Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules
The design of new catalysts for polymer electrolyte membrane fuel cells must be guided by two equally important fundamental principles: optimization of their catalytic behaviour as well as the long-term stability of the metal catalysts and supports in hostile electrochemical environments. The method...
Saved in:
Published in: | Nature materials Vol. 9; no. 12; pp. 998 - 1003 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
01-12-2010
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The design of new catalysts for polymer electrolyte membrane fuel cells must be guided by two equally important fundamental principles: optimization of their catalytic behaviour as well as the long-term stability of the metal catalysts and supports in hostile electrochemical environments. The methods used to improve catalytic activity are diverse, ranging from the alloying and de-alloying of platinum to the synthesis of platinum core–shell catalysts. However, methods to improve the stability of the carbon supports and catalyst nanoparticles are limited, especially during shutdown (when hydrogen is purged from the anode by air) and startup (when air is purged from the anode by hydrogen) conditions when the cathode potential can be pushed up to 1.5 V (ref. 11). Under the latter conditions, stability of the cathode materials is strongly affected (carbon oxidation reaction) by the undesired oxygen reduction reaction (ORR) on the anode side. This emphasizes the importance of designing selective anode catalysts that can efficiently suppress the ORR while fully preserving the Pt-like activity for the hydrogen oxidation reaction. Here, we demonstrate that chemically modified platinum with a self-assembled monolayer of calix[4]arene molecules meets this challenging requirement. |
---|---|
AbstractList | Cathode degradation and methods for improving the selectivity of anode catalysts remain crucial challenges for the design of polymer electrolyte membrane fuel cells. A chemically modified Pt electrode with a self-assembled monolayer of calix[4]arene molecules is now shown to selectively block the undesired oxygen reduction reaction.
The design of new catalysts for polymer electrolyte membrane fuel cells must be guided by two equally important fundamental principles: optimization of their catalytic behaviour as well as the long-term stability of the metal catalysts and supports in hostile electrochemical environments
1
,
2
. The methods used to improve catalytic activity are diverse
3
,
4
,
5
,
6
,
7
,
8
, ranging from the alloying
3
,
4
and de-alloying
5
of platinum to the synthesis of platinum core–shell catalysts
6
. However, methods to improve the stability of the carbon supports and catalyst nanoparticles are limited
9
,
10
, especially during shutdown (when hydrogen is purged from the anode by air) and startup (when air is purged from the anode by hydrogen) conditions when the cathode potential can be pushed up to 1.5 V (ref.
11
). Under the latter conditions, stability of the cathode materials is strongly affected (carbon oxidation reaction) by the undesired oxygen reduction reaction (ORR) on the anode side. This emphasizes the importance of designing selective anode catalysts that can efficiently suppress the ORR while fully preserving the Pt-like activity for the hydrogen oxidation reaction. Here, we demonstrate that chemically modified platinum with a self-assembled monolayer of calix[4]arene molecules meets this challenging requirement. The design of new catalysts for polymer electrolyte membrane fuel cells must be guided by two equally important fundamental principles: optimization of their catalytic behaviour as well as the long-term stability of the metal catalysts and supports in hostile electrochemical environments. The methods used to improve catalytic activity are diverse, ranging from the alloying and de-alloying of platinum to the synthesis of platinum core–shell catalysts. However, methods to improve the stability of the carbon supports and catalyst nanoparticles are limited, especially during shutdown (when hydrogen is purged from the anode by air) and startup (when air is purged from the anode by hydrogen) conditions when the cathode potential can be pushed up to 1.5 V (ref. 11). Under the latter conditions, stability of the cathode materials is strongly affected (carbon oxidation reaction) by the undesired oxygen reduction reaction (ORR) on the anode side. This emphasizes the importance of designing selective anode catalysts that can efficiently suppress the ORR while fully preserving the Pt-like activity for the hydrogen oxidation reaction. Here, we demonstrate that chemically modified platinum with a self-assembled monolayer of calix[4]arene molecules meets this challenging requirement. The design of new catalysts for polymer electrolyte membrane fuel cells must be guided by two equally important fundamental principles: optimization of their catalytic behaviour as well as the long-term stability of the metal catalysts and supports in hostile electrochemical environments. The methods used to improve catalytic activity are diverse, ranging from the alloying and de-alloying of platinum to the synthesis of platinum core-shell catalysts. However, methods to improve the stability of the carbon supports and catalyst nanoparticles are limited, especially during shutdown (when hydrogen is purged from the anode by air) and startup (when air is purged from the anode by hydrogen) conditions when the cathode potential can be pushed up to 1.5 V (ref. 11). Under the latter conditions, stability of the cathode materials is strongly affected (carbon oxidation reaction) by the undesired oxygen reduction reaction (ORR) on the anode side. This emphasizes the importance of designing selective anode catalysts that can efficiently suppress the ORR while fully preserving the Pt-like activity for the hydrogen oxidation reaction. Here, we demonstrate that chemically modified platinum with a self-assembled monolayer of calix[4]arene molecules meets this challenging requirement. The design of new catalysts for polymer electrolyte membrane fuel cells must be guided by two equally important fundamental principles: optimization of their catalytic behaviour as well as the long-term stability of the metal catalysts and supports in hostile electrochemical environments. The methods used to improve catalytic activity are diverse, ranging from the alloying and de-alloying of platinum to the synthesis of platinum core-shell catalysts. However, methods to improve the stability of the carbon supports and catalyst nanoparticles are limited, especially during shutdown (when hydrogen is purged from the anode by air) and startup (when air is purged from the anode by hydrogen) conditions when the cathode potential can be pushed up to 1.5V (ref.11). Under the latter conditions, stability of the cathode materials is strongly affected (carbon oxidation reaction) by the undesired oxygen reduction reaction (ORR) on the anode side. This emphasizes the importance of designing selective anode catalysts that can efficiently suppress the ORR while fully preserving the Pt-like activity for the hydrogen oxidation reaction. Here, we demonstrate that chemically modified platinum with a self-assembled monolayer of calix[4]arene molecules meets this challenging requirement. The design of new catalysts for polymer electrolyte membrane fuel cells must be guided by two equally important fundamental principles: optimization of their catalytic behaviour as well as the long-term stability of the metal catalysts and supports in hostile electrochemical environments1, 2. The methods used to improve catalytic activity are diverse3, 4, 5, 6, 7, 8, ranging from the alloying3, 4 and de-alloying5 of platinum to the synthesis of platinum core-shell catalysts6. However, methods to improve the stability of the carbon supports and catalyst nanoparticles are limited9, 10, especially during shutdown (when hydrogen is purged from the anode by air) and startup (when air is purged from the anode by hydrogen) conditions when the cathode potential can be pushed up to 1.5 V (ref. 11). Under the latter conditions, stability of the cathode materials is strongly affected (carbon oxidation reaction) by the undesired oxygen reduction reaction (ORR) on the anode side. This emphasizes the importance of designing selective anode catalysts that can efficiently suppress the ORR while fully preserving the Pt-like activity for the hydrogen oxidation reaction. Here, we demonstrate that chemically modified platinum with a self-assembled monolayer of calix[4]arene molecules meets this challenging requirement. [PUBLICATION ABSTRACT] |
Author | Strmcnik, Dusan Karapetrov, Goran Stamenkovic, Vojislav R Genorio, Bostjan Pejovnik, Stane Marković, Nenad M Subbaraman, Ram Tripkovic, Dusan |
Author_xml | – sequence: 1 givenname: Nenad M surname: Marković fullname: Marković, Nenad M organization: Materials Science Division, Argonne National Laboratory – sequence: 2 givenname: Bostjan surname: Genorio fullname: Genorio, Bostjan organization: Faculty of Chemistry and Chemical Technology, University of Ljubljana National Institute of Chemistry – sequence: 3 givenname: Dusan surname: Strmcnik fullname: Strmcnik, Dusan organization: Materials Science Division, Argonne National Laboratory – sequence: 4 givenname: Ram surname: Subbaraman fullname: Subbaraman, Ram organization: Nuclear Engineering Division, Argonne National Laboratory – sequence: 5 givenname: Dusan surname: Tripkovic fullname: Tripkovic, Dusan organization: Materials Science Division, Argonne National Laboratory – sequence: 6 givenname: Goran surname: Karapetrov fullname: Karapetrov, Goran organization: Materials Science Division, Argonne National Laboratory – sequence: 7 givenname: Vojislav R surname: Stamenkovic fullname: Stamenkovic, Vojislav R organization: Materials Science Division, Argonne National Laboratory – sequence: 8 givenname: Stane surname: Pejovnik fullname: Pejovnik, Stane organization: Faculty of Chemistry and Chemical Technology, University of Ljubljana |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21037564$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhi1URNsFiV-ALC7AYcHfcY6ogoJUiQNwQiiaxJPdVIm92A40d3543Xa7SEjgi2fGz7zjmTklRz54JOQpZ685k_aNnyALa-UDcsJVZdbKGHa0tzkX4picpnTJmOBam0fkWJSsSht1Qn5_xhG7PPxE2kGGcUk50T5EmrdIt4uLYYOehqvBQR6Cp-Bd8ZabYEQ3d7fBiHBrJNoudAc5Y_SD39DQ091Y8vw80V9D3pYS43D1TX2HiB7pFErpecT0mDzsYUz4ZH-vyNf3776cfVhffDr_ePb2Yt0pYfIa-l5Z4BqqugNbukFmWtGLGm2Ltayd1dZhJQVXxkpE0arWgHZ1K7VyrJYr8uJOdxfDjxlTbqYhdTiO4DHMqbFccGlkOSvy8r8kN1UZqywjL-jzv9DLMEdf-ih6mnOmy2cOel0MKUXsm10cJohLw1lzs8LmfoUFfbbXm9sJ3QG831kBXt0BqTz5DcY_Bf8t5iHPEQ9iB-AaXvOzog |
CitedBy_id | crossref_primary_10_1016_j_ccr_2021_214173 crossref_primary_10_1021_acscatal_6b01440 crossref_primary_10_1002_adfm_202314281 crossref_primary_10_1002_advs_202307073 crossref_primary_10_1002_ange_201607741 crossref_primary_10_1016_j_electacta_2012_07_005 crossref_primary_10_1007_s12274_024_6505_9 crossref_primary_10_1016_j_jpowsour_2022_232240 crossref_primary_10_1021_acs_nanolett_0c00364 crossref_primary_10_1002_admi_201701322 crossref_primary_10_1002_asia_201100094 crossref_primary_10_1039_D2SC00541G crossref_primary_10_1039_C8TA06856A crossref_primary_10_1039_C7EE02641B crossref_primary_10_1039_C4TA05443A crossref_primary_10_1007_s10450_015_9747_8 crossref_primary_10_1016_j_mattod_2015_08_021 crossref_primary_10_1039_D1TA06289A crossref_primary_10_1016_j_jechem_2017_06_007 crossref_primary_10_1038_natrevmats_2016_9 crossref_primary_10_1016_j_jpowsour_2021_229515 crossref_primary_10_1039_c3ta13218h crossref_primary_10_1039_C5TA06644A crossref_primary_10_1021_jacs_6b05317 crossref_primary_10_1149_2_017205esl crossref_primary_10_1016_j_enchem_2021_100066 crossref_primary_10_1021_jz201660t crossref_primary_10_1016_j_jechem_2020_03_054 crossref_primary_10_1021_acscatal_1c00903 crossref_primary_10_1016_j_electacta_2016_10_201 crossref_primary_10_1039_C1CP22503K crossref_primary_10_1039_C7CY02101A crossref_primary_10_1016_j_nanoen_2015_08_012 crossref_primary_10_1007_s12678_019_00517_6 crossref_primary_10_1039_c2cc17945h crossref_primary_10_1021_cs3000864 crossref_primary_10_1002_anie_201100744 crossref_primary_10_1021_acsami_9b06309 crossref_primary_10_1016_j_ijhydene_2016_07_047 crossref_primary_10_1021_acs_analchem_8b00247 crossref_primary_10_1016_j_etran_2024_100327 crossref_primary_10_1002_cssc_201601274 crossref_primary_10_3390_en14030660 crossref_primary_10_1007_s10562_020_03304_x crossref_primary_10_1021_jacs_5b09653 crossref_primary_10_1039_C4CC09019E crossref_primary_10_1021_la402412k crossref_primary_10_1021_acsenergylett_2c02656 crossref_primary_10_3389_fchem_2022_839867 crossref_primary_10_1007_s12678_014_0221_2 crossref_primary_10_1016_j_snb_2013_09_090 crossref_primary_10_1039_D1CS00270H crossref_primary_10_1002_ange_201100744 crossref_primary_10_1016_j_checat_2022_06_002 crossref_primary_10_1021_acssuschemeng_0c03355 crossref_primary_10_1038_s41467_022_28346_0 crossref_primary_10_1039_c1jm12952j crossref_primary_10_1039_C9CP06584A crossref_primary_10_1016_j_electacta_2016_12_020 crossref_primary_10_1002_fuce_201500019 crossref_primary_10_1002_sus2_7 crossref_primary_10_1016_j_jpowsour_2022_231793 crossref_primary_10_1021_acsaem_1c01397 crossref_primary_10_1021_acscatal_1c03879 crossref_primary_10_1016_j_coelec_2023_101257 crossref_primary_10_1002_eem2_12346 crossref_primary_10_1021_acscatal_6b03049 crossref_primary_10_1002_celc_202000132 crossref_primary_10_1038_s41929_022_00776_5 crossref_primary_10_1016_j_coelec_2020_01_007 crossref_primary_10_1039_D0SC03328F crossref_primary_10_1039_C5NR08150E crossref_primary_10_3390_en16031285 crossref_primary_10_1016_j_pecs_2017_10_003 crossref_primary_10_1021_acs_jpcc_6b02993 crossref_primary_10_1016_j_elecom_2015_07_016 crossref_primary_10_1149_2_041605jes crossref_primary_10_1016_j_ssi_2017_04_007 crossref_primary_10_1021_jp5113894 crossref_primary_10_1016_j_jelechem_2013_12_020 crossref_primary_10_1002_adfm_202003321 crossref_primary_10_3390_nano14110924 crossref_primary_10_3390_polym10091002 crossref_primary_10_1016_S1872_2067_22_64186_X crossref_primary_10_20964_2022_06_04 crossref_primary_10_1021_acs_nanolett_3c00391 crossref_primary_10_1039_C9TA14002F crossref_primary_10_1002_celc_202200342 crossref_primary_10_1002_anie_201607741 crossref_primary_10_1021_acsami_3c01224 crossref_primary_10_1038_am_2015_108 crossref_primary_10_1021_nn202896q crossref_primary_10_1016_j_nantod_2016_08_008 crossref_primary_10_1021_acsami_9b13391 crossref_primary_10_1063_1_4922615 crossref_primary_10_1021_acs_jpcc_5b12230 crossref_primary_10_1038_srep01309 crossref_primary_10_1021_acsami_7b15159 crossref_primary_10_1021_acs_accounts_1c00727 crossref_primary_10_1021_acsami_0c18167 crossref_primary_10_1177_17475198221109123 crossref_primary_10_1002_cctc_201300647 crossref_primary_10_1039_D3CC00845B crossref_primary_10_1039_C4CP00991F crossref_primary_10_1002_adma_202211288 crossref_primary_10_1016_j_cattod_2016_11_053 crossref_primary_10_1021_cm504599s crossref_primary_10_3390_en14051419 crossref_primary_10_1016_j_jcis_2023_05_147 crossref_primary_10_1039_D3TA01313H crossref_primary_10_1007_s12274_023_5641_y crossref_primary_10_1126_sciadv_adi5696 crossref_primary_10_1021_acs_jpcc_8b04262 crossref_primary_10_1038_s41929_020_0475_4 crossref_primary_10_1002_chem_202203180 crossref_primary_10_1021_jp300199x crossref_primary_10_1016_j_jpowsour_2022_232572 crossref_primary_10_1016_j_nanoen_2016_06_055 crossref_primary_10_1039_c3cp44191a crossref_primary_10_1039_C9CS00869A crossref_primary_10_1021_cr400523y crossref_primary_10_1021_acscatal_7b00074 crossref_primary_10_1016_j_catcom_2012_12_014 crossref_primary_10_1016_j_ijhydene_2021_05_041 crossref_primary_10_1021_acs_accounts_5b00172 crossref_primary_10_1016_j_elecom_2015_07_020 crossref_primary_10_1021_acsenergylett_7b00764 crossref_primary_10_1039_c3cs60026b crossref_primary_10_1039_C4NJ02040E crossref_primary_10_1021_acsami_6b03854 crossref_primary_10_1021_acsaem_9b00718 crossref_primary_10_1039_C7SC04109H crossref_primary_10_1149_2_0681503jes crossref_primary_10_1007_s12274_016_1226_3 crossref_primary_10_1016_j_jpowsour_2011_10_068 crossref_primary_10_1039_D4CC01476F crossref_primary_10_1039_C6CP08925A crossref_primary_10_1021_acscatal_6b00931 crossref_primary_10_1016_j_cattod_2012_04_046 crossref_primary_10_1039_C7DT04728B crossref_primary_10_1016_j_jcis_2020_12_080 crossref_primary_10_1021_acs_chemmater_0c02048 crossref_primary_10_1039_c2jm35649j crossref_primary_10_1002_adma_202307661 |
Cites_doi | 10.1021/ja029372t 10.1038/nchem.367 10.1021/ja00203a020 10.1016/S0022-0728(99)00020-0 10.1007/s11244-007-9001-z 10.1021/la802197u 10.1021/ja078299+ 10.1016/0022-0728(92)80326-Y 10.1021/jp970930d 10.1116/1.577100 10.1021/cr050182l 10.1021/cr0300789 10.1021/ja983625u 10.1016/j.jpowsour.2006.05.033 10.1149/1.1524612 10.1038/nchem.330 10.1002/anie.200703331 10.1038/nchem.771 10.1021/j100011a001 10.1016/S0022-0728(76)80250-1 10.1021/jp0756146 10.1021/ja8032185 10.1039/b508520a 10.1126/science.1172083 10.1016/j.elecom.2008.08.019 10.1126/science.1135941 10.1126/science.1134569 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2010 Copyright Nature Publishing Group Dec 2010 |
Copyright_xml | – notice: Springer Nature Limited 2010 – notice: Copyright Nature Publishing Group Dec 2010 |
DBID | NPM AAYXX CITATION 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PQEST PQQKQ PQUKI PTHSS Q9U 7U5 L7M 7X8 |
DOI | 10.1038/nmat2883 |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Health & Medical Collection (Alumni Edition) Medical Database Science Journals (ProQuest Database) Engineering Database Materials Science Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1476-4660 |
EndPage | 1003 |
ExternalDocumentID | 2201481901 10_1038_nmat2883 21037564 nmat2883 |
Genre | Letter Correspondence |
GroupedDBID | - 0R 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AADWK AAEEF AAPBV AAYJO AAZLF ABAWZ ABDBF ABDEU ABGIJ ABJCF ABPTK ABUWG ABZEH ACGFS ACGOD ACIWK ADBBV ADQMX AEDAW AENEX AFKRA AFSHS AGEZK AGHTU AHBCP AHGBK AHMBA AHSBF ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BBAFP BENPR BGLVJ BKKNO BPHCQ BVXVI CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HVGLF HZ I-F IPNFZ KB. KC. L6V M1P M2P M7S NNMJJ O9- P2P PDBOC PQEST PQQKQ PQUKI PRINS PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SV3 TAOOD TBHMF TDRGL TSG TUS --- 0R~ AARCD ABJNI ABLJU ABVXF AFBBN AFWHJ AGAYW AHOSX AIBTJ ALIPV CCPQU EMOBN HMCUK HZ~ MK~ ODYON UKHRP ~8M AAYZH NPM AAYXX CITATION 7SR 7XB 8BQ 8FD 8FK ACBWK JG9 K9. Q9U 7U5 L7M 7X8 |
ID | FETCH-LOGICAL-c426t-aff48a15a79ca8002e06b2f29e8be939d858de73214683ee2b4b6a5d9b354d093 |
IEDL.DBID | RNT |
ISSN | 1476-1122 |
IngestDate | Thu Oct 24 23:00:32 EDT 2024 Sat Oct 26 00:09:41 EDT 2024 Tue Nov 19 03:47:22 EST 2024 Thu Sep 12 16:39:44 EDT 2024 Tue Oct 15 23:37:20 EDT 2024 Fri Oct 11 20:45:12 EDT 2024 Thu Oct 07 19:36:05 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c426t-aff48a15a79ca8002e06b2f29e8be939d858de73214683ee2b4b6a5d9b354d093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 SourceType-Other Sources-1 content type line 63 ObjectType-Correspondence-1 |
PMID | 21037564 |
PQID | 815110568 |
PQPubID | 27576 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_812136333 proquest_miscellaneous_1671223883 proquest_journals_815110568 crossref_primary_10_1038_nmat2883 pubmed_primary_21037564 springer_journals_10_1038_nmat2883 nature_primary_nmat2883 |
ProviderPackageCode | ABDEU AEDAW AAZLF AADWK AAYJO 70F ADQMX EE. RNTTT ABGIJ DB5 RNT AHGBK |
PublicationCentury | 2000 |
PublicationDate | 2010-12-01 |
PublicationDateYYYYMMDD | 2010-12-01 |
PublicationDate_xml | – month: 12 year: 2010 text: 2010-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature materials |
PublicationTitleAbbrev | Nature Mater |
PublicationTitleAlternate | Nat Mater |
PublicationYear | 2010 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Srivastava, R., Mani, P., Hahn, N., Strasser, P. (b5) 2007; 46 Strmcnik, D. S. (b26) 2007; 111 Markowitz, M. A., Janout, V., Castner, D. G., Regen, S. L. (b17) 1989; 111 (b1) 2003 Strmcnik, D. (b23) 2008; 10 Strmcnik, D. S. (b12) 2008; 130 (b13) 2007 Strmcnik, D. (b21) 2009; 1 Clavilier, J. (b20) 1992; 330 Vincent, K. A., Cracknell, J. A., Parkin, A., Armstrong, F. A. (b16) 2005; 21 Renner, Ch. (b30) 1990; 8 Nilekar, A. U. (b6) 2007; 46 Borup, R. (b11) 2007; 107 Greeley, J. (b4) 2009; 1 Zhang, J., Sasaki, K., Sutter, E., Adzic, R. R. (b8) 2007; 315 Marković, N. M., Gasteiger, H. A., Grgur, B. N., Ross, P. N. (b25) 1999; 467 Stamenkovic, V. R. (b3) 2007; 315 Strmcnik, D. S. (b14) 2010; 2 Cracknell, J. A. (b15) 2008; 130 Genorio, B. (b29) 2008; 24 Marković, N. M., Grgur, B. N., Ross, P. N. (b22) 1997; 101 Wroblowa, H. S., Pan, Y-C., Razumney, G. (b24) 1976; 69 Debe, M. K., Schmoeckel, A. K., Vernstrom, G. D., Atanasoski, R. (b7) 2006; 161 Gasteiger, H. A., Markovic, N. M. (b2) 2009; 324 Zhang, L., Hendel, R. A., Cozzi, P. G., Regen, S. L. (b18) 1999; 121 Sidorov, V., Kotch, F. W., Kuebler, J. L., Lam, Y-F., Davis, J. T. (b19) 2003; 125 Kinoshita, K. (b9) 1998 Wang, J., Swain, G. M. (b10) 2003; 150 Love, J. C. (b28) 2005; 105 Markovic, N. M., Gasteiger, H. A., Ross, P. N. (b27) 1995; 99 StrmcnikDSRelationship between the surface coverage of spectator species and the rate of electrocatalytic reactionsJ. Phys. Chem. C200711118672186781:CAS:528:DC%2BD2sXhtlGis7vK10.1021/jp0756146 LoveJCSelf-assembled monolayers of thiolates on metals as a form of nanotechnologyChem. Rev.2005105110311691:CAS:528:DC%2BD2MXis1ahsrc%3D10.1021/cr0300789 ZhangJSasakiKSutterEAdzicRRStabilization of platinum oxygen-reduction electrocatalysts using gold clustersScience20073152202221:CAS:528:DC%2BD2sXivFKquw%3D%3D10.1126/science.1134569 StrmcnikDSUnique activity of platinum adislands in the CO electrooxidation reactionJ. Am. Chem. Soc.200813015332153391:CAS:528:DC%2BD1cXht1Ors7vE10.1021/ja8032185 MarkowitzMAJanoutVCastnerDGRegenSLPerforated monolayers—design and synthesis of porous and cohesive monolayers from mercurated calix[n]arenesJ. Am. Chem. Soc.1989111819282001:CAS:528:DyaL1MXmtVantro%3D10.1021/ja00203a020 GenorioBSynthesis and self-assembly of thio derivatives of calix[4]arene on noble metal surfacesLangmuir20082411523115321:CAS:528:DC%2BD1cXhtFGjsL7J10.1021/la802197u StrmcnikDSEnhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanideNature Chem.201028808851:CAS:528:DC%2BC3cXhtF2ms7fI10.1038/nchem.771 RennerChA versatile low-temperature scanning tunneling microscopeJ. Vac. Sci. Technol. A199083303321:CAS:528:DyaK3cXhsV2ntbo%3D10.1116/1.577100 StrmcnikDAdsorption of hydrogen on Pt(1 1 1) and Pt(1 0 0) surfaces and its role in the HORElectrochem. Commun.200810160216051:CAS:528:DC%2BD1cXhtFOgtb3L10.1016/j.elecom.2008.08.019 KinoshitaKCarbon Electrochemical and Physicochemical Properties1998 ClavilierJStudy of the charge displacement at constant potential during CO adsorption on Pt(110) and Pt(111) electrodes in contact with a perchloric acid solutionJ. Electroanal. Chem.19923304894971:CAS:528:DyaK3sXkslyrtg%3D%3D10.1016/0022-0728(92)80326-Y SidorovVKotchFWKueblerJLLamY-FDavisJTChloride transport across lipid bilayers and transmembrane potential induction by an oligophenoxyacetamideJ. Am. Chem. Soc.2003125284028411:CAS:528:DC%2BD3sXhtFChtbc%3D10.1021/ja029372t NilekarAUBimetallic and ternary alloys for improved oxygen reduction catalysisTop. Catal.2007462762841:CAS:528:DC%2BD2sXhsVWltL3I10.1007/s11244-007-9001-z ZhangLHendelRACozziPGRegenSLA single Langmuir–Blodgett monolayer for gas separationsJ. Am. Chem. Soc.1999121162116221:CAS:528:DyaK1MXoslalsg%3D%3D10.1021/ja983625u MarkovicNMGasteigerHARossPNH2 and CO electrooxidation on well-characterized Pt, Ru, and Pt–Ru. 1. Rotating disk electrode studies of the pure gases including temperature effectsJ. Phys. Chem.1995998290830110.1021/j100011a001 MarkovićNMGrgurBNRossPNTemperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutionsJ. Phys. Chem. B19971015405541310.1021/jp970930d GasteigerHAMarkovicNMJust a dream—or future realityScience2009324474810.1126/science.1172083 DebeMKSchmoeckelAKVernstromGDAtanasoskiRHigh voltage stability of nanostructured thin film catalysts for PEM fuel cellsJ. Power Sources2006161100210111:CAS:528:DC%2BD28XhtVOgu7zL10.1016/j.jpowsour.2006.05.033 Bard, A. J. & Stratmann, M. (eds) Modified Electrodes (Encyclopedia of Electrochemistry, Vol. 10, Wiley, 2007). VincentKACracknellJAParkinAArmstrongFAHydrogen cycling by enzymes: Electrocatalysis and implications for future energy technologyDalton Trans.2005213397340310.1039/b508520a BorupRScientific aspects of polymer electrolyte fuel cell durability and degradationChem. Rev.2007107390439511:CAS:528:DC%2BD2sXhtVahs77O10.1021/cr050182l SrivastavaRManiPHahnNStrasserPEfficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt–Cu–Co nanoparticlesAngew. Chem. Int. Ed.2007468988899110.1002/anie.200703331 StrmcnikDThe role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinumNature Chem.200914664721:CAS:528:DC%2BD1MXhtVegsr3F10.1038/nchem.330 MarkovićNMGasteigerHAGrgurBNRossPNOxygen reduction reaction on Pt(111): Effects of bromideJ. Electroanal. Chem.199946715716310.1016/S0022-0728(99)00020-0 CracknellJAEnzymatic oxidation of H2 in atmospheric O2: The electrochemistry of energy generation from trace H2 by aerobic microorganismsJ. Am. Chem. Soc.20081304244251:CAS:528:DC%2BD2sXhsVemtrrL10.1021/ja078299 StamenkovicVRImproved oxygen reduction activity on Pt3Ni(111) via increased surface site availabilityScience20073154934971:CAS:528:DC%2BD2sXotFCjtA%3D%3D10.1126/science.1135941 WangJSwainGMFabrication and evaluation of platinum/diamond composite electrodes for electrocatalysis—Preliminary studies of the oxygen-reduction reactionJ. Electrochem. Soc.2003150E24E321:CAS:528:DC%2BD38XpvVeitLY%3D10.1149/1.1524612 WroblowaHSPanY-CRazumneyGElectroreduction of oxygen: A new mechanistic criterionJ. Electroanal. Chem.1976691952011:CAS:528:DyaE28XhslWgsbc%3D10.1016/S0022-0728(76)80250-1 Vielstich, W., Lamm, A. & Gasteiger, H. (eds) Handbook of Fuel Cells (Fundamentals and Survey of Systems, Vol. 1, Wiley, 2003). GreeleyJAlloys of platinum and early transition metals as oxygen reduction electrocatalystsNature Chem.200915525561:CAS:528:DC%2BD1MXhtFKnsrzK10.1038/nchem.367 20861905 - Nat Chem. 2010 Oct;2(10):880-5 17893897 - Angew Chem Int Ed Engl. 2007;46(47):8988-91 18088128 - J Am Chem Soc. 2008 Jan 16;130(2):424-5 16234917 - Dalton Trans. 2005 Nov 7;(21):3397-403 17218494 - Science. 2007 Jan 26;315(5811):493-7 12617627 - J Am Chem Soc. 2003 Mar 12;125(10):2840-1 17218522 - Science. 2007 Jan 12;315(5809):220-2 15826011 - Chem Rev. 2005 Apr;105(4):1103-69 18942789 - J Am Chem Soc. 2008 Nov 19;130(46):15332-9 18816014 - Langmuir. 2008 Oct 21;24(20):11523-32 21378914 - Nat Chem. 2009 Sep;1(6):466-72 17850115 - Chem Rev. 2007 Oct;107(10):3904-51 21378936 - Nat Chem. 2009 Oct;1(7):552-6 DS Strmcnik (BFnmat2883_CR26) 2007; 111 R Srivastava (BFnmat2883_CR5) 2007; 46 L Zhang (BFnmat2883_CR18) 1999; 121 DS Strmcnik (BFnmat2883_CR12) 2008; 130 NM Marković (BFnmat2883_CR25) 1999; 467 B Genorio (BFnmat2883_CR29) 2008; 24 HA Gasteiger (BFnmat2883_CR2) 2009; 324 DS Strmcnik (BFnmat2883_CR14) 2010; 2 K Kinoshita (BFnmat2883_CR9) 1998 VR Stamenkovic (BFnmat2883_CR3) 2007; 315 KA Vincent (BFnmat2883_CR16) 2005; 21 J Wang (BFnmat2883_CR10) 2003; 150 J Clavilier (BFnmat2883_CR20) 1992; 330 V Sidorov (BFnmat2883_CR19) 2003; 125 HS Wroblowa (BFnmat2883_CR24) 1976; 69 D Strmcnik (BFnmat2883_CR21) 2009; 1 J Greeley (BFnmat2883_CR4) 2009; 1 D Strmcnik (BFnmat2883_CR23) 2008; 10 Ch Renner (BFnmat2883_CR30) 1990; 8 MK Debe (BFnmat2883_CR7) 2006; 161 NM Markovic (BFnmat2883_CR27) 1995; 99 BFnmat2883_CR13 JC Love (BFnmat2883_CR28) 2005; 105 J Zhang (BFnmat2883_CR8) 2007; 315 NM Marković (BFnmat2883_CR22) 1997; 101 AU Nilekar (BFnmat2883_CR6) 2007; 46 JA Cracknell (BFnmat2883_CR15) 2008; 130 BFnmat2883_CR1 MA Markowitz (BFnmat2883_CR17) 1989; 111 R Borup (BFnmat2883_CR11) 2007; 107 |
References_xml | – volume: 8 start-page: 330 year: 1990 end-page: 332 ident: b30 publication-title: J. Vac. Sci. Technol. A contributor: fullname: Renner, Ch. – year: 2007 ident: b13 article-title: Modified Electrodes – volume: 324 start-page: 47 year: 2009 end-page: 48 ident: b2 publication-title: Science contributor: fullname: Markovic, N. M. – volume: 2 start-page: 880 year: 2010 end-page: 885 ident: b14 publication-title: Nature Chem. contributor: fullname: Strmcnik, D. S. – volume: 111 start-page: 18672 year: 2007 end-page: 18678 ident: b26 publication-title: J. Phys. Chem. C contributor: fullname: Strmcnik, D. S. – volume: 46 start-page: 276 year: 2007 end-page: 284 ident: b6 publication-title: Top. Catal. contributor: fullname: Nilekar, A. U. – volume: 315 start-page: 220 year: 2007 end-page: 222 ident: b8 publication-title: Science contributor: fullname: Adzic, R. R. – volume: 24 start-page: 11523 year: 2008 end-page: 11532 ident: b29 publication-title: Langmuir contributor: fullname: Genorio, B. – volume: 330 start-page: 489 year: 1992 end-page: 497 ident: b20 publication-title: J. Electroanal. Chem. contributor: fullname: Clavilier, J. – volume: 111 start-page: 8192 year: 1989 end-page: 8200 ident: b17 publication-title: J. Am. Chem. Soc. contributor: fullname: Regen, S. L. – year: 1998 ident: b9 article-title: Carbon Electrochemical and Physicochemical Properties contributor: fullname: Kinoshita, K. – volume: 161 start-page: 1002 year: 2006 end-page: 1011 ident: b7 publication-title: J. Power Sources contributor: fullname: Atanasoski, R. – volume: 101 start-page: 5405 year: 1997 end-page: 5413 ident: b22 publication-title: J. Phys. Chem. B contributor: fullname: Ross, P. N. – volume: 99 start-page: 8290 year: 1995 end-page: 8301 ident: b27 publication-title: J. Phys. Chem. contributor: fullname: Ross, P. N. – volume: 105 start-page: 1103 year: 2005 end-page: 1169 ident: b28 publication-title: Chem. Rev. contributor: fullname: Love, J. C. – volume: 125 start-page: 2840 year: 2003 end-page: 2841 ident: b19 publication-title: J. Am. Chem. Soc. contributor: fullname: Davis, J. T. – volume: 315 start-page: 493 year: 2007 end-page: 497 ident: b3 publication-title: Science contributor: fullname: Stamenkovic, V. R. – year: 2003 ident: b1 article-title: Handbook of Fuel Cells – volume: 10 start-page: 1602 year: 2008 end-page: 1605 ident: b23 publication-title: Electrochem. Commun. contributor: fullname: Strmcnik, D. – volume: 467 start-page: 157 year: 1999 end-page: 163 ident: b25 publication-title: J. Electroanal. Chem. contributor: fullname: Ross, P. N. – volume: 46 start-page: 8988 year: 2007 end-page: 8991 ident: b5 publication-title: Angew. Chem. Int. Ed. contributor: fullname: Strasser, P. – volume: 107 start-page: 3904 year: 2007 end-page: 3951 ident: b11 publication-title: Chem. Rev. contributor: fullname: Borup, R. – volume: 1 start-page: 552 year: 2009 end-page: 556 ident: b4 publication-title: Nature Chem. contributor: fullname: Greeley, J. – volume: 21 start-page: 3397 year: 2005 end-page: 3403 ident: b16 publication-title: Dalton Trans. contributor: fullname: Armstrong, F. A. – volume: 150 start-page: E24 year: 2003 end-page: E32 ident: b10 publication-title: J. Electrochem. Soc. contributor: fullname: Swain, G. M. – volume: 130 start-page: 15332 year: 2008 end-page: 15339 ident: b12 publication-title: J. Am. Chem. Soc. contributor: fullname: Strmcnik, D. S. – volume: 69 start-page: 195 year: 1976 end-page: 201 ident: b24 publication-title: J. Electroanal. Chem. contributor: fullname: Razumney, G. – volume: 1 start-page: 466 year: 2009 end-page: 472 ident: b21 publication-title: Nature Chem. contributor: fullname: Strmcnik, D. – volume: 121 start-page: 1621 year: 1999 end-page: 1622 ident: b18 publication-title: J. Am. Chem. Soc. contributor: fullname: Regen, S. L. – volume: 130 start-page: 424 year: 2008 end-page: 425 ident: b15 publication-title: J. Am. Chem. Soc. contributor: fullname: Cracknell, J. A. – volume: 125 start-page: 2840 year: 2003 ident: BFnmat2883_CR19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja029372t contributor: fullname: V Sidorov – volume: 1 start-page: 552 year: 2009 ident: BFnmat2883_CR4 publication-title: Nature Chem. doi: 10.1038/nchem.367 contributor: fullname: J Greeley – volume: 111 start-page: 8192 year: 1989 ident: BFnmat2883_CR17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00203a020 contributor: fullname: MA Markowitz – volume: 467 start-page: 157 year: 1999 ident: BFnmat2883_CR25 publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(99)00020-0 contributor: fullname: NM Marković – volume: 46 start-page: 276 year: 2007 ident: BFnmat2883_CR6 publication-title: Top. Catal. doi: 10.1007/s11244-007-9001-z contributor: fullname: AU Nilekar – volume: 24 start-page: 11523 year: 2008 ident: BFnmat2883_CR29 publication-title: Langmuir doi: 10.1021/la802197u contributor: fullname: B Genorio – volume: 130 start-page: 424 year: 2008 ident: BFnmat2883_CR15 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja078299+ contributor: fullname: JA Cracknell – volume: 330 start-page: 489 year: 1992 ident: BFnmat2883_CR20 publication-title: J. Electroanal. Chem. doi: 10.1016/0022-0728(92)80326-Y contributor: fullname: J Clavilier – volume: 101 start-page: 5405 year: 1997 ident: BFnmat2883_CR22 publication-title: J. Phys. Chem. B doi: 10.1021/jp970930d contributor: fullname: NM Marković – volume: 8 start-page: 330 year: 1990 ident: BFnmat2883_CR30 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.577100 contributor: fullname: Ch Renner – volume: 107 start-page: 3904 year: 2007 ident: BFnmat2883_CR11 publication-title: Chem. Rev. doi: 10.1021/cr050182l contributor: fullname: R Borup – volume: 105 start-page: 1103 year: 2005 ident: BFnmat2883_CR28 publication-title: Chem. Rev. doi: 10.1021/cr0300789 contributor: fullname: JC Love – ident: BFnmat2883_CR1 – volume: 121 start-page: 1621 year: 1999 ident: BFnmat2883_CR18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja983625u contributor: fullname: L Zhang – ident: BFnmat2883_CR13 – volume: 161 start-page: 1002 year: 2006 ident: BFnmat2883_CR7 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.05.033 contributor: fullname: MK Debe – volume: 150 start-page: E24 year: 2003 ident: BFnmat2883_CR10 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1524612 contributor: fullname: J Wang – volume: 1 start-page: 466 year: 2009 ident: BFnmat2883_CR21 publication-title: Nature Chem. doi: 10.1038/nchem.330 contributor: fullname: D Strmcnik – volume-title: Carbon Electrochemical and Physicochemical Properties year: 1998 ident: BFnmat2883_CR9 contributor: fullname: K Kinoshita – volume: 46 start-page: 8988 year: 2007 ident: BFnmat2883_CR5 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200703331 contributor: fullname: R Srivastava – volume: 2 start-page: 880 year: 2010 ident: BFnmat2883_CR14 publication-title: Nature Chem. doi: 10.1038/nchem.771 contributor: fullname: DS Strmcnik – volume: 99 start-page: 8290 year: 1995 ident: BFnmat2883_CR27 publication-title: J. Phys. Chem. doi: 10.1021/j100011a001 contributor: fullname: NM Markovic – volume: 69 start-page: 195 year: 1976 ident: BFnmat2883_CR24 publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(76)80250-1 contributor: fullname: HS Wroblowa – volume: 111 start-page: 18672 year: 2007 ident: BFnmat2883_CR26 publication-title: J. Phys. Chem. C doi: 10.1021/jp0756146 contributor: fullname: DS Strmcnik – volume: 130 start-page: 15332 year: 2008 ident: BFnmat2883_CR12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8032185 contributor: fullname: DS Strmcnik – volume: 21 start-page: 3397 year: 2005 ident: BFnmat2883_CR16 publication-title: Dalton Trans. doi: 10.1039/b508520a contributor: fullname: KA Vincent – volume: 324 start-page: 47 year: 2009 ident: BFnmat2883_CR2 publication-title: Science doi: 10.1126/science.1172083 contributor: fullname: HA Gasteiger – volume: 10 start-page: 1602 year: 2008 ident: BFnmat2883_CR23 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2008.08.019 contributor: fullname: D Strmcnik – volume: 315 start-page: 493 year: 2007 ident: BFnmat2883_CR3 publication-title: Science doi: 10.1126/science.1135941 contributor: fullname: VR Stamenkovic – volume: 315 start-page: 220 year: 2007 ident: BFnmat2883_CR8 publication-title: Science doi: 10.1126/science.1134569 contributor: fullname: J Zhang |
SSID | ssj0021556 |
Score | 2.4655068 |
Snippet | The design of new catalysts for polymer electrolyte membrane fuel cells must be guided by two equally important fundamental principles: optimization of their... Cathode degradation and methods for improving the selectivity of anode catalysts remain crucial challenges for the design of polymer electrolyte membrane fuel... |
SourceID | proquest crossref pubmed springer nature |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 998 |
SubjectTerms | 639/301/299/893 639/301/357 639/301/923/966 Alloy plating Alloying Anodes Biomaterials Carbon Catalysis Catalysts Catalytic oxidation Chemical reactions Chemistry and Materials Science Condensed Matter Physics Electrochemistry Fuel cells Fuel technology Hydrogen letter Materials Science Molecular chemistry Nanotechnology Optical and Electronic Materials Oxidation Oxygen Platinum Polymers Stability |
Title | Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules |
URI | http://dx.doi.org/10.1038/nmat2883 https://link.springer.com/article/10.1038/nmat2883 https://www.ncbi.nlm.nih.gov/pubmed/21037564 https://www.proquest.com/docview/815110568 https://search.proquest.com/docview/1671223883 https://search.proquest.com/docview/812136333 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-Lnrw_VhfRPFa3G3SPI7iA09eVFBESrJJUXDbZbsL7t0f7ky6ra6yIL20SZqEzqT5ksl8Q8ipMB2WZT6JujHvRjyxOtJctSOjrWSGGRlbtOje3MnbR3V5hTQ5JzMs-Eyd5YDcMCQu_mYlCy5at_fNmgqmw8qBSIoIoENc88v-eHFqxpnmy5zCk39soWGKuV79T-fWyMoEQNLzSuLrZM7nG2T5B63gJvm8C8Ft4D9Gw-7MuByWFMApBbBHX8duUIDW0OLjrYqnRE3u4GmMiQNkcg2JACbDTUntmPYDCyduodAio308P5ePehQ3caGJ97ePZ_6CXmWe9qpwu77cIg_XV_cXN9Ek2kLUhVl6GJks48p0EiN11yCM9G1h4yzWXlmvmXYqUc5LDGwkFPM-ttwKkzhtWcJdW7NtspAXud8l1AolvcxgaecYR8JDyYRxAO0AW3q4WuS4lkjar0g10mAMZyqtv2iL7FSiakp85-zXsksnA65MFSAXgIpCQd1NLowUNH-Y3BejMu0ICQrCQg10RhmFDHeCMWy-0oqm-Rg9KhPBW-SkVpPv5n_3fm9m7_fJUtyciDkgC8PByB-S-dKNjsji-ePT0-VR0PAv7Sn4IQ |
link.rule.ids | 315,782,786,2733,27935,27936,48348,48349,48363,49653,49654,49668 |
linkProvider | Nature Publishing |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5t3QPwABswKGWbQbxGtLHjH48I2nVqNwltSEgIRXbtaJPWpGpaqX3nD-fsNNkKQmLKS2I7Pis-5z777O8APnDdo1nmkmgSs0nEEqMixWQ30soIqqkWsfEe3eGluPguv_Qbmpyy3u1euyTDn7o6GC4_5ojgfGjcXdhjiNFlC_YGX08Ho2Z6hZaxOkskeIQoIq6pZu-9u2V8tqkzt6DlX27RYG0Gzx7Szn14usGU5FOlBAew4_Ln8OQe0-AL-HUZ4t3gr42EBZt1uSgJ4lWC-I9cr-28QEUixeqmCrFEdG7xae0T557cNSQivgw3JTFrMgvEnH5VhRQZmfktdflySvy6Loq4vVn9YD_9QTNHplUEXle-hG-D_tXnYbQJwBBN0HAvIp1lTOpeooWaaI8sXZebOIuVk8YpqqxMpHXCxzrikjoXG2a4TqwyNGG2q-ghtPIid6-BGC6FExnO9ixlngNRUK4toj2Emw6vNryreyadVTwbafCPU5nWX7QNr6oua0rc5XTqPkw3Y7BMJYIZRI9cYt1NLg4e7xHRuSuWZdrjAhWFhhrIP8pIT3rHKfXiK-1oxMf-kGXCWRve16pwJ_7P1r_5n0In8Gh4dT5Ox2cXow48jpu9M2-htZgv3RHslnZ5vFH93__oBMQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9sC6IP1q_q2apRfF16t8nm41HarpVKUaogiCzJJYsFu3vc3kHv3T_cmexHexVBZF92k2wSNpOdXzKZ3wC8kXbCyzJkyTQV00RkziRG6HFijVPccqtSRxbd4zN1-lUfHhFNjux9YeJp994k2fo0EEtTtdif-bJzEtf7FaI5CpO7AVtCc4nyvZV_epefDEst1JKtX5GSCSKKtKedvfbumiJap9Fcg5l_mEij5sm3_7fP9-FehzXZ21Y4HsCtUD2Eu9cYCB_Br7MYBwd_eSxu5KyaRcMQxzLEhezHys9rFDBWX563oZeYrTw-rShxTqSvMRFxZ7xpmFuxWSTspN0WVpdsRkftquUFo_1ebOLn-eU38Z0c0AK7aCPzhuYxfMmPPh8cJ11ghmSKCn2R2LIU2k4yq8zUEuIMY-nSMjVBu2C48TrTPiiKgSQ1DyF1wkmbeeN4JvzY8B3YrOoqPAXmpFZBlbgK9FwQN6Li0npEgQhDA14jeNWPUjFr-TeKaDfnuui_6AietMM3lLjK2e3Hs-jmZlNoBDmIKqXGuodcnFRkKbFVqJdNMZEKhYbHGthfymgiw5OcU_OtpAzNp-R8mUkxgte9WFw1f7P3z_6l0Eu4_fEwLz68Pz3ZhTvpcKRmDzYX82V4DhuNX77oZsFvAmkNnQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+catalysts+for+the+hydrogen+oxidation+and+oxygen+reduction+reactions+by+patterning+of+platinum+with+calix%5B4%5Darene+molecules&rft.jtitle=Nature+materials&rft.au=Genorio%2C+Bostjan&rft.au=Strmcnik%2C+Dusan&rft.au=Subbaraman%2C+Ram&rft.au=Tripkovic%2C+Dusan&rft.date=2010-12-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=9&rft.issue=12&rft.spage=998&rft.epage=1003&rft_id=info:doi/10.1038%2Fnmat2883&rft.externalDocID=10_1038_nmat2883 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |