D4CC01476F
crossref_primary_10_1039_C6CP08925A
crossref_primary_10_1021_acscatal_6b00931
crossref_primary_10_1016_j_cattod_2012_04_046
crossref_primary_10_1039_C7DT04728B
crossref_primary_10_1016_j_jcis_2020_12_080
crossref_primary_10_1021_acs_chemmater_0c02048
crossref_primary_10_1039_c2jm35649j
crossref_primary_10_1002_adma_202307661
Cites_doi 10.1021/ja029372t
10.1038/nchem.367
10.1021/ja00203a020
10.1016/S0022-0728(99)00020-0
10.1007/s11244-007-9001-z
10.1021/la802197u
10.1021/ja078299+
10.1016/0022-0728(92)80326-Y
10.1021/jp970930d
10.1116/1.577100
10.1021/cr050182l
10.1021/cr0300789
10.1021/ja983625u
10.1016/j.jpowsour.2006.05.033
10.1149/1.1524612
10.1038/nchem.330
10.1002/anie.200703331
10.1038/nchem.771
10.1021/j100011a001
10.1016/S0022-0728(76)80250-1
10.1021/jp0756146
10.1021/ja8032185
10.1039/b508520a
10.1126/science.1172083
10.1016/j.elecom.2008.08.019
10.1126/science.1135941
10.1126/science.1134569
ContentType Journal Article
Copyright Springer Nature Limited 2010
Copyright Nature Publishing Group Dec 2010
Copyright_xml – notice: Springer Nature Limited 2010
– notice: Copyright Nature Publishing Group Dec 2010
DBID NPM
AAYXX
CITATION
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PQEST
PQQKQ
PQUKI
PTHSS
Q9U
7U5
L7M
7X8
DOI 10.1038/nmat2883
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
Engineered Materials Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Journals (ProQuest Database)
Engineering Database
Materials Science Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList

PubMed
Materials Research Database
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1476-4660
EndPage 1003
ExternalDocumentID 2201481901
10_1038_nmat2883
21037564
nmat2883
Genre Letter
Correspondence
GroupedDBID -
0R
29M
39C
3V.
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AADWK
AAEEF
AAPBV
AAYJO
AAZLF
ABAWZ
ABDBF
ABDEU
ABGIJ
ABJCF
ABPTK
ABUWG
ABZEH
ACGFS
ACGOD
ACIWK
ADBBV
ADQMX
AEDAW
AENEX
AFKRA
AFSHS
AGEZK
AGHTU
AHBCP
AHGBK
AHMBA
AHSBF
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BBAFP
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HVGLF
HZ
I-F
IPNFZ
KB.
KC.
L6V
M1P
M2P
M7S
NNMJJ
O9-
P2P
PDBOC
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PSQYO
PTHSS
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
---
0R~
AARCD
ABJNI
ABLJU
ABVXF
AFBBN
AFWHJ
AGAYW
AHOSX
AIBTJ
ALIPV
CCPQU
EMOBN
HMCUK
HZ~
MK~
ODYON
UKHRP
~8M
AAYZH
NPM
AAYXX
CITATION
7SR
7XB
8BQ
8FD
8FK
ACBWK
JG9
K9.
Q9U
7U5
L7M
7X8
ID FETCH-LOGICAL-c426t-aff48a15a79ca8002e06b2f29e8be939d858de73214683ee2b4b6a5d9b354d093
IEDL.DBID RNT
ISSN 1476-1122
IngestDate Thu Oct 24 23:00:32 EDT 2024
Sat Oct 26 00:09:41 EDT 2024
Tue Nov 19 03:47:22 EST 2024
Thu Sep 12 16:39:44 EDT 2024
Tue Oct 15 23:37:20 EDT 2024
Fri Oct 11 20:45:12 EDT 2024
Thu Oct 07 19:36:05 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-aff48a15a79ca8002e06b2f29e8be939d858de73214683ee2b4b6a5d9b354d093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
SourceType-Other Sources-1
content type line 63
ObjectType-Correspondence-1
PMID 21037564
PQID 815110568
PQPubID 27576
PageCount 6
ParticipantIDs proquest_miscellaneous_812136333
proquest_miscellaneous_1671223883
proquest_journals_815110568
crossref_primary_10_1038_nmat2883
pubmed_primary_21037564
springer_journals_10_1038_nmat2883
nature_primary_nmat2883
ProviderPackageCode ABDEU
AEDAW
AAZLF
AADWK
AAYJO
70F
ADQMX
EE.
RNTTT
ABGIJ
DB5
RNT
AHGBK
PublicationCentury 2000
PublicationDate 2010-12-01
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature materials
PublicationTitleAbbrev Nature Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2010
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Srivastava, R., Mani, P., Hahn, N., Strasser, P. (b5) 2007; 46
Strmcnik, D. S. (b26) 2007; 111
Markowitz, M. A., Janout, V., Castner, D. G., Regen, S. L. (b17) 1989; 111
(b1) 2003
Strmcnik, D. (b23) 2008; 10
Strmcnik, D. S. (b12) 2008; 130
(b13) 2007
Strmcnik, D. (b21) 2009; 1
Clavilier, J. (b20) 1992; 330
Vincent, K. A., Cracknell, J. A., Parkin, A., Armstrong, F. A. (b16) 2005; 21
Renner, Ch. (b30) 1990; 8
Nilekar, A. U. (b6) 2007; 46
Borup, R. (b11) 2007; 107
Greeley, J. (b4) 2009; 1
Zhang, J., Sasaki, K., Sutter, E., Adzic, R. R. (b8) 2007; 315
Marković, N. M., Gasteiger, H. A., Grgur, B. N., Ross, P. N. (b25) 1999; 467
Stamenkovic, V. R. (b3) 2007; 315
Strmcnik, D. S. (b14) 2010; 2
Cracknell, J. A. (b15) 2008; 130
Genorio, B. (b29) 2008; 24
Marković, N. M., Grgur, B. N., Ross, P. N. (b22) 1997; 101
Wroblowa, H. S., Pan, Y-C., Razumney, G. (b24) 1976; 69
Debe, M. K., Schmoeckel, A. K., Vernstrom, G. D., Atanasoski, R. (b7) 2006; 161
Gasteiger, H. A., Markovic, N. M. (b2) 2009; 324
Zhang, L., Hendel, R. A., Cozzi, P. G., Regen, S. L. (b18) 1999; 121
Sidorov, V., Kotch, F. W., Kuebler, J. L., Lam, Y-F., Davis, J. T. (b19) 2003; 125
Kinoshita, K. (b9) 1998
Wang, J., Swain, G. M. (b10) 2003; 150
Love, J. C. (b28) 2005; 105
Markovic, N. M., Gasteiger, H. A., Ross, P. N. (b27) 1995; 99
StrmcnikDSRelationship between the surface coverage of spectator species and the rate of electrocatalytic reactionsJ. Phys. Chem. C200711118672186781:CAS:528:DC%2BD2sXhtlGis7vK10.1021/jp0756146
LoveJCSelf-assembled monolayers of thiolates on metals as a form of nanotechnologyChem. Rev.2005105110311691:CAS:528:DC%2BD2MXis1ahsrc%3D10.1021/cr0300789
ZhangJSasakiKSutterEAdzicRRStabilization of platinum oxygen-reduction electrocatalysts using gold clustersScience20073152202221:CAS:528:DC%2BD2sXivFKquw%3D%3D10.1126/science.1134569
StrmcnikDSUnique activity of platinum adislands in the CO electrooxidation reactionJ. Am. Chem. Soc.200813015332153391:CAS:528:DC%2BD1cXht1Ors7vE10.1021/ja8032185
MarkowitzMAJanoutVCastnerDGRegenSLPerforated monolayers—design and synthesis of porous and cohesive monolayers from mercurated calix[n]arenesJ. Am. Chem. Soc.1989111819282001:CAS:528:DyaL1MXmtVantro%3D10.1021/ja00203a020
GenorioBSynthesis and self-assembly of thio derivatives of calix[4]arene on noble metal surfacesLangmuir20082411523115321:CAS:528:DC%2BD1cXhtFGjsL7J10.1021/la802197u
StrmcnikDSEnhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanideNature Chem.201028808851:CAS:528:DC%2BC3cXhtF2ms7fI10.1038/nchem.771
RennerChA versatile low-temperature scanning tunneling microscopeJ. Vac. Sci. Technol. A199083303321:CAS:528:DyaK3cXhsV2ntbo%3D10.1116/1.577100
StrmcnikDAdsorption of hydrogen on Pt(1 1 1) and Pt(1 0 0) surfaces and its role in the HORElectrochem. Commun.200810160216051:CAS:528:DC%2BD1cXhtFOgtb3L10.1016/j.elecom.2008.08.019
KinoshitaKCarbon Electrochemical and Physicochemical Properties1998
ClavilierJStudy of the charge displacement at constant potential during CO adsorption on Pt(110) and Pt(111) electrodes in contact with a perchloric acid solutionJ. Electroanal. Chem.19923304894971:CAS:528:DyaK3sXkslyrtg%3D%3D10.1016/0022-0728(92)80326-Y
SidorovVKotchFWKueblerJLLamY-FDavisJTChloride transport across lipid bilayers and transmembrane potential induction by an oligophenoxyacetamideJ. Am. Chem. Soc.2003125284028411:CAS:528:DC%2BD3sXhtFChtbc%3D10.1021/ja029372t
NilekarAUBimetallic and ternary alloys for improved oxygen reduction catalysisTop. Catal.2007462762841:CAS:528:DC%2BD2sXhsVWltL3I10.1007/s11244-007-9001-z
ZhangLHendelRACozziPGRegenSLA single Langmuir–Blodgett monolayer for gas separationsJ. Am. Chem. Soc.1999121162116221:CAS:528:DyaK1MXoslalsg%3D%3D10.1021/ja983625u
MarkovicNMGasteigerHARossPNH2 and CO electrooxidation on well-characterized Pt, Ru, and Pt–Ru. 1. Rotating disk electrode studies of the pure gases including temperature effectsJ. Phys. Chem.1995998290830110.1021/j100011a001
MarkovićNMGrgurBNRossPNTemperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutionsJ. Phys. Chem. B19971015405541310.1021/jp970930d
GasteigerHAMarkovicNMJust a dream—or future realityScience2009324474810.1126/science.1172083
DebeMKSchmoeckelAKVernstromGDAtanasoskiRHigh voltage stability of nanostructured thin film catalysts for PEM fuel cellsJ. Power Sources2006161100210111:CAS:528:DC%2BD28XhtVOgu7zL10.1016/j.jpowsour.2006.05.033
Bard, A. J. & Stratmann, M. (eds) Modified Electrodes (Encyclopedia of Electrochemistry, Vol. 10, Wiley, 2007).
VincentKACracknellJAParkinAArmstrongFAHydrogen cycling by enzymes: Electrocatalysis and implications for future energy technologyDalton Trans.2005213397340310.1039/b508520a
BorupRScientific aspects of polymer electrolyte fuel cell durability and degradationChem. Rev.2007107390439511:CAS:528:DC%2BD2sXhtVahs77O10.1021/cr050182l
SrivastavaRManiPHahnNStrasserPEfficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt–Cu–Co nanoparticlesAngew. Chem. Int. Ed.2007468988899110.1002/anie.200703331
StrmcnikDThe role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinumNature Chem.200914664721:CAS:528:DC%2BD1MXhtVegsr3F10.1038/nchem.330
MarkovićNMGasteigerHAGrgurBNRossPNOxygen reduction reaction on Pt(111): Effects of bromideJ. Electroanal. Chem.199946715716310.1016/S0022-0728(99)00020-0
CracknellJAEnzymatic oxidation of H2 in atmospheric O2: The electrochemistry of energy generation from trace H2 by aerobic microorganismsJ. Am. Chem. Soc.20081304244251:CAS:528:DC%2BD2sXhsVemtrrL10.1021/ja078299
StamenkovicVRImproved oxygen reduction activity on Pt3Ni(111) via increased surface site availabilityScience20073154934971:CAS:528:DC%2BD2sXotFCjtA%3D%3D10.1126/science.1135941
WangJSwainGMFabrication and evaluation of platinum/diamond composite electrodes for electrocatalysis—Preliminary studies of the oxygen-reduction reactionJ. Electrochem. Soc.2003150E24E321:CAS:528:DC%2BD38XpvVeitLY%3D10.1149/1.1524612
WroblowaHSPanY-CRazumneyGElectroreduction of oxygen: A new mechanistic criterionJ. Electroanal. Chem.1976691952011:CAS:528:DyaE28XhslWgsbc%3D10.1016/S0022-0728(76)80250-1
Vielstich, W., Lamm, A. & Gasteiger, H. (eds) Handbook of Fuel Cells (Fundamentals and Survey of Systems, Vol. 1, Wiley, 2003).
GreeleyJAlloys of platinum and early transition metals as oxygen reduction electrocatalystsNature Chem.200915525561:CAS:528:DC%2BD1MXhtFKnsrzK10.1038/nchem.367
20861905 - Nat Chem. 2010 Oct;2(10):880-5
17893897 - Angew Chem Int Ed Engl. 2007;46(47):8988-91
18088128 - J Am Chem Soc. 2008 Jan 16;130(2):424-5
16234917 - Dalton Trans. 2005 Nov 7;(21):3397-403
17218494 - Science. 2007 Jan 26;315(5811):493-7
12617627 - J Am Chem Soc. 2003 Mar 12;125(10):2840-1
17218522 - Science. 2007 Jan 12;315(5809):220-2
15826011 - Chem Rev. 2005 Apr;105(4):1103-69
18942789 - J Am Chem Soc. 2008 Nov 19;130(46):15332-9
18816014 - Langmuir. 2008 Oct 21;24(20):11523-32
21378914 - Nat Chem. 2009 Sep;1(6):466-72
17850115 - Chem Rev. 2007 Oct;107(10):3904-51
21378936 - Nat Chem. 2009 Oct;1(7):552-6
DS Strmcnik (BFnmat2883_CR26) 2007; 111
R Srivastava (BFnmat2883_CR5) 2007; 46
L Zhang (BFnmat2883_CR18) 1999; 121
DS Strmcnik (BFnmat2883_CR12) 2008; 130
NM Marković (BFnmat2883_CR25) 1999; 467
B Genorio (BFnmat2883_CR29) 2008; 24
HA Gasteiger (BFnmat2883_CR2) 2009; 324
DS Strmcnik (BFnmat2883_CR14) 2010; 2
K Kinoshita (BFnmat2883_CR9) 1998
VR Stamenkovic (BFnmat2883_CR3) 2007; 315
KA Vincent (BFnmat2883_CR16) 2005; 21
J Wang (BFnmat2883_CR10) 2003; 150
J Clavilier (BFnmat2883_CR20) 1992; 330
V Sidorov (BFnmat2883_CR19) 2003; 125
HS Wroblowa (BFnmat2883_CR24) 1976; 69
D Strmcnik (BFnmat2883_CR21) 2009; 1
J Greeley (BFnmat2883_CR4) 2009; 1
D Strmcnik (BFnmat2883_CR23) 2008; 10
Ch Renner (BFnmat2883_CR30) 1990; 8
MK Debe (BFnmat2883_CR7) 2006; 161
NM Markovic (BFnmat2883_CR27) 1995; 99
BFnmat2883_CR13
JC Love (BFnmat2883_CR28) 2005; 105
J Zhang (BFnmat2883_CR8) 2007; 315
NM Marković (BFnmat2883_CR22) 1997; 101
AU Nilekar (BFnmat2883_CR6) 2007; 46
JA Cracknell (BFnmat2883_CR15) 2008; 130
BFnmat2883_CR1
MA Markowitz (BFnmat2883_CR17) 1989; 111
R Borup (BFnmat2883_CR11) 2007; 107
References_xml – volume: 8
  start-page: 330
  year: 1990
  end-page: 332
  ident: b30
  publication-title: J. Vac. Sci. Technol. A
  contributor:
    fullname: Renner, Ch.
– year: 2007
  ident: b13
  article-title: Modified Electrodes
– volume: 324
  start-page: 47
  year: 2009
  end-page: 48
  ident: b2
  publication-title: Science
  contributor:
    fullname: Markovic, N. M.
– volume: 2
  start-page: 880
  year: 2010
  end-page: 885
  ident: b14
  publication-title: Nature Chem.
  contributor:
    fullname: Strmcnik, D. S.
– volume: 111
  start-page: 18672
  year: 2007
  end-page: 18678
  ident: b26
  publication-title: J. Phys. Chem. C
  contributor:
    fullname: Strmcnik, D. S.
– volume: 46
  start-page: 276
  year: 2007
  end-page: 284
  ident: b6
  publication-title: Top. Catal.
  contributor:
    fullname: Nilekar, A. U.
– volume: 315
  start-page: 220
  year: 2007
  end-page: 222
  ident: b8
  publication-title: Science
  contributor:
    fullname: Adzic, R. R.
– volume: 24
  start-page: 11523
  year: 2008
  end-page: 11532
  ident: b29
  publication-title: Langmuir
  contributor:
    fullname: Genorio, B.
– volume: 330
  start-page: 489
  year: 1992
  end-page: 497
  ident: b20
  publication-title: J. Electroanal. Chem.
  contributor:
    fullname: Clavilier, J.
– volume: 111
  start-page: 8192
  year: 1989
  end-page: 8200
  ident: b17
  publication-title: J. Am. Chem. Soc.
  contributor:
    fullname: Regen, S. L.
– year: 1998
  ident: b9
  article-title: Carbon Electrochemical and Physicochemical Properties
  contributor:
    fullname: Kinoshita, K.
– volume: 161
  start-page: 1002
  year: 2006
  end-page: 1011
  ident: b7
  publication-title: J. Power Sources
  contributor:
    fullname: Atanasoski, R.
– volume: 101
  start-page: 5405
  year: 1997
  end-page: 5413
  ident: b22
  publication-title: J. Phys. Chem. B
  contributor:
    fullname: Ross, P. N.
– volume: 99
  start-page: 8290
  year: 1995
  end-page: 8301
  ident: b27
  publication-title: J. Phys. Chem.
  contributor:
    fullname: Ross, P. N.
– volume: 105
  start-page: 1103
  year: 2005
  end-page: 1169
  ident: b28
  publication-title: Chem. Rev.
  contributor:
    fullname: Love, J. C.
– volume: 125
  start-page: 2840
  year: 2003
  end-page: 2841
  ident: b19
  publication-title: J. Am. Chem. Soc.
  contributor:
    fullname: Davis, J. T.
– volume: 315
  start-page: 493
  year: 2007
  end-page: 497
  ident: b3
  publication-title: Science
  contributor:
    fullname: Stamenkovic, V. R.
– year: 2003
  ident: b1
  article-title: Handbook of Fuel Cells
– volume: 10
  start-page: 1602
  year: 2008
  end-page: 1605
  ident: b23
  publication-title: Electrochem. Commun.
  contributor:
    fullname: Strmcnik, D.
– volume: 467
  start-page: 157
  year: 1999
  end-page: 163
  ident: b25
  publication-title: J. Electroanal. Chem.
  contributor:
    fullname: Ross, P. N.
– volume: 46
  start-page: 8988
  year: 2007
  end-page: 8991
  ident: b5
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: Strasser, P.
– volume: 107
  start-page: 3904
  year: 2007
  end-page: 3951
  ident: b11
  publication-title: Chem. Rev.
  contributor:
    fullname: Borup, R.
– volume: 1
  start-page: 552
  year: 2009
  end-page: 556
  ident: b4
  publication-title: Nature Chem.
  contributor:
    fullname: Greeley, J.
– volume: 21
  start-page: 3397
  year: 2005
  end-page: 3403
  ident: b16
  publication-title: Dalton Trans.
  contributor:
    fullname: Armstrong, F. A.
– volume: 150
  start-page: E24
  year: 2003
  end-page: E32
  ident: b10
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Swain, G. M.
– volume: 130
  start-page: 15332
  year: 2008
  end-page: 15339
  ident: b12
  publication-title: J. Am. Chem. Soc.
  contributor:
    fullname: Strmcnik, D. S.
– volume: 69
  start-page: 195
  year: 1976
  end-page: 201
  ident: b24
  publication-title: J. Electroanal. Chem.
  contributor:
    fullname: Razumney, G.
– volume: 1
  start-page: 466
  year: 2009
  end-page: 472
  ident: b21
  publication-title: Nature Chem.
  contributor:
    fullname: Strmcnik, D.
– volume: 121
  start-page: 1621
  year: 1999
  end-page: 1622
  ident: b18
  publication-title: J. Am. Chem. Soc.
  contributor:
    fullname: Regen, S. L.
– volume: 130
  start-page: 424
  year: 2008
  end-page: 425
  ident: b15
  publication-title: J. Am. Chem. Soc.
  contributor:
    fullname: Cracknell, J. A.
– volume: 125
  start-page: 2840
  year: 2003
  ident: BFnmat2883_CR19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja029372t
  contributor:
    fullname: V Sidorov
– volume: 1
  start-page: 552
  year: 2009
  ident: BFnmat2883_CR4
  publication-title: Nature Chem.
  doi: 10.1038/nchem.367
  contributor:
    fullname: J Greeley
– volume: 111
  start-page: 8192
  year: 1989
  ident: BFnmat2883_CR17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00203a020
  contributor:
    fullname: MA Markowitz
– volume: 467
  start-page: 157
  year: 1999
  ident: BFnmat2883_CR25
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(99)00020-0
  contributor:
    fullname: NM Marković
– volume: 46
  start-page: 276
  year: 2007
  ident: BFnmat2883_CR6
  publication-title: Top. Catal.
  doi: 10.1007/s11244-007-9001-z
  contributor:
    fullname: AU Nilekar
– volume: 24
  start-page: 11523
  year: 2008
  ident: BFnmat2883_CR29
  publication-title: Langmuir
  doi: 10.1021/la802197u
  contributor:
    fullname: B Genorio
– volume: 130
  start-page: 424
  year: 2008
  ident: BFnmat2883_CR15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja078299+
  contributor:
    fullname: JA Cracknell
– volume: 330
  start-page: 489
  year: 1992
  ident: BFnmat2883_CR20
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/0022-0728(92)80326-Y
  contributor:
    fullname: J Clavilier
– volume: 101
  start-page: 5405
  year: 1997
  ident: BFnmat2883_CR22
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp970930d
  contributor:
    fullname: NM Marković
– volume: 8
  start-page: 330
  year: 1990
  ident: BFnmat2883_CR30
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.577100
  contributor:
    fullname: Ch Renner
– volume: 107
  start-page: 3904
  year: 2007
  ident: BFnmat2883_CR11
  publication-title: Chem. Rev.
  doi: 10.1021/cr050182l
  contributor:
    fullname: R Borup
– volume: 105
  start-page: 1103
  year: 2005
  ident: BFnmat2883_CR28
  publication-title: Chem. Rev.
  doi: 10.1021/cr0300789
  contributor:
    fullname: JC Love
– ident: BFnmat2883_CR1
– volume: 121
  start-page: 1621
  year: 1999
  ident: BFnmat2883_CR18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja983625u
  contributor:
    fullname: L Zhang
– ident: BFnmat2883_CR13
– volume: 161
  start-page: 1002
  year: 2006
  ident: BFnmat2883_CR7
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.05.033
  contributor:
    fullname: MK Debe
– volume: 150
  start-page: E24
  year: 2003
  ident: BFnmat2883_CR10
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1524612
  contributor:
    fullname: J Wang
– volume: 1
  start-page: 466
  year: 2009
  ident: BFnmat2883_CR21
  publication-title: Nature Chem.
  doi: 10.1038/nchem.330
  contributor:
    fullname: D Strmcnik
– volume-title: Carbon Electrochemical and Physicochemical Properties
  year: 1998
  ident: BFnmat2883_CR9
  contributor:
    fullname: K Kinoshita
– volume: 46
  start-page: 8988
  year: 2007
  ident: BFnmat2883_CR5
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200703331
  contributor:
    fullname: R Srivastava
– volume: 2
  start-page: 880
  year: 2010
  ident: BFnmat2883_CR14
  publication-title: Nature Chem.
  doi: 10.1038/nchem.771
  contributor:
    fullname: DS Strmcnik
– volume: 99
  start-page: 8290
  year: 1995
  ident: BFnmat2883_CR27
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100011a001
  contributor:
    fullname: NM Markovic
– volume: 69
  start-page: 195
  year: 1976
  ident: BFnmat2883_CR24
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(76)80250-1
  contributor:
    fullname: HS Wroblowa
– volume: 111
  start-page: 18672
  year: 2007
  ident: BFnmat2883_CR26
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0756146
  contributor:
    fullname: DS Strmcnik
– volume: 130
  start-page: 15332
  year: 2008
  ident: BFnmat2883_CR12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8032185
  contributor:
    fullname: DS Strmcnik
– volume: 21
  start-page: 3397
  year: 2005
  ident: BFnmat2883_CR16
  publication-title: Dalton Trans.
  doi: 10.1039/b508520a
  contributor:
    fullname: KA Vincent
– volume: 324
  start-page: 47
  year: 2009
  ident: BFnmat2883_CR2
  publication-title: Science
  doi: 10.1126/science.1172083
  contributor:
    fullname: HA Gasteiger
– volume: 10
  start-page: 1602
  year: 2008
  ident: BFnmat2883_CR23
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2008.08.019
  contributor:
    fullname: D Strmcnik
– volume: 315
  start-page: 493
  year: 2007
  ident: BFnmat2883_CR3
  publication-title: Science
  doi: 10.1126/science.1135941
  contributor:
    fullname: VR Stamenkovic
– volume: 315
  start-page: 220
  year: 2007
  ident: BFnmat2883_CR8
  publication-title: Science
  doi: 10.1126/science.1134569
  contributor:
    fullname: J Zhang
SSID ssj0021556
Score 2.4655068
Snippet The design of new catalysts for polymer electrolyte membrane fuel cells must be guided by two equally important fundamental principles: optimization of their...
Cathode degradation and methods for improving the selectivity of anode catalysts remain crucial challenges for the design of polymer electrolyte membrane fuel...
SourceID proquest
crossref
pubmed
springer
nature
SourceType Aggregation Database
Index Database
Publisher
StartPage 998
SubjectTerms 639/301/299/893
639/301/357
639/301/923/966
Alloy plating
Alloying
Anodes
Biomaterials
Carbon
Catalysis
Catalysts
Catalytic oxidation
Chemical reactions
Chemistry and Materials Science
Condensed Matter Physics
Electrochemistry
Fuel cells
Fuel technology
Hydrogen
letter
Materials Science
Molecular chemistry
Nanotechnology
Optical and Electronic Materials
Oxidation
Oxygen
Platinum
Polymers
Stability
Title Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules
URI http://dx.doi.org/10.1038/nmat2883
https://link.springer.com/article/10.1038/nmat2883
https://www.ncbi.nlm.nih.gov/pubmed/21037564
https://www.proquest.com/docview/815110568
https://search.proquest.com/docview/1671223883
https://search.proquest.com/docview/812136333
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-Lnrw_VhfRPFa3G3SPI7iA09eVFBESrJJUXDbZbsL7t0f7ky6ra6yIL20SZqEzqT5ksl8Q8ipMB2WZT6JujHvRjyxOtJctSOjrWSGGRlbtOje3MnbR3V5hTQ5JzMs-Eyd5YDcMCQu_mYlCy5at_fNmgqmw8qBSIoIoENc88v-eHFqxpnmy5zCk39soWGKuV79T-fWyMoEQNLzSuLrZM7nG2T5B63gJvm8C8Ft4D9Gw-7MuByWFMApBbBHX8duUIDW0OLjrYqnRE3u4GmMiQNkcg2JACbDTUntmPYDCyduodAio308P5ePehQ3caGJ97ePZ_6CXmWe9qpwu77cIg_XV_cXN9Ek2kLUhVl6GJks48p0EiN11yCM9G1h4yzWXlmvmXYqUc5LDGwkFPM-ttwKkzhtWcJdW7NtspAXud8l1AolvcxgaecYR8JDyYRxAO0AW3q4WuS4lkjar0g10mAMZyqtv2iL7FSiakp85-zXsksnA65MFSAXgIpCQd1NLowUNH-Y3BejMu0ICQrCQg10RhmFDHeCMWy-0oqm-Rg9KhPBW-SkVpPv5n_3fm9m7_fJUtyciDkgC8PByB-S-dKNjsji-ePT0-VR0PAv7Sn4IQ
link.rule.ids 315,782,786,2733,27935,27936,48348,48349,48363,49653,49654,49668
linkProvider Nature Publishing
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5t3QPwABswKGWbQbxGtLHjH48I2nVqNwltSEgIRXbtaJPWpGpaqX3nD-fsNNkKQmLKS2I7Pis-5z777O8APnDdo1nmkmgSs0nEEqMixWQ30soIqqkWsfEe3eGluPguv_Qbmpyy3u1euyTDn7o6GC4_5ojgfGjcXdhjiNFlC_YGX08Ho2Z6hZaxOkskeIQoIq6pZu-9u2V8tqkzt6DlX27RYG0Gzx7Szn14usGU5FOlBAew4_Ln8OQe0-AL-HUZ4t3gr42EBZt1uSgJ4lWC-I9cr-28QEUixeqmCrFEdG7xae0T557cNSQivgw3JTFrMgvEnH5VhRQZmfktdflySvy6Loq4vVn9YD_9QTNHplUEXle-hG-D_tXnYbQJwBBN0HAvIp1lTOpeooWaaI8sXZebOIuVk8YpqqxMpHXCxzrikjoXG2a4TqwyNGG2q-ghtPIid6-BGC6FExnO9ixlngNRUK4toj2Emw6vNryreyadVTwbafCPU5nWX7QNr6oua0rc5XTqPkw3Y7BMJYIZRI9cYt1NLg4e7xHRuSuWZdrjAhWFhhrIP8pIT3rHKfXiK-1oxMf-kGXCWRve16pwJ_7P1r_5n0In8Gh4dT5Ox2cXow48jpu9M2-htZgv3RHslnZ5vFH93__oBMQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9sC6IP1q_q2apRfF16t8nm41HarpVKUaogiCzJJYsFu3vc3kHv3T_cmexHexVBZF92k2wSNpOdXzKZ3wC8kXbCyzJkyTQV00RkziRG6HFijVPccqtSRxbd4zN1-lUfHhFNjux9YeJp994k2fo0EEtTtdif-bJzEtf7FaI5CpO7AVtCc4nyvZV_epefDEst1JKtX5GSCSKKtKedvfbumiJap9Fcg5l_mEij5sm3_7fP9-FehzXZ21Y4HsCtUD2Eu9cYCB_Br7MYBwd_eSxu5KyaRcMQxzLEhezHys9rFDBWX563oZeYrTw-rShxTqSvMRFxZ7xpmFuxWSTspN0WVpdsRkftquUFo_1ebOLn-eU38Z0c0AK7aCPzhuYxfMmPPh8cJ11ghmSKCn2R2LIU2k4yq8zUEuIMY-nSMjVBu2C48TrTPiiKgSQ1DyF1wkmbeeN4JvzY8B3YrOoqPAXmpFZBlbgK9FwQN6Li0npEgQhDA14jeNWPUjFr-TeKaDfnuui_6AietMM3lLjK2e3Hs-jmZlNoBDmIKqXGuodcnFRkKbFVqJdNMZEKhYbHGthfymgiw5OcU_OtpAzNp-R8mUkxgte9WFw1f7P3z_6l0Eu4_fEwLz68Pz3ZhTvpcKRmDzYX82V4DhuNX77oZsFvAmkNnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+catalysts+for+the+hydrogen+oxidation+and+oxygen+reduction+reactions+by+patterning+of+platinum+with+calix%5B4%5Darene+molecules&rft.jtitle=Nature+materials&rft.au=Genorio%2C+Bostjan&rft.au=Strmcnik%2C+Dusan&rft.au=Subbaraman%2C+Ram&rft.au=Tripkovic%2C+Dusan&rft.date=2010-12-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=9&rft.issue=12&rft.spage=998&rft.epage=1003&rft_id=info:doi/10.1038%2Fnmat2883&rft.externalDocID=10_1038_nmat2883
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon