NAD(P)H oxidase contributes to neurotoxicity in an excitotoxic/prooxidant model of Huntington's disease in rats: Protective role of apocynin
Intrastriatal injection of quinolinic acid (QUIN) to rodents reproduces some biochemical, morphological, and behavioral characteristics of Huntington's disease. NAD(P)H oxidase is an enzymatic complex that catalyzes superoxide anion (O2·−) production from O2 and NADPH. The present study evaluat...
Saved in:
Published in: | Journal of neuroscience research Vol. 88; no. 3; pp. 620 - 629 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
15-02-2010
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Intrastriatal injection of quinolinic acid (QUIN) to rodents reproduces some biochemical, morphological, and behavioral characteristics of Huntington's disease. NAD(P)H oxidase is an enzymatic complex that catalyzes superoxide anion (O2·−) production from O2 and NADPH. The present study evaluated the role of NAD(P)H oxidase in the striatal damage induced by QUIN (240 nmol/μl) in adult male Wistar rats by means of apocynin (APO; 5 mg/kg i.p.), a specific NAD(P)H oxidase inhibitor. Rats were given APO 30 min before and 1 hr after QUIN injection or only 30 min after QUIN injection. NAD(P)H oxidase activity was measured in striatal homogenates by O2·− production. QUIN infusion to rats significantly increased striatal NAD(P)H oxidase activity (2 hr postlesion), whereas APO treatments decreased the QUIN‐induced enzyme activity (2 hr postlesion), lipid peroxidation (3 hr postlesion), circling behavior (6 days postlesion), and histological damage (7 days postlesion). The addition of NADH to striatal homogenates increased NAD(P)H oxidase activity in striata from QUIN‐treated animals but not from sham rats. Interestingly, O2·− production in QUIN‐lesioned striata was unaffected by the addition of substrates for intramitochondrial O2·− production, xanthine oxidase and nitric oxide synthase, suggesting that NAD(P)H oxidase may be the main source of O2·− in QUIN‐treated rats. Moreover, the administration of MK‐801 to rats as a pretreatment resulted in a complete prevention of the QUIN‐induced NAD(P)H activation, suggesting that this toxic event is completely dependent on N‐methyl‐D‐aspartate receptor overactivation. Our results also suggest that NAD(P)H oxidase is involved in the pathogenic events linked to excitotoxic/prooxidant conditions. © 2009 Wiley‐Liss, Inc. |
---|---|
AbstractList | Intrastriatal injection of quinolinic acid (QUIN) to rodents reproduces some biochemical, morphological, and behavioral characteristics of Huntington's disease. NAD(P)H oxidase is an enzymatic complex that catalyzes superoxide anion (O2.-) production from O2 and NADPH. The present study evaluated the role of NAD(P)H oxidase in the striatal damage induced by QUIN (240 nmol/ mu l) in adult male Wistar rats by means of apocynin (APO; 5 mg/kg i.p.), a specific NAD(P)H oxidase inhibitor. Rats were given APO 30 min before and 1 hr after QUIN injection or only 30 min after QUIN injection. NAD(P)H oxidase activity was measured in striatal homogenates by O2.- production. QUIN infusion to rats significantly increased striatal NAD(P)H oxidase activity (2 hr postlesion), whereas APO treatments decreased the QUIN-induced enzyme activity (2 hr postlesion), lipid peroxidation (3 hr postlesion), circling behavior (6 days postlesion), and histological damage (7 days postlesion). The addition of NADH to striatal homogenates increased NAD(P)H oxidase activity in striata from QUIN-treated animals but not from sham rats. Interestingly, O2.- production in QUIN-lesioned striata was unaffected by the addition of substrates for intramitochondrial O2.- production, xanthine oxidase and nitric oxide synthase, suggesting that NAD(P)H oxidase may be the main source of O2.- in QUIN-treated rats. Moreover, the administration of MK-801 to rats as a pretreatment resulted in a complete prevention of the QUIN-induced NAD(P)H activation, suggesting that this toxic event is completely dependent on N-methyl-D-aspartate receptor overactivation. Our results also suggest that NAD(P)H oxidase is involved in the pathogenic events linked to excitotoxic/prooxidant conditions. [copy 2009 Wiley-Liss, Inc. Intrastriatal injection of quinolinic acid (QUIN) to rodents reproduces some biochemical, morphological, and behavioral characteristics of Huntington's disease. NAD(P)H oxidase is an enzymatic complex that catalyzes superoxide anion (O sub(2). super(-)) production from O sub(2) and NADPH. The present study evaluated the role of NAD(P)H oxidase in the striatal damage induced by QUIN (240 nmol/[micro]l) in adult male Wistar rats by means of apocynin (APO; 5 mg/kg i.p.), a specific NAD(P)H oxidase inhibitor. Rats were given APO 30 min before and 1 hr after QUIN injection or only 30 min after QUIN injection. NAD(P)H oxidase activity was measured in striatal homogenates by O sub(2). super(-) production. QUIN infusion to rats significantly increased striatal NAD(P)H oxidase activity (2 hr postlesion), whereas APO treatments decreased the QUIN-induced enzyme activity (2 hr postlesion), lipid peroxidation (3 hr postlesion), circling behavior (6 days postlesion), and histological damage (7 days postlesion). The addition of NADH to striatal homogenates increased NAD(P)H oxidase activity in striata from QUIN-treated animals but not from sham rats. Interestingly, O sub(2). super(-) production in QUIN-lesioned striata was unaffected by the addition of substrates for intramitochondrial O sub(2). super(-) production, xanthine oxidase and nitric oxide synthase, suggesting that NAD(P)H oxidase may be the main source of O sub(2). super(-) in QUIN-treated rats. Moreover, the administration of MK-801 to rats as a pretreatment resulted in a complete prevention of the QUIN-induced NAD(P)H activation, suggesting that this toxic event is completely dependent on N-methyl-D-aspartate receptor overactivation. Our results also suggest that NAD(P)H oxidase is involved in the pathogenic events linked to excitotoxic/prooxidant conditions. Intrastriatal injection of quinolinic acid (QUIN) to rodents reproduces some biochemical, morphological, and behavioral characteristics of Huntington's disease. NAD(P)H oxidase is an enzymatic complex that catalyzes superoxide anion (O2·−) production from O2 and NADPH. The present study evaluated the role of NAD(P)H oxidase in the striatal damage induced by QUIN (240 nmol/μl) in adult male Wistar rats by means of apocynin (APO; 5 mg/kg i.p.), a specific NAD(P)H oxidase inhibitor. Rats were given APO 30 min before and 1 hr after QUIN injection or only 30 min after QUIN injection. NAD(P)H oxidase activity was measured in striatal homogenates by O2·− production. QUIN infusion to rats significantly increased striatal NAD(P)H oxidase activity (2 hr postlesion), whereas APO treatments decreased the QUIN‐induced enzyme activity (2 hr postlesion), lipid peroxidation (3 hr postlesion), circling behavior (6 days postlesion), and histological damage (7 days postlesion). The addition of NADH to striatal homogenates increased NAD(P)H oxidase activity in striata from QUIN‐treated animals but not from sham rats. Interestingly, O2·− production in QUIN‐lesioned striata was unaffected by the addition of substrates for intramitochondrial O2·− production, xanthine oxidase and nitric oxide synthase, suggesting that NAD(P)H oxidase may be the main source of O2·− in QUIN‐treated rats. Moreover, the administration of MK‐801 to rats as a pretreatment resulted in a complete prevention of the QUIN‐induced NAD(P)H activation, suggesting that this toxic event is completely dependent on N‐methyl‐D‐aspartate receptor overactivation. Our results also suggest that NAD(P)H oxidase is involved in the pathogenic events linked to excitotoxic/prooxidant conditions. © 2009 Wiley‐Liss, Inc. Intrastriatal injection of quinolinic acid (QUIN) to rodents reproduces some biochemical, morphological, and behavioral characteristics of Huntington's disease. NAD(P)H oxidase is an enzymatic complex that catalyzes superoxide anion (O 2 · − ) production from O 2 and NADPH. The present study evaluated the role of NAD(P)H oxidase in the striatal damage induced by QUIN (240 nmol/μl) in adult male Wistar rats by means of apocynin (APO; 5 mg/kg i.p.), a specific NAD(P)H oxidase inhibitor. Rats were given APO 30 min before and 1 hr after QUIN injection or only 30 min after QUIN injection. NAD(P)H oxidase activity was measured in striatal homogenates by O 2 · − production. QUIN infusion to rats significantly increased striatal NAD(P)H oxidase activity (2 hr postlesion), whereas APO treatments decreased the QUIN‐induced enzyme activity (2 hr postlesion), lipid peroxidation (3 hr postlesion), circling behavior (6 days postlesion), and histological damage (7 days postlesion). The addition of NADH to striatal homogenates increased NAD(P)H oxidase activity in striata from QUIN‐treated animals but not from sham rats. Interestingly, O 2 · − production in QUIN‐lesioned striata was unaffected by the addition of substrates for intramitochondrial O 2 · − production, xanthine oxidase and nitric oxide synthase, suggesting that NAD(P)H oxidase may be the main source of O 2 · − in QUIN‐treated rats. Moreover, the administration of MK‐801 to rats as a pretreatment resulted in a complete prevention of the QUIN‐induced NAD(P)H activation, suggesting that this toxic event is completely dependent on N‐methyl‐D‐aspartate receptor overactivation. Our results also suggest that NAD(P)H oxidase is involved in the pathogenic events linked to excitotoxic/prooxidant conditions. © 2009 Wiley‐Liss, Inc. Intrastriatal injection of quinolinic acid (QUIN) to rodents reproduces some biochemical, morphological, and behavioral characteristics of Huntington's disease. NAD(P)H oxidase is an enzymatic complex that catalyzes superoxide anion (O(2).(-)) production from O(2) and NADPH. The present study evaluated the role of NAD(P)H oxidase in the striatal damage induced by QUIN (240 nmol/microl) in adult male Wistar rats by means of apocynin (APO; 5 mg/kg i.p.), a specific NAD(P)H oxidase inhibitor. Rats were given APO 30 min before and 1 hr after QUIN injection or only 30 min after QUIN injection. NAD(P)H oxidase activity was measured in striatal homogenates by O2(*)(-) production. QUIN infusion to rats significantly increased striatal NAD(P)H oxidase activity (2 hr postlesion), whereas APO treatments decreased the QUIN-induced enzyme activity (2 hr postlesion), lipid peroxidation (3 hr postlesion), circling behavior (6 days postlesion), and histological damage (7 days postlesion). The addition of NADH to striatal homogenates increased NAD(P)H oxidase activity in striata from QUIN-treated animals but not from sham rats. Interestingly, O2(*)(-) production in QUIN-lesioned striata was unaffected by the addition of substrates for intramitochondrial O2(*)(-) production, xanthine oxidase and nitric oxide synthase, suggesting that NAD(P)H oxidase may be the main source of O2(*)(-) in QUIN-treated rats. Moreover, the administration of MK-801 to rats as a pretreatment resulted in a complete prevention of the QUIN-induced NAD(P)H activation, suggesting that this toxic event is completely dependent on N-methyl-D-aspartate receptor overactivation. Our results also suggest that NAD(P)H oxidase is involved in the pathogenic events linked to excitotoxic/prooxidant conditions. |
Author | Molina-Jijón, E. Galván-Arzate, S. Maldonado, P.D. Villeda-Hernández, J. Santamaría, A. Pedraza-Chaverrí, J. |
Author_xml | – sequence: 1 givenname: P.D. surname: Maldonado fullname: Maldonado, P.D. organization: Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, México D.F., México – sequence: 2 givenname: E. surname: Molina-Jijón fullname: Molina-Jijón, E. organization: Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México D.F., México – sequence: 3 givenname: J. surname: Villeda-Hernández fullname: Villeda-Hernández, J. organization: Laboratorio de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, México D.F., México – sequence: 4 givenname: S. surname: Galván-Arzate fullname: Galván-Arzate, S. organization: Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, México D.F., México – sequence: 5 givenname: A. surname: Santamaría fullname: Santamaría, A. organization: Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, México D.F., México – sequence: 6 givenname: J. surname: Pedraza-Chaverrí fullname: Pedraza-Chaverrí, J. email: pedraza@unam.mx organization: Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México D.F., México |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19795371$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAYRS1URKeFBS-AvCtdpGM7dhyzqwrMgKqh4kdIbCwn-YJcMvbUdmDmHXhoPM0AKyRW_jv36LPuCTpy3gFCTym5oISw-a0LF4wxTh6gGSVKFlxweYRmpKxIwQllx-gkxltCiFKifISOqZJ5I-kM_Vxdvnx-c77Efms7EwG33qVgmzFBxMljB2PwKT-2Nu2wddg4DNt8mC7nm-Dvky7hte9gwL7Hy9El674m784i7myEvTdHg0nxBb7JPmiT_Q44-AH2AbPx7c5Z9xg97M0Q4clhPUWfXr_6eLUsrt8t3lxdXhctZ_lHPVM1oVx0UHdcqIaVZcVlrxjntagaJTrGQMq-NSXjsjJMCNX10IMyqmkNL0_R2eTN09-NEJNe29jCMBgHfoy6rkvCaM3_g6yUqIWs6kyeT2QbfIwBer0Jdm3CTlOi9y3p3JK-bymzzw7WsVlD95c81JKB-QT8sAPs_m3Sb1fvfyuLKWFjgu2fhAnfdCVLKfTn1UJ_WZaLDwu60rT8BWX0rls |
CitedBy_id | crossref_primary_10_1016_j_neulet_2010_08_049 crossref_primary_10_1093_toxsci_kft199 crossref_primary_10_1002_jbt_21679 crossref_primary_10_1016_j_pbb_2012_11_011 crossref_primary_10_1002_glia_22765 crossref_primary_10_4137_IJTR_S8158 crossref_primary_10_1016_j_neulet_2010_03_007 crossref_primary_10_1016_j_neuro_2013_08_013 crossref_primary_10_3390_ijms232315272 crossref_primary_10_1016_j_neuroscience_2018_04_034 crossref_primary_10_1016_j_neuint_2012_05_004 crossref_primary_10_3389_fnagi_2021_736734 crossref_primary_10_1007_s11515_012_1250_y crossref_primary_10_1016_j_bbadis_2011_11_014 crossref_primary_10_3390_antiox12010094 crossref_primary_10_3892_ijmm_2017_3090 crossref_primary_10_1016_j_biopha_2015_10_007 crossref_primary_10_1016_j_neuroscience_2017_03_011 crossref_primary_10_1515_cclm_2016_1159 crossref_primary_10_1007_s10787_022_01004_z crossref_primary_10_1016_j_neuroscience_2014_04_043 crossref_primary_10_1152_physrev_00035_2018 crossref_primary_10_1007_s12035_022_02986_1 crossref_primary_10_1089_ars_2013_5703 crossref_primary_10_3390_antiox8090388 crossref_primary_10_1016_j_jnutbio_2011_12_010 crossref_primary_10_1007_s00204_014_1338_z crossref_primary_10_1016_j_neuroscience_2012_11_031 crossref_primary_10_1186_1471_2369_14_211 crossref_primary_10_1007_s43440_024_00619_z crossref_primary_10_1093_hmg_dds516 crossref_primary_10_1016_j_neuro_2012_11_007 crossref_primary_10_1089_ars_2010_3713 |
Cites_doi | 10.1016/j.freeradbiomed.2008.06.027 10.1016/0024-3205(84)90148-6 10.1038/sj.bjp.0702940 10.1096/fj.05-5085fje 10.1093/ndt/gfm077 10.1016/j.neuint.2004.06.008 10.1152/ajprenal.00221.2004 10.1074/jbc.M209532200 10.1016/j.brainresbull.2007.12.008 10.1006/exnr.1993.1006 10.1016/j.coi.2003.12.001 10.1038/321168a0 10.1016/j.neulet.2007.08.013 10.1289/ehp.11031 10.1186/1742-2094-4-23 10.1128/MCB.25.21.9304-9317.2005 10.1098/rstb.2005.1766 10.1042/CS20060059 10.1016/S0197-0186(97)90002-4 10.1016/S0076-6879(94)33041-7 10.1074/jbc.M404635200 10.1016/S0006-8993(99)02474-9 10.1016/j.bbamcr.2004.09.006 10.1096/fj.04-1945fje 10.1016/j.brainres.2007.06.046 10.1111/j.1471-4159.2005.03503.x 10.1016/j.cardiores.2006.05.004 10.1046/j.1471-4159.2003.01857.x 10.1111/j.1471-4159.2006.03777.x 10.1021/tx9701790 10.1523/JNEUROSCI.5207-04.2005 10.1523/JNEUROSCI.4042-03.2004 10.1111/j.1471-4159.2008.05347.x 10.1006/bbrc.2000.2897 10.1111/j.1471-4159.2009.05999.x 10.1111/j.1471-4159.2007.05174.x 10.1016/S0278-5846(98)00070-0 10.1016/S0891-5849(03)00317-4 10.1523/JNEUROSCI.23-15-06181.2003 10.1089/neu.1989.6.247 10.1016/0304-3940(93)90796-N 10.1126/science.6849138 10.1016/j.neuroscience.2005.06.027 10.1096/fj.03-0109fje 10.1007/s12149-008-0216-2 10.1016/j.neuro.2007.07.010 10.1097/00001756-200108280-00020 10.1155/2008/106507 10.1016/0028-3908(83)90221-6 10.1073/pnas.0937239100 |
ContentType | Journal Article |
Copyright | Copyright © 2009 Wiley‐Liss, Inc. Copyright 2009 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2009 Wiley‐Liss, Inc. – notice: Copyright 2009 Wiley-Liss, Inc. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK |
DOI | 10.1002/jnr.22240 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Neurosciences Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Neurosciences Abstracts |
DatabaseTitleList | Neurosciences Abstracts Neurosciences Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1097-4547 |
EndPage | 629 |
ExternalDocumentID | 10_1002_jnr_22240 19795371 JNR22240 ark_67375_WNG_ZH3GSG1N_1 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: CONACyT funderid: 48370‐Q; 48812 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABIVO ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GAKWD GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWD RWI RX1 RYL SUPJJ TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7TK |
ID | FETCH-LOGICAL-c4260-f2980145de8d459b233647f9244856b95d22e77fca32476a2559dfefe9a9bca43 |
IEDL.DBID | 33P |
ISSN | 0360-4012 1097-4547 |
IngestDate | Fri Aug 16 10:42:21 EDT 2024 Sat Aug 17 04:07:32 EDT 2024 Thu Nov 21 22:21:33 EST 2024 Sat Sep 28 07:49:02 EDT 2024 Sat Aug 24 01:06:27 EDT 2024 Wed Oct 30 09:56:42 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Copyright 2009 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4260-f2980145de8d459b233647f9244856b95d22e77fca32476a2559dfefe9a9bca43 |
Notes | ark:/67375/WNG-ZH3GSG1N-1 ArticleID:JNR22240 istex:228549F9FD8F6694545B1BE97671BFFB29D8F9EF CONACyT - No. 48370-Q; No. 48812 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 19795371 |
PQID | 869585768 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_883021844 proquest_miscellaneous_869585768 crossref_primary_10_1002_jnr_22240 pubmed_primary_19795371 wiley_primary_10_1002_jnr_22240_JNR22240 istex_primary_ark_67375_WNG_ZH3GSG1N_1 |
PublicationCentury | 2000 |
PublicationDate | 2010-02-15 15 February 2010 2010-Feb-15 20100215 |
PublicationDateYYYYMMDD | 2010-02-15 |
PublicationDate_xml | – month: 02 year: 2010 text: 2010-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Journal of neuroscience research |
PublicationTitleAlternate | J. Neurosci. Res |
PublicationYear | 2010 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Gao HM,Liu B,Hong JS. 2003a. Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 23: 6181-6187. Wu DC,Teismann P,Tieu K,Vila M,Jackson-Lewis V,Ischiropoulos H,Przedborski S. 2003. NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Proc Natl Acad Sci U S A 100: 6145-6150. Santamaría A,Flores-Escartín A,Martínez JC,Osorio L,Galvan-Arzate S,Pedraza-Chaverrí J,Maldonado PD,Medina-Campos ON,Jimenez-Capdeville ME,Manjarrez J,Rios C. 2003a. Copper blocks quinolinic acid neurotoxicity in rats: contribution of antioxidant systems. Free Radic Biol Med 35: 418-427. Qian L,Xu Z,Zhang W,Wilson B,Hong JS,Flood PM. 2007. Sinomenine, a natural dextrorotatory morphinan analog, is anti-inflammatory and neuroprotective through inhibition of microglial NADPH oxidase. J Neuroinflammation 4: 23. Park L,Anrather J,Zhou P,Frys K,Pitstick R,Younkin S,Carlson GA,Iadecola C. 2005. NADPH oxidase-derived reactive oxygen species mediate the cerebrovascular dysfunction induced by the amyloid β peptide. J Neurosci 25: 1769-1777. Foster AC,Collins JF,Schwarcz R. 1983. On the excitotoxic properties of quinolinic acid, 2,3-piperidine dicarboxylic acids and structurally related compounds. Neuropharmacology 22: 1331-1342. Ferrante RJ,Kowall NW,Cipolloni PB,Storey E,Beal MF. 1993. Excitotoxin lesions in primates as a model for Huntington's disease: histopathologic and neurochemical characterization. Exp Neurol 119: 46-71. Santamaría A,Jiménez-Capdeville ME,Camacho A,Rodríguez-Martínez E,Flores A,Galván-Arzate S. 2001. In vivo hydroxyl radical formation alter quinolinic acid infusion into rat corpus striatum. Neuroreport 12: 2693-2696. Orient A,Donkó A,Szabó A,Leto TL,Geiszt M. 2007. Novel sources of reactive oxygen species in the human body. Nephrol Dial Transplant 22: 1281-1288. Gerard-Monnier D,Erdelmeier I,Regnard K,Moze-Henry N,Yadan JC,Chaudiere J. 1998. Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4 hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation. Chem Res Toxicol 11: 1176-1183. Maldonado PD,Chanez-Cardenas ME,Barrera D,Villeda-Hernández J,Santamaria A,Pedraza-Chaverri J. 2007. Poly(ADP-ribose) polymerase-1 is involved in the neuronal death induced by quinolinic acid in rats. Neurosci Lett 425: 28-33. Joglar B,Rodriguez-Pallares J,Rodriguez-Perez AI,Rey P,Guerra MJ,Labandeira-Garcia JL. 2009. The inflammatory response in the MPTP model of Parkinson's disease is mediated by brain angiotensin: relevance to progression of the disease. J Neurochem 109: 656-569. Rodríguez-Martínez E,Camacho A,Maldonado PD,Pedraza-Chaverrí J,Santamaría D,Galván-Arzate S,Santamaría A. 2000. Effect of quinolinic acid on endogenous antioxidants in rat corpus striatum. Brain Res 858: 436-439. Stone TW. 1993. Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45: 309-379. Beal MF,Kowall NW,Ellison DW,Mazurek MF,Swartz KJ,Martin JB. 1986. Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature 321: 168-171. Coyoy A,Valencia A,Guemez-Gamboa A,Morán J. 2008. Role of NADPH oxidase in the apoptotic death of cultured cerebellar granule neurons. Free Radic Biol Med 45: 1056-1064. Schwarcz R,Foster AC,French ED,Whetsell WOJr,Kohler C. 1984. Excitotoxic models for neurodegenerative disorders. Life Sci 35: 19-32. Silva-Adaya D,Pérez-De La Cruz V,Herrera-Mundo MN,Mendoza-Macedo K,Villeda-Hernández J,Binienda Z,Ali SF,Santamaría A. 2008. Excitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain: antioxidant and neuroprotective effects of L-carnitine. J Neurochem 105: 677-689. Abramov AY,Canevari L,Duchen MR. 2004a. α-Amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci 24: 565-575. Abramov AY,Canevari L,Duchen MR. 2004b. Calcium signals induced by amyloid beta peptide and their consequences in neurons and astrocytes in culture. Biochim Biophys Acta 1742: 81-87. Stefanska J,Pawliczak R. 2008. Apocynin: molecular aptitudes. Mediators Inflamm 2008: 1-10. Pérez-De La Cruz V,González-Cortés C,Galván-Arzate S,Medina-Campos ON,Pérez-Severiano F,Ali SF,Pedraza-Chaverrí J,Santamaría A. 2005. Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III). Neuroscience 135: 463-474. Stípek S,Stastny F,Plateník J,Crkovska J,Zima T. 1997. The effect of quinolinate on rat brain lipid peroxidation is dependent on iron. Neurochem Int 30: 233-237. Perez-Severiano F,Rodríguez-Perez M,Pedraza-Chaverrí J,Maldonado PD,Medina-Campos ON,Ortíz-Plata A,Sanchez-García A,Villeda-Hernandez J,Galvan-Arzate S,Aguilera P,Santamaría A. 2004. S-allylcysteine, a garlic-derived antioxidant, ameliorates quinolinic acid-induced neurotoxicity and oxidative damage in rats Neurochem Int 45: 1175-1183. Santamaría A,Ríos C. 1993. MK-801, an N-methyl-D-aspartate receptor antagonist, blocks quinolinic acid-induced lipid peroxidation in rat corpus striatum. Neurosci Lett 159: 51-54. Schwarcz R,Whetsell WOJr,Mangano RM. 1983. Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219: 316-318. Jacquard C,Trioulier Y,Cosker F,Escartin C,Bizat N,Hantraye P,Cancela JM,Bonvento G,Brouillet E. 2006. Brain mitochondrial defects amplify intracellular [Ca2+] rise and neurodegeneration but not Ca2+ entry during NMDA receptor activation. FASEB J 20: 1021-1023. Santamaría A,Salvatierra-Sanchez R,Vazquez-Roman B,Santiago-Lopez D,Villeda-Hernandez J,Galvan-Arzate S,Jimenez-Capdeville ME,Ali SF. 2003b. Protective effects of the antioxidant selenium on quinolinic acid-induced neurotoxicity in rats: in vitro and in vivo studies. J Neurochem 86: 479-488. Geiszt M. 2006. NADPH oxidases: new kids on the block. Cardiovasc Res 71: 289-299. Miller RL,Sun GY,Sun AY. 2007. Cytotoxicity of paraquat in microglial cells: involvement of PKCdelta- and ERK1/2-dependent NADPH oxidase. Brain Res 1167: 129-139. Block ML,Wu X,Pei Z,Li G,Wang T,Qin L,Wilson B,Yang J,Hong JS,Veronesi B. 2004. Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase. FASEB J 18: 1618-1620. Babior BM. 2004. NADPH oxidase. Curr Opin Immunol 16: 42-47. Mcintosh TK,Vink R,Soares H,Hayes R,Simon R. 1989. Effects of the N-methyl-D-aspartate receptor blocker MK-801 on neurologic function after experimental brain injury. J Neurotrauma 6: 247-259. Aguilera P,Chanez-Cardenas ME,Floriano-Sanchez E,Barrera D,Santamaria A,Sanchez-Gonzalez DJ,Perez-Severiano F,Pedraza-Chaverri J,Jimenez PD. 2007. Time-related changes in constitutive and inducible nitric oxide synthases in the rat striatum in a model of Huntington's disease. Neurotoxicology 28: 1200-1207. Gao X,Hu X,Qian L,Yang S,Zhang W,Zhang D,Wu X,Fraser A,Wilson B,Flood PM,Block M,Hong JS. 2008. Formyl-methionyl-leucyl-phenylalanine-induced dopaminergic neurotoxicity via microglial activation: a mediator between peripheral infection and neurodegeneration? Environ Health Perspect 116: 593-598. Reznick AZ,Packer L. 1994. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233: 357-363. Casarejos MJ,Menendez J,Solano RM,Rodríguez-Navarro JA,García de Yebenes J,Mena MA. 2006. Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline. J Neurochem 97: 934-946. Hirose S,Momosaki S,Hosoi R,Abe K,Gee A,Inoue O. 2009. Role of NMDA receptor upon [14C]acetate uptake into intact rat brain. Ann Nucl Med 23: 143-147. Shimohama S,Tanino H,Kawakami N,Okamura N,Kodama H,Yamaguchi T,Hayakawa T,Nunomura A,Chiba S,Perry G,Smith MA,Fujimoto S. 2000. Activation of NADPH oxidase in Alzheimer's disease brains. Biochem Biophys Res Commun 273: 5-9. Quinn MT,Ammons MC,Deleo FR. 2006. The expanding role of NADPH oxidases in health and disease: no longer just agents of death and destruction. Clin Sci 111: 1-20. Satoh M,Fujimoto S,Haruna Y,Arakawa S,Horike H,Komai N,Sasaki T,Tsujioka K,Makino H,Kashihara N. 2005. NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy. Am J Physiol Renal Physiol 288: F1144-F1152. Hashimoto Y,Chiba T,Yamada M,Nawa M,Kanekura K,Suzuki H,Terracita K,Aiso S,Nishimoto I,Matsuoka M. 2005. Transforming growth factor β2 is a neuronal death-inducing ligand for amyloid-β precursor protein. Mol Cell Biol 25: 9304-9317. Shelat PB,Chalimoniuk M,Wang JH,Strosznajder JB,Lee JC,Sun AY,Simonyi A,Sun GY. 2008. Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J Neurochem 106: 45-55. Paxinos G,Watson C. 1998. The rat brain in stereotaxic coordinates. San Diego: Academic Press. Abramov AY,Duchen MR. 2005. The role of an astrocytic NADPH oxidase in the neurotoxicity of amyloid beta peptides. Philos Trans R Soc Lond B Biol Sci 360: 2309-2314. Avila DS,Gubert P,Palma A,Colle D,Alves D,Nogueira CW,Rocha JB,Soares FA. 2008. An organotellurium compound with antioxidant activity against excitotoxic agents without neurotoxic effects in brain of rats. Brain Res Bull 76: 114-123. Santamaría A,Jiménez ME. 2005. Oxidative/nitrosative stress, a common factor in different neurotoxic paradigms: an overview. Curr Topics Neurochem 4: 1-20. Gao HM,Liu B,Zhang W,Hong JS. 2003b. Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson's disease. FASEB J 17: 1954-1956. Behan WM,McDonald M,Darlington LG,Stone TW. 1999. Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl. Br J Pharmacol 128: 1754-1760. Choi SH,Lee DY,Chung ES,Hong YB 2000; 858 2006; 71 2007; 425 2005; 135 2003b; 86 2008; 106 2008; 76 2008; 105 1999; 128 2008; 2008 2003a; 35 2005; 25 2007; 28 2003b; 17 2006; 20 2008; 116 2007; 4 2001; 12 2007; 22 2003a; 23 1998; 11 1983; 22 2009; 23 1994; 233 1993; 45 2006; 97 2007; 1167 2004a; 24 1989; 6 2004; 45 1998 2000; 273 2006; 111 1983; 219 1998; 22 2005; 360 2004b; 1742 2004; 279 1993; 119 2004; 18 2004; 16 1986; 321 2005; 288 1997; 30 1984; 35 2005; 95 2005; 4 2008; 45 2009; 109 1993; 159 2003; 100 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 Santamaría A (e_1_2_6_38_1) 2005; 4 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 Stone TW (e_1_2_6_52_1) 1993; 45 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 360 start-page: 2309 year: 2005 end-page: 2314 article-title: The role of an astrocytic NADPH oxidase in the neurotoxicity of amyloid beta peptides publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 22 start-page: 1281 year: 2007 end-page: 1288 article-title: Novel sources of reactive oxygen species in the human body publication-title: Nephrol Dial Transplant – volume: 106 start-page: 45 year: 2008 end-page: 55 article-title: Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons publication-title: J Neurochem – volume: 1167 start-page: 129 year: 2007 end-page: 139 article-title: Cytotoxicity of paraquat in microglial cells: involvement of PKCdelta‐ and ERK1/2‐dependent NADPH oxidase publication-title: Brain Res – volume: 279 start-page: 51451 year: 2004 end-page: 51459 article-title: Fibrillar amyloid‐β peptides kill human primary neurons via NADPH oxidase‐mediated activation of neutral sphingomyelinase: implications for Alzheimer's disease publication-title: J Biol Chem – volume: 45 start-page: 309 year: 1993 end-page: 379 article-title: Neuropharmacology of quinolinic and kynurenic acids publication-title: Pharmacol Rev – volume: 97 start-page: 934 year: 2006 end-page: 946 article-title: Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline publication-title: J Neurochem – volume: 116 start-page: 593 year: 2008 end-page: 598 article-title: Formyl‐methionyl‐leucyl‐phenylalanine‐induced dopaminergic neurotoxicity via microglial activation: a mediator between peripheral infection and neurodegeneration? publication-title: Environ Health Perspect – volume: 11 start-page: 1176 year: 1998 end-page: 1183 article-title: Reactions of 1‐methyl‐2‐phenylindole with malondialdehyde and 4 hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation publication-title: Chem Res Toxicol – year: 1998 – volume: 2008 start-page: 1 year: 2008 end-page: 10 article-title: Apocynin: molecular aptitudes publication-title: Mediators Inflamm – volume: 23 start-page: 143 year: 2009 end-page: 147 article-title: Role of NMDA receptor upon [ C]acetate uptake into intact rat brain publication-title: Ann Nucl Med – volume: 20 start-page: 1021 year: 2006 end-page: 1023 article-title: Brain mitochondrial defects amplify intracellular [Ca ] rise and neurodegeneration but not Ca entry during NMDA receptor activation publication-title: FASEB J – volume: 30 start-page: 233 year: 1997 end-page: 237 article-title: The effect of quinolinate on rat brain lipid peroxidation is dependent on iron publication-title: Neurochem Int – volume: 76 start-page: 114 year: 2008 end-page: 123 article-title: An organotellurium compound with antioxidant activity against excitotoxic agents without neurotoxic effects in brain of rats publication-title: Brain Res Bull – volume: 273 start-page: 5 year: 2000 end-page: 9 article-title: Activation of NADPH oxidase in Alzheimer's disease brains publication-title: Biochem Biophys Res Commun – volume: 105 start-page: 677 year: 2008 end-page: 689 article-title: Excitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain: antioxidant and neuroprotective effects of L‐carnitine publication-title: J Neurochem – volume: 45 start-page: 1056 year: 2008 end-page: 1064 article-title: Role of NADPH oxidase in the apoptotic death of cultured cerebellar granule neurons publication-title: Free Radic Biol Med – volume: 100 start-page: 6145 year: 2003 end-page: 6150 article-title: NADPH oxidase mediates oxidative stress in the 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine model of Parkinson's disease publication-title: Proc Natl Acad Sci U S A – volume: 25 start-page: 1769 year: 2005 end-page: 1777 article-title: NADPH oxidase‐derived reactive oxygen species mediate the cerebrovascular dysfunction induced by the amyloid β peptide publication-title: J Neurosci – volume: 233 start-page: 357 year: 1994 end-page: 363 article-title: Oxidative damage to proteins: spectrophotometric method for carbonyl assay publication-title: Methods Enzymol – volume: 119 start-page: 46 year: 1993 end-page: 71 article-title: Excitotoxin lesions in primates as a model for Huntington's disease: histopathologic and neurochemical characterization publication-title: Exp Neurol – volume: 159 start-page: 51 year: 1993 end-page: 54 article-title: MK‐801, an N‐methyl‐D‐aspartate receptor antagonist, blocks quinolinic acid‐induced lipid peroxidation in rat corpus striatum publication-title: Neurosci Lett – volume: 22 start-page: 1331 year: 1983 end-page: 1342 article-title: On the excitotoxic properties of quinolinic acid, 2,3‐piperidine dicarboxylic acids and structurally related compounds publication-title: Neuropharmacology – volume: 18 start-page: 1618 year: 2004 end-page: 1620 article-title: Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase publication-title: FASEB J – volume: 288 start-page: F1144 year: 2005 end-page: F1152 article-title: NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy publication-title: Am J Physiol Renal Physiol – volume: 35 start-page: 19 year: 1984 end-page: 32 article-title: Excitotoxic models for neurodegenerative disorders publication-title: Life Sci – volume: 109 start-page: 656 year: 2009 end-page: 569 article-title: The inflammatory response in the MPTP model of Parkinson's disease is mediated by brain angiotensin: relevance to progression of the disease publication-title: J Neurochem – volume: 858 start-page: 436 year: 2000 end-page: 439 article-title: Effect of quinolinic acid on endogenous antioxidants in rat corpus striatum publication-title: Brain Res – volume: 24 start-page: 565 year: 2004a end-page: 575 article-title: α‐Amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase publication-title: J Neurosci – volume: 128 start-page: 1754 year: 1999 end-page: 1760 article-title: Oxidative stress as a mechanism for quinolinic acid‐induced hippocampal damage: protection by melatonin and deprenyl publication-title: Br J Pharmacol – volume: 28 start-page: 1200 year: 2007 end-page: 1207 article-title: Time‐related changes in constitutive and inducible nitric oxide synthases in the rat striatum in a model of Huntington's disease publication-title: Neurotoxicology – volume: 4 start-page: 23 year: 2007 article-title: Sinomenine, a natural dextrorotatory morphinan analog, is anti‐inflammatory and neuroprotective through inhibition of microglial NADPH oxidase publication-title: J Neuroinflammation – volume: 45 start-page: 1175 year: 2004 end-page: 1183 article-title: S‐allylcysteine, a garlic‐derived antioxidant, ameliorates quinolinic acid‐induced neurotoxicity and oxidative damage in rats publication-title: Neurochem Int – volume: 17 start-page: 1954 year: 2003b end-page: 1956 article-title: Critical role of microglial NADPH oxidase‐derived free radicals in the in vitro MPTP model of Parkinson's disease publication-title: FASEB J – volume: 111 start-page: 1 year: 2006 end-page: 20 article-title: The expanding role of NADPH oxidases in health and disease: no longer just agents of death and destruction publication-title: Clin Sci – volume: 1742 start-page: 81 year: 2004b end-page: 87 article-title: Calcium signals induced by amyloid beta peptide and their consequences in neurons and astrocytes in culture publication-title: Biochim Biophys Acta – volume: 22 start-page: 1217 year: 1998 end-page: 1240 article-title: Comparison of intrastriatal injections of quinolinic acid and 3‐nitropropionic acid for use in animal models of Huntington's disease publication-title: Prog Neuropsychopharmacol Biol Psychiatry – volume: 16 start-page: 42 year: 2004 end-page: 47 article-title: NADPH oxidase publication-title: Curr Opin Immunol – volume: 425 start-page: 28 year: 2007 end-page: 33 article-title: Poly(ADP‐ribose) polymerase‐1 is involved in the neuronal death induced by quinolinic acid in rats publication-title: Neurosci Lett – volume: 23 start-page: 6181 year: 2003a end-page: 6187 article-title: Critical role for microglial NADPH oxidase in rotenone‐induced degeneration of dopaminergic neurons publication-title: J Neurosci – volume: 12 start-page: 2693 year: 2001 end-page: 2696 article-title: In vivo hydroxyl radical formation alter quinolinic acid infusion into rat corpus striatum publication-title: Neuroreport – volume: 25 start-page: 9304 year: 2005 end-page: 9317 article-title: Transforming growth factor β2 is a neuronal death‐inducing ligand for amyloid‐β precursor protein publication-title: Mol Cell Biol – volume: 4 start-page: 1 year: 2005 end-page: 20 article-title: Oxidative/nitrosative stress, a common factor in different neurotoxic paradigms: an overview publication-title: Curr Topics Neurochem – volume: 95 start-page: 1755 year: 2005 end-page: 1765 article-title: Inhibition of thrombin‐induced microglial activation and NADPH oxidase by minocycline protects dopaminergic neurons in the substantia nigra in vivo publication-title: J Neurochem – volume: 321 start-page: 168 year: 1986 end-page: 171 article-title: Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid publication-title: Nature – volume: 135 start-page: 463 year: 2005 end-page: 474 article-title: Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20‐tetrakis (4‐sulfonatophenyl)porphyrinate iron (III) publication-title: Neuroscience – volume: 6 start-page: 247 year: 1989 end-page: 259 article-title: Effects of the N‐methyl‐D‐aspartate receptor blocker MK‐801 on neurologic function after experimental brain injury publication-title: J Neurotrauma – volume: 86 start-page: 479 year: 2003b end-page: 488 article-title: Protective effects of the antioxidant selenium on quinolinic acid‐induced neurotoxicity in rats: in vitro and in vivo studies publication-title: J Neurochem – volume: 219 start-page: 316 year: 1983 end-page: 318 article-title: Quinolinic acid: an endogenous metabolite that produces axon‐sparing lesions in rat brain publication-title: Science – volume: 71 start-page: 289 year: 2006 end-page: 299 article-title: NADPH oxidases: new kids on the block publication-title: Cardiovasc Res – volume: 35 start-page: 418 year: 2003a end-page: 427 article-title: Copper blocks quinolinic acid neurotoxicity in rats: contribution of antioxidant systems publication-title: Free Radic Biol Med – ident: e_1_2_6_13_1 doi: 10.1016/j.freeradbiomed.2008.06.027 – ident: e_1_2_6_45_1 doi: 10.1016/0024-3205(84)90148-6 – ident: e_1_2_6_9_1 doi: 10.1038/sj.bjp.0702940 – ident: e_1_2_6_23_1 doi: 10.1096/fj.05-5085fje – ident: e_1_2_6_29_1 doi: 10.1093/ndt/gfm077 – ident: e_1_2_6_33_1 doi: 10.1016/j.neuint.2004.06.008 – ident: e_1_2_6_43_1 doi: 10.1152/ajprenal.00221.2004 – volume: 4 start-page: 1 year: 2005 ident: e_1_2_6_38_1 article-title: Oxidative/nitrosative stress, a common factor in different neurotoxic paradigms: an overview publication-title: Curr Topics Neurochem contributor: fullname: Santamaría A – ident: e_1_2_6_31_1 doi: 10.1074/jbc.M209532200 – ident: e_1_2_6_6_1 doi: 10.1016/j.brainresbull.2007.12.008 – ident: e_1_2_6_14_1 doi: 10.1006/exnr.1993.1006 – ident: e_1_2_6_7_1 doi: 10.1016/j.coi.2003.12.001 – ident: e_1_2_6_8_1 doi: 10.1038/321168a0 – ident: e_1_2_6_26_1 doi: 10.1016/j.neulet.2007.08.013 – ident: e_1_2_6_18_1 doi: 10.1289/ehp.11031 – ident: e_1_2_6_34_1 doi: 10.1186/1742-2094-4-23 – ident: e_1_2_6_21_1 doi: 10.1128/MCB.25.21.9304-9317.2005 – ident: e_1_2_6_2_1 doi: 10.1098/rstb.2005.1766 – ident: e_1_2_6_35_1 doi: 10.1042/CS20060059 – ident: e_1_2_6_51_1 doi: 10.1016/S0197-0186(97)90002-4 – ident: e_1_2_6_36_1 doi: 10.1016/S0076-6879(94)33041-7 – ident: e_1_2_6_24_1 doi: 10.1074/jbc.M404635200 – ident: e_1_2_6_37_1 doi: 10.1016/S0006-8993(99)02474-9 – ident: e_1_2_6_4_1 doi: 10.1016/j.bbamcr.2004.09.006 – ident: e_1_2_6_10_1 doi: 10.1096/fj.04-1945fje – ident: e_1_2_6_28_1 doi: 10.1016/j.brainres.2007.06.046 – ident: e_1_2_6_12_1 doi: 10.1111/j.1471-4159.2005.03503.x – ident: e_1_2_6_19_1 doi: 10.1016/j.cardiores.2006.05.004 – ident: e_1_2_6_42_1 doi: 10.1046/j.1471-4159.2003.01857.x – ident: e_1_2_6_11_1 doi: 10.1111/j.1471-4159.2006.03777.x – ident: e_1_2_6_20_1 doi: 10.1021/tx9701790 – volume: 45 start-page: 309 year: 1993 ident: e_1_2_6_52_1 article-title: Neuropharmacology of quinolinic and kynurenic acids publication-title: Pharmacol Rev contributor: fullname: Stone TW – ident: e_1_2_6_30_1 doi: 10.1523/JNEUROSCI.5207-04.2005 – ident: e_1_2_6_3_1 doi: 10.1523/JNEUROSCI.4042-03.2004 – ident: e_1_2_6_47_1 doi: 10.1111/j.1471-4159.2008.05347.x – ident: e_1_2_6_48_1 doi: 10.1006/bbrc.2000.2897 – ident: e_1_2_6_25_1 doi: 10.1111/j.1471-4159.2009.05999.x – ident: e_1_2_6_49_1 doi: 10.1111/j.1471-4159.2007.05174.x – ident: e_1_2_6_46_1 doi: 10.1016/S0278-5846(98)00070-0 – ident: e_1_2_6_41_1 doi: 10.1016/S0891-5849(03)00317-4 – ident: e_1_2_6_16_1 doi: 10.1523/JNEUROSCI.23-15-06181.2003 – ident: e_1_2_6_27_1 doi: 10.1089/neu.1989.6.247 – ident: e_1_2_6_39_1 doi: 10.1016/0304-3940(93)90796-N – ident: e_1_2_6_44_1 doi: 10.1126/science.6849138 – ident: e_1_2_6_32_1 doi: 10.1016/j.neuroscience.2005.06.027 – ident: e_1_2_6_17_1 doi: 10.1096/fj.03-0109fje – ident: e_1_2_6_22_1 doi: 10.1007/s12149-008-0216-2 – ident: e_1_2_6_5_1 doi: 10.1016/j.neuro.2007.07.010 – ident: e_1_2_6_40_1 doi: 10.1097/00001756-200108280-00020 – ident: e_1_2_6_50_1 doi: 10.1155/2008/106507 – ident: e_1_2_6_15_1 doi: 10.1016/0028-3908(83)90221-6 – ident: e_1_2_6_53_1 doi: 10.1073/pnas.0937239100 |
SSID | ssj0009953 |
Score | 2.2243721 |
Snippet | Intrastriatal injection of quinolinic acid (QUIN) to rodents reproduces some biochemical, morphological, and behavioral characteristics of Huntington's... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 620 |
SubjectTerms | Acetophenones - pharmacology Animals apocynin Corpus Striatum - drug effects Corpus Striatum - metabolism Corpus Striatum - pathology Disease Models, Animal Huntington Disease - chemically induced Huntington Disease - drug therapy Huntington Disease - metabolism Lipid Peroxidation - drug effects Male Malondialdehyde - metabolism Motor Activity - drug effects NAD(P)H oxidase NADPH Oxidases - antagonists & inhibitors NADPH Oxidases - metabolism Neuroprotective Agents - pharmacology neurotoxicity Nitric Oxide Synthase - metabolism oxidative stress Protein Carbonylation - drug effects Quinolinic Acid Rats Rats, Wistar Superoxides - metabolism Time Factors Xanthine Oxidase - metabolism |
Title | NAD(P)H oxidase contributes to neurotoxicity in an excitotoxic/prooxidant model of Huntington's disease in rats: Protective role of apocynin |
URI | https://api.istex.fr/ark:/67375/WNG-ZH3GSG1N-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjnr.22240 https://www.ncbi.nlm.nih.gov/pubmed/19795371 https://search.proquest.com/docview/869585768 https://search.proquest.com/docview/883021844 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagXLjQlgJdXrIQKuUQmjhOHNPTij5WHKIVBYG4WE5sSwuqU212pe1_6I9mxt6HKgFC4paHJ7Ls8cx88cxnQl6Dx3Ut4IDEmrJIeGFkIvOMJyWvrEi10LzE4uTRhai_VSenSJNzvKqFifwQ6x9uuDKCvcYFrpv-aEMa-sNP3zF0SGB_ASWE8o18vCHclZGBMi9TwEgZW7EKpexoLXnLF93DYV38LtC8HbcGx3O2_V9d3iEPlvEmHUYF2SV3rH9I9oYesPblNT2gIQM0_FrfIzf18ORw_HZEu8XEgHejIY8dD8SyPZ11NHBfzuBlC6E7nXiqPbULuIkPsaovSPoZDQfs0M7RUTyKAiLMNz1d7gahKChe_56OI0sEWFyKaY4ooK-69tpP_CPy5ez084dRsjytIWmR5T5xTCITTWFsZXghG5YjNb0DfMeromxkYRizQrhWQwwnSo1YxjjrrNSyaTXPH5Mt33m7T2iT4-6jcWUlK-4yUaU2kyJNndBt7mw7IK9W86auIimHivTLTMEYqzDGA3IQZnTdQk9_YhabKNTX-lx9ByNzcZ7VKhsQuppyBWsLN0y0t928V1UpAU0BIPtLE-RPA5TMB-RJ1JZNj6QAHRTw_cOgFH_uqvpYfwoXT_-96TNyPyYysCQrnpOt2XRuX5C7vZm_DAvhF1_0CkQ |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoe4ALBcpj2wIWQqUcQhPHiWPEZUUfAUq0oq1AXCxvYksLwqk2u9L2P_CjmbH3oUqAkLjl4bEse8YzY898Q8hz0Li2Bj8gMk2eRTxrZCTThEc5L4yItdA8x-Tk8kxUX4rDI4TJebPIhQn4EMsDN5QMv1-jgOOB9MEKNfSbG79iqJHWyAaHvn0CRzpYQe7KgEGZ5jF4SQlb4ArF7GBJek0bbeDEzn5nal63XL3qOd78v0HfIbfnJiftBx65S24Yd49s9R242z-u6B71QaD-dH2L_Kz6h_uDlyVtZ6MGFBz1oexYE8t0dNJSD385gZ81WO905Kh21MzgJXzExD5P6SbU19ihraVlqEYBRuaLjs4vhJAUeK97TQcBKAI2XYqRjkigL9v6yo3cfXJxfHT-tozmBRuiGoHuI8skgtFkjSkanskhSxGd3oKLx4ssH8qsYcwIYWsNZpzINbozjTXWSC2HtebpA7LuWmceETpM8QKysXkhC24TUcQmkSKOrdB1ak3dI88WC6cuAy6HCgjMTMEcKz_HPbLnl3TZQo-_YyCbyNTn6kR9hX3m7CSpVNIjdLHmCsQL70y0M-20U0UuwaECn-wvTRBCDRxl3iMPA7usRiQFMKGA_vc9V_x5qOp99ck_bP9706fkZnn-8VSdvqs-7JBbIa6BRUm2S9Yn46l5TNa6ZvrES8UvIpMObA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZaxsxEBZNAqUv6ZEe7ilKSdOHTfbQrlbpk6njuAeLaVpa8iLklQROqdZ4bXD-Q390ZiQfBNpS6NsemkVIM5r5VqNvCHkFHtfWgAMio4s8YrkWkcgSFhWsNDxWXLECDycPznj1veydIE3O29VZmMAPsf7hhpbh12s08Im2RxvS0As3PUzRIW2RHQZhOBLnZ9lww7grAgVlVsQAkpJ0RSsUp0dr0WvOaAfHdfG7SPN64Oo9T__2f_X5DtldBpy0GzTkLrlh3D2y13UAtn9e0n3qU0D9v_U98qvq9g6Gbwa0WYw1uDfqE9mxIpZp6ayhnvxyBi9riN3p2FHlqFnATXiIx_q8pJtRX2GHNpYOQi0KCDFft3S5HYSioHntMR0GmghYcinmOaKAmjT1pRu7--Rr_-TLu0G0LNcQ1UhzH9lUIBVNrk2pWS5GaYbc9BYAHivzYiRynaaGc1srCOJ4oRDMaGusEUqMasWyB2TbNc48InSU4fajtkUpSmYTXsYmETyOLVd1Zk3dIS9X8yYngZVDBv7lVMIYSz_GHbLvZ3TdQk1_YBobz-W36lSewypzdppUMukQuppyCcaFOybKmWbeyrIQAKcAkf2lCRKoAUxmHfIwaMumR4KDDnL4_oFXij93VX6oPvuLx__e9AW5Oez15af31ccn5FZIakijJH9KtmfTuXlGtlo9f-5t4grQpw0S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NAD%28P%29H+oxidase+contributes+to+neurotoxicity+in+an+excitotoxic%2Fprooxidant+model+of+Huntington%27s+disease+in+rats%3A+Protective+role+of+apocynin&rft.jtitle=Journal+of+neuroscience+research&rft.au=Maldonado%2C+P.D.&rft.au=Molina%E2%80%90Jij%C3%B3n%2C+E.&rft.au=Villeda%E2%80%90Hern%C3%A1ndez%2C+J.&rft.au=Galv%C3%A1n%E2%80%90Arzate%2C+S.&rft.date=2010-02-15&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0360-4012&rft.eissn=1097-4547&rft.volume=88&rft.issue=3&rft.spage=620&rft.epage=629&rft_id=info:doi/10.1002%2Fjnr.22240&rft.externalDBID=10.1002%252Fjnr.22240&rft.externalDocID=JNR22240 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-4012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-4012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-4012&client=summon |