NAD(P)H oxidase contributes to neurotoxicity in an excitotoxic/prooxidant model of Huntington's disease in rats: Protective role of apocynin

Intrastriatal injection of quinolinic acid (QUIN) to rodents reproduces some biochemical, morphological, and behavioral characteristics of Huntington's disease. NAD(P)H oxidase is an enzymatic complex that catalyzes superoxide anion (O2·−) production from O2 and NADPH. The present study evaluat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuroscience research Vol. 88; no. 3; pp. 620 - 629
Main Authors: Maldonado, P.D., Molina-Jijón, E., Villeda-Hernández, J., Galván-Arzate, S., Santamaría, A., Pedraza-Chaverrí, J.
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc., A Wiley Company 15-02-2010
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Intrastriatal injection of quinolinic acid (QUIN) to rodents reproduces some biochemical, morphological, and behavioral characteristics of Huntington's disease. NAD(P)H oxidase is an enzymatic complex that catalyzes superoxide anion (O2·−) production from O2 and NADPH. The present study evaluated the role of NAD(P)H oxidase in the striatal damage induced by QUIN (240 nmol/μl) in adult male Wistar rats by means of apocynin (APO; 5 mg/kg i.p.), a specific NAD(P)H oxidase inhibitor. Rats were given APO 30 min before and 1 hr after QUIN injection or only 30 min after QUIN injection. NAD(P)H oxidase activity was measured in striatal homogenates by O2·− production. QUIN infusion to rats significantly increased striatal NAD(P)H oxidase activity (2 hr postlesion), whereas APO treatments decreased the QUIN‐induced enzyme activity (2 hr postlesion), lipid peroxidation (3 hr postlesion), circling behavior (6 days postlesion), and histological damage (7 days postlesion). The addition of NADH to striatal homogenates increased NAD(P)H oxidase activity in striata from QUIN‐treated animals but not from sham rats. Interestingly, O2·− production in QUIN‐lesioned striata was unaffected by the addition of substrates for intramitochondrial O2·− production, xanthine oxidase and nitric oxide synthase, suggesting that NAD(P)H oxidase may be the main source of O2·− in QUIN‐treated rats. Moreover, the administration of MK‐801 to rats as a pretreatment resulted in a complete prevention of the QUIN‐induced NAD(P)H activation, suggesting that this toxic event is completely dependent on N‐methyl‐D‐aspartate receptor overactivation. Our results also suggest that NAD(P)H oxidase is involved in the pathogenic events linked to excitotoxic/prooxidant conditions. © 2009 Wiley‐Liss, Inc.
AbstractList Intrastriatal injection of quinolinic acid (QUIN) to rodents reproduces some biochemical, morphological, and behavioral characteristics of Huntington's disease. NAD(P)H oxidase is an enzymatic complex that catalyzes superoxide anion (O2.-) production from O2 and NADPH. The present study evaluated the role of NAD(P)H oxidase in the striatal damage induced by QUIN (240 nmol/ mu l) in adult male Wistar rats by means of apocynin (APO; 5 mg/kg i.p.), a specific NAD(P)H oxidase inhibitor. Rats were given APO 30 min before and 1 hr after QUIN injection or only 30 min after QUIN injection. NAD(P)H oxidase activity was measured in striatal homogenates by O2.- production. QUIN infusion to rats significantly increased striatal NAD(P)H oxidase activity (2 hr postlesion), whereas APO treatments decreased the QUIN-induced enzyme activity (2 hr postlesion), lipid peroxidation (3 hr postlesion), circling behavior (6 days postlesion), and histological damage (7 days postlesion). The addition of NADH to striatal homogenates increased NAD(P)H oxidase activity in striata from QUIN-treated animals but not from sham rats. Interestingly, O2.- production in QUIN-lesioned striata was unaffected by the addition of substrates for intramitochondrial O2.- production, xanthine oxidase and nitric oxide synthase, suggesting that NAD(P)H oxidase may be the main source of O2.- in QUIN-treated rats. Moreover, the administration of MK-801 to rats as a pretreatment resulted in a complete prevention of the QUIN-induced NAD(P)H activation, suggesting that this toxic event is completely dependent on N-methyl-D-aspartate receptor overactivation. Our results also suggest that NAD(P)H oxidase is involved in the pathogenic events linked to excitotoxic/prooxidant conditions. [copy 2009 Wiley-Liss, Inc.
Intrastriatal injection of quinolinic acid (QUIN) to rodents reproduces some biochemical, morphological, and behavioral characteristics of Huntington's disease. NAD(P)H oxidase is an enzymatic complex that catalyzes superoxide anion (O sub(2). super(-)) production from O sub(2) and NADPH. The present study evaluated the role of NAD(P)H oxidase in the striatal damage induced by QUIN (240 nmol/[micro]l) in adult male Wistar rats by means of apocynin (APO; 5 mg/kg i.p.), a specific NAD(P)H oxidase inhibitor. Rats were given APO 30 min before and 1 hr after QUIN injection or only 30 min after QUIN injection. NAD(P)H oxidase activity was measured in striatal homogenates by O sub(2). super(-) production. QUIN infusion to rats significantly increased striatal NAD(P)H oxidase activity (2 hr postlesion), whereas APO treatments decreased the QUIN-induced enzyme activity (2 hr postlesion), lipid peroxidation (3 hr postlesion), circling behavior (6 days postlesion), and histological damage (7 days postlesion). The addition of NADH to striatal homogenates increased NAD(P)H oxidase activity in striata from QUIN-treated animals but not from sham rats. Interestingly, O sub(2). super(-) production in QUIN-lesioned striata was unaffected by the addition of substrates for intramitochondrial O sub(2). super(-) production, xanthine oxidase and nitric oxide synthase, suggesting that NAD(P)H oxidase may be the main source of O sub(2). super(-) in QUIN-treated rats. Moreover, the administration of MK-801 to rats as a pretreatment resulted in a complete prevention of the QUIN-induced NAD(P)H activation, suggesting that this toxic event is completely dependent on N-methyl-D-aspartate receptor overactivation. Our results also suggest that NAD(P)H oxidase is involved in the pathogenic events linked to excitotoxic/prooxidant conditions.
Intrastriatal injection of quinolinic acid (QUIN) to rodents reproduces some biochemical, morphological, and behavioral characteristics of Huntington's disease. NAD(P)H oxidase is an enzymatic complex that catalyzes superoxide anion (O2·−) production from O2 and NADPH. The present study evaluated the role of NAD(P)H oxidase in the striatal damage induced by QUIN (240 nmol/μl) in adult male Wistar rats by means of apocynin (APO; 5 mg/kg i.p.), a specific NAD(P)H oxidase inhibitor. Rats were given APO 30 min before and 1 hr after QUIN injection or only 30 min after QUIN injection. NAD(P)H oxidase activity was measured in striatal homogenates by O2·− production. QUIN infusion to rats significantly increased striatal NAD(P)H oxidase activity (2 hr postlesion), whereas APO treatments decreased the QUIN‐induced enzyme activity (2 hr postlesion), lipid peroxidation (3 hr postlesion), circling behavior (6 days postlesion), and histological damage (7 days postlesion). The addition of NADH to striatal homogenates increased NAD(P)H oxidase activity in striata from QUIN‐treated animals but not from sham rats. Interestingly, O2·− production in QUIN‐lesioned striata was unaffected by the addition of substrates for intramitochondrial O2·− production, xanthine oxidase and nitric oxide synthase, suggesting that NAD(P)H oxidase may be the main source of O2·− in QUIN‐treated rats. Moreover, the administration of MK‐801 to rats as a pretreatment resulted in a complete prevention of the QUIN‐induced NAD(P)H activation, suggesting that this toxic event is completely dependent on N‐methyl‐D‐aspartate receptor overactivation. Our results also suggest that NAD(P)H oxidase is involved in the pathogenic events linked to excitotoxic/prooxidant conditions. © 2009 Wiley‐Liss, Inc.
Intrastriatal injection of quinolinic acid (QUIN) to rodents reproduces some biochemical, morphological, and behavioral characteristics of Huntington's disease. NAD(P)H oxidase is an enzymatic complex that catalyzes superoxide anion (O 2 · − ) production from O 2 and NADPH. The present study evaluated the role of NAD(P)H oxidase in the striatal damage induced by QUIN (240 nmol/μl) in adult male Wistar rats by means of apocynin (APO; 5 mg/kg i.p.), a specific NAD(P)H oxidase inhibitor. Rats were given APO 30 min before and 1 hr after QUIN injection or only 30 min after QUIN injection. NAD(P)H oxidase activity was measured in striatal homogenates by O 2 · − production. QUIN infusion to rats significantly increased striatal NAD(P)H oxidase activity (2 hr postlesion), whereas APO treatments decreased the QUIN‐induced enzyme activity (2 hr postlesion), lipid peroxidation (3 hr postlesion), circling behavior (6 days postlesion), and histological damage (7 days postlesion). The addition of NADH to striatal homogenates increased NAD(P)H oxidase activity in striata from QUIN‐treated animals but not from sham rats. Interestingly, O 2 · − production in QUIN‐lesioned striata was unaffected by the addition of substrates for intramitochondrial O 2 · − production, xanthine oxidase and nitric oxide synthase, suggesting that NAD(P)H oxidase may be the main source of O 2 · − in QUIN‐treated rats. Moreover, the administration of MK‐801 to rats as a pretreatment resulted in a complete prevention of the QUIN‐induced NAD(P)H activation, suggesting that this toxic event is completely dependent on N‐methyl‐D‐aspartate receptor overactivation. Our results also suggest that NAD(P)H oxidase is involved in the pathogenic events linked to excitotoxic/prooxidant conditions. © 2009 Wiley‐Liss, Inc.
Intrastriatal injection of quinolinic acid (QUIN) to rodents reproduces some biochemical, morphological, and behavioral characteristics of Huntington's disease. NAD(P)H oxidase is an enzymatic complex that catalyzes superoxide anion (O(2).(-)) production from O(2) and NADPH. The present study evaluated the role of NAD(P)H oxidase in the striatal damage induced by QUIN (240 nmol/microl) in adult male Wistar rats by means of apocynin (APO; 5 mg/kg i.p.), a specific NAD(P)H oxidase inhibitor. Rats were given APO 30 min before and 1 hr after QUIN injection or only 30 min after QUIN injection. NAD(P)H oxidase activity was measured in striatal homogenates by O2(*)(-) production. QUIN infusion to rats significantly increased striatal NAD(P)H oxidase activity (2 hr postlesion), whereas APO treatments decreased the QUIN-induced enzyme activity (2 hr postlesion), lipid peroxidation (3 hr postlesion), circling behavior (6 days postlesion), and histological damage (7 days postlesion). The addition of NADH to striatal homogenates increased NAD(P)H oxidase activity in striata from QUIN-treated animals but not from sham rats. Interestingly, O2(*)(-) production in QUIN-lesioned striata was unaffected by the addition of substrates for intramitochondrial O2(*)(-) production, xanthine oxidase and nitric oxide synthase, suggesting that NAD(P)H oxidase may be the main source of O2(*)(-) in QUIN-treated rats. Moreover, the administration of MK-801 to rats as a pretreatment resulted in a complete prevention of the QUIN-induced NAD(P)H activation, suggesting that this toxic event is completely dependent on N-methyl-D-aspartate receptor overactivation. Our results also suggest that NAD(P)H oxidase is involved in the pathogenic events linked to excitotoxic/prooxidant conditions.
Author Molina-Jijón, E.
Galván-Arzate, S.
Maldonado, P.D.
Villeda-Hernández, J.
Santamaría, A.
Pedraza-Chaverrí, J.
Author_xml – sequence: 1
  givenname: P.D.
  surname: Maldonado
  fullname: Maldonado, P.D.
  organization: Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, México D.F., México
– sequence: 2
  givenname: E.
  surname: Molina-Jijón
  fullname: Molina-Jijón, E.
  organization: Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México D.F., México
– sequence: 3
  givenname: J.
  surname: Villeda-Hernández
  fullname: Villeda-Hernández, J.
  organization: Laboratorio de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, México D.F., México
– sequence: 4
  givenname: S.
  surname: Galván-Arzate
  fullname: Galván-Arzate, S.
  organization: Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, México D.F., México
– sequence: 5
  givenname: A.
  surname: Santamaría
  fullname: Santamaría, A.
  organization: Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, México D.F., México
– sequence: 6
  givenname: J.
  surname: Pedraza-Chaverrí
  fullname: Pedraza-Chaverrí, J.
  email: pedraza@unam.mx
  organization: Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México D.F., México
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19795371$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAYRS1URKeFBS-AvCtdpGM7dhyzqwrMgKqh4kdIbCwn-YJcMvbUdmDmHXhoPM0AKyRW_jv36LPuCTpy3gFCTym5oISw-a0LF4wxTh6gGSVKFlxweYRmpKxIwQllx-gkxltCiFKifISOqZJ5I-kM_Vxdvnx-c77Efms7EwG33qVgmzFBxMljB2PwKT-2Nu2wddg4DNt8mC7nm-Dvky7hte9gwL7Hy9El674m784i7myEvTdHg0nxBb7JPmiT_Q44-AH2AbPx7c5Z9xg97M0Q4clhPUWfXr_6eLUsrt8t3lxdXhctZ_lHPVM1oVx0UHdcqIaVZcVlrxjntagaJTrGQMq-NSXjsjJMCNX10IMyqmkNL0_R2eTN09-NEJNe29jCMBgHfoy6rkvCaM3_g6yUqIWs6kyeT2QbfIwBer0Jdm3CTlOi9y3p3JK-bymzzw7WsVlD95c81JKB-QT8sAPs_m3Sb1fvfyuLKWFjgu2fhAnfdCVLKfTn1UJ_WZaLDwu60rT8BWX0rls
CitedBy_id crossref_primary_10_1016_j_neulet_2010_08_049
crossref_primary_10_1093_toxsci_kft199
crossref_primary_10_1002_jbt_21679
crossref_primary_10_1016_j_pbb_2012_11_011
crossref_primary_10_1002_glia_22765
crossref_primary_10_4137_IJTR_S8158
crossref_primary_10_1016_j_neulet_2010_03_007
crossref_primary_10_1016_j_neuro_2013_08_013
crossref_primary_10_3390_ijms232315272
crossref_primary_10_1016_j_neuroscience_2018_04_034
crossref_primary_10_1016_j_neuint_2012_05_004
crossref_primary_10_3389_fnagi_2021_736734
crossref_primary_10_1007_s11515_012_1250_y
crossref_primary_10_1016_j_bbadis_2011_11_014
crossref_primary_10_3390_antiox12010094
crossref_primary_10_3892_ijmm_2017_3090
crossref_primary_10_1016_j_biopha_2015_10_007
crossref_primary_10_1016_j_neuroscience_2017_03_011
crossref_primary_10_1515_cclm_2016_1159
crossref_primary_10_1007_s10787_022_01004_z
crossref_primary_10_1016_j_neuroscience_2014_04_043
crossref_primary_10_1152_physrev_00035_2018
crossref_primary_10_1007_s12035_022_02986_1
crossref_primary_10_1089_ars_2013_5703
crossref_primary_10_3390_antiox8090388
crossref_primary_10_1016_j_jnutbio_2011_12_010
crossref_primary_10_1007_s00204_014_1338_z
crossref_primary_10_1016_j_neuroscience_2012_11_031
crossref_primary_10_1186_1471_2369_14_211
crossref_primary_10_1007_s43440_024_00619_z
crossref_primary_10_1093_hmg_dds516
crossref_primary_10_1016_j_neuro_2012_11_007
crossref_primary_10_1089_ars_2010_3713
Cites_doi 10.1016/j.freeradbiomed.2008.06.027
10.1016/0024-3205(84)90148-6
10.1038/sj.bjp.0702940
10.1096/fj.05-5085fje
10.1093/ndt/gfm077
10.1016/j.neuint.2004.06.008
10.1152/ajprenal.00221.2004
10.1074/jbc.M209532200
10.1016/j.brainresbull.2007.12.008
10.1006/exnr.1993.1006
10.1016/j.coi.2003.12.001
10.1038/321168a0
10.1016/j.neulet.2007.08.013
10.1289/ehp.11031
10.1186/1742-2094-4-23
10.1128/MCB.25.21.9304-9317.2005
10.1098/rstb.2005.1766
10.1042/CS20060059
10.1016/S0197-0186(97)90002-4
10.1016/S0076-6879(94)33041-7
10.1074/jbc.M404635200
10.1016/S0006-8993(99)02474-9
10.1016/j.bbamcr.2004.09.006
10.1096/fj.04-1945fje
10.1016/j.brainres.2007.06.046
10.1111/j.1471-4159.2005.03503.x
10.1016/j.cardiores.2006.05.004
10.1046/j.1471-4159.2003.01857.x
10.1111/j.1471-4159.2006.03777.x
10.1021/tx9701790
10.1523/JNEUROSCI.5207-04.2005
10.1523/JNEUROSCI.4042-03.2004
10.1111/j.1471-4159.2008.05347.x
10.1006/bbrc.2000.2897
10.1111/j.1471-4159.2009.05999.x
10.1111/j.1471-4159.2007.05174.x
10.1016/S0278-5846(98)00070-0
10.1016/S0891-5849(03)00317-4
10.1523/JNEUROSCI.23-15-06181.2003
10.1089/neu.1989.6.247
10.1016/0304-3940(93)90796-N
10.1126/science.6849138
10.1016/j.neuroscience.2005.06.027
10.1096/fj.03-0109fje
10.1007/s12149-008-0216-2
10.1016/j.neuro.2007.07.010
10.1097/00001756-200108280-00020
10.1155/2008/106507
10.1016/0028-3908(83)90221-6
10.1073/pnas.0937239100
ContentType Journal Article
Copyright Copyright © 2009 Wiley‐Liss, Inc.
Copyright 2009 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2009 Wiley‐Liss, Inc.
– notice: Copyright 2009 Wiley-Liss, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
DOI 10.1002/jnr.22240
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
DatabaseTitleList Neurosciences Abstracts
Neurosciences Abstracts

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1097-4547
EndPage 629
ExternalDocumentID 10_1002_jnr_22240
19795371
JNR22240
ark_67375_WNG_ZH3GSG1N_1
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CONACyT
  funderid: 48370‐Q; 48812
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GAKWD
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWD
RWI
RX1
RYL
SUPJJ
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7TK
ID FETCH-LOGICAL-c4260-f2980145de8d459b233647f9244856b95d22e77fca32476a2559dfefe9a9bca43
IEDL.DBID 33P
ISSN 0360-4012
1097-4547
IngestDate Fri Aug 16 10:42:21 EDT 2024
Sat Aug 17 04:07:32 EDT 2024
Thu Nov 21 22:21:33 EST 2024
Sat Sep 28 07:49:02 EDT 2024
Sat Aug 24 01:06:27 EDT 2024
Wed Oct 30 09:56:42 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Copyright 2009 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4260-f2980145de8d459b233647f9244856b95d22e77fca32476a2559dfefe9a9bca43
Notes ark:/67375/WNG-ZH3GSG1N-1
ArticleID:JNR22240
istex:228549F9FD8F6694545B1BE97671BFFB29D8F9EF
CONACyT - No. 48370-Q; No. 48812
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 19795371
PQID 869585768
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_883021844
proquest_miscellaneous_869585768
crossref_primary_10_1002_jnr_22240
pubmed_primary_19795371
wiley_primary_10_1002_jnr_22240_JNR22240
istex_primary_ark_67375_WNG_ZH3GSG1N_1
PublicationCentury 2000
PublicationDate 2010-02-15
15 February 2010
2010-Feb-15
20100215
PublicationDateYYYYMMDD 2010-02-15
PublicationDate_xml – month: 02
  year: 2010
  text: 2010-02-15
  day: 15
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of neuroscience research
PublicationTitleAlternate J. Neurosci. Res
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Gao HM,Liu B,Hong JS. 2003a. Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 23: 6181-6187.
Wu DC,Teismann P,Tieu K,Vila M,Jackson-Lewis V,Ischiropoulos H,Przedborski S. 2003. NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Proc Natl Acad Sci U S A 100: 6145-6150.
Santamaría A,Flores-Escartín A,Martínez JC,Osorio L,Galvan-Arzate S,Pedraza-Chaverrí J,Maldonado PD,Medina-Campos ON,Jimenez-Capdeville ME,Manjarrez J,Rios C. 2003a. Copper blocks quinolinic acid neurotoxicity in rats: contribution of antioxidant systems. Free Radic Biol Med 35: 418-427.
Qian L,Xu Z,Zhang W,Wilson B,Hong JS,Flood PM. 2007. Sinomenine, a natural dextrorotatory morphinan analog, is anti-inflammatory and neuroprotective through inhibition of microglial NADPH oxidase. J Neuroinflammation 4: 23.
Park L,Anrather J,Zhou P,Frys K,Pitstick R,Younkin S,Carlson GA,Iadecola C. 2005. NADPH oxidase-derived reactive oxygen species mediate the cerebrovascular dysfunction induced by the amyloid β peptide. J Neurosci 25: 1769-1777.
Foster AC,Collins JF,Schwarcz R. 1983. On the excitotoxic properties of quinolinic acid, 2,3-piperidine dicarboxylic acids and structurally related compounds. Neuropharmacology 22: 1331-1342.
Ferrante RJ,Kowall NW,Cipolloni PB,Storey E,Beal MF. 1993. Excitotoxin lesions in primates as a model for Huntington's disease: histopathologic and neurochemical characterization. Exp Neurol 119: 46-71.
Santamaría A,Jiménez-Capdeville ME,Camacho A,Rodríguez-Martínez E,Flores A,Galván-Arzate S. 2001. In vivo hydroxyl radical formation alter quinolinic acid infusion into rat corpus striatum. Neuroreport 12: 2693-2696.
Orient A,Donkó A,Szabó A,Leto TL,Geiszt M. 2007. Novel sources of reactive oxygen species in the human body. Nephrol Dial Transplant 22: 1281-1288.
Gerard-Monnier D,Erdelmeier I,Regnard K,Moze-Henry N,Yadan JC,Chaudiere J. 1998. Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4 hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation. Chem Res Toxicol 11: 1176-1183.
Maldonado PD,Chanez-Cardenas ME,Barrera D,Villeda-Hernández J,Santamaria A,Pedraza-Chaverri J. 2007. Poly(ADP-ribose) polymerase-1 is involved in the neuronal death induced by quinolinic acid in rats. Neurosci Lett 425: 28-33.
Joglar B,Rodriguez-Pallares J,Rodriguez-Perez AI,Rey P,Guerra MJ,Labandeira-Garcia JL. 2009. The inflammatory response in the MPTP model of Parkinson's disease is mediated by brain angiotensin: relevance to progression of the disease. J Neurochem 109: 656-569.
Rodríguez-Martínez E,Camacho A,Maldonado PD,Pedraza-Chaverrí J,Santamaría D,Galván-Arzate S,Santamaría A. 2000. Effect of quinolinic acid on endogenous antioxidants in rat corpus striatum. Brain Res 858: 436-439.
Stone TW. 1993. Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45: 309-379.
Beal MF,Kowall NW,Ellison DW,Mazurek MF,Swartz KJ,Martin JB. 1986. Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature 321: 168-171.
Coyoy A,Valencia A,Guemez-Gamboa A,Morán J. 2008. Role of NADPH oxidase in the apoptotic death of cultured cerebellar granule neurons. Free Radic Biol Med 45: 1056-1064.
Schwarcz R,Foster AC,French ED,Whetsell WOJr,Kohler C. 1984. Excitotoxic models for neurodegenerative disorders. Life Sci 35: 19-32.
Silva-Adaya D,Pérez-De La Cruz V,Herrera-Mundo MN,Mendoza-Macedo K,Villeda-Hernández J,Binienda Z,Ali SF,Santamaría A. 2008. Excitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain: antioxidant and neuroprotective effects of L-carnitine. J Neurochem 105: 677-689.
Abramov AY,Canevari L,Duchen MR. 2004a. α-Amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci 24: 565-575.
Abramov AY,Canevari L,Duchen MR. 2004b. Calcium signals induced by amyloid beta peptide and their consequences in neurons and astrocytes in culture. Biochim Biophys Acta 1742: 81-87.
Stefanska J,Pawliczak R. 2008. Apocynin: molecular aptitudes. Mediators Inflamm 2008: 1-10.
Pérez-De La Cruz V,González-Cortés C,Galván-Arzate S,Medina-Campos ON,Pérez-Severiano F,Ali SF,Pedraza-Chaverrí J,Santamaría A. 2005. Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III). Neuroscience 135: 463-474.
Stípek S,Stastny F,Plateník J,Crkovska J,Zima T. 1997. The effect of quinolinate on rat brain lipid peroxidation is dependent on iron. Neurochem Int 30: 233-237.
Perez-Severiano F,Rodríguez-Perez M,Pedraza-Chaverrí J,Maldonado PD,Medina-Campos ON,Ortíz-Plata A,Sanchez-García A,Villeda-Hernandez J,Galvan-Arzate S,Aguilera P,Santamaría A. 2004. S-allylcysteine, a garlic-derived antioxidant, ameliorates quinolinic acid-induced neurotoxicity and oxidative damage in rats Neurochem Int 45: 1175-1183.
Santamaría A,Ríos C. 1993. MK-801, an N-methyl-D-aspartate receptor antagonist, blocks quinolinic acid-induced lipid peroxidation in rat corpus striatum. Neurosci Lett 159: 51-54.
Schwarcz R,Whetsell WOJr,Mangano RM. 1983. Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219: 316-318.
Jacquard C,Trioulier Y,Cosker F,Escartin C,Bizat N,Hantraye P,Cancela JM,Bonvento G,Brouillet E. 2006. Brain mitochondrial defects amplify intracellular [Ca2+] rise and neurodegeneration but not Ca2+ entry during NMDA receptor activation. FASEB J 20: 1021-1023.
Santamaría A,Salvatierra-Sanchez R,Vazquez-Roman B,Santiago-Lopez D,Villeda-Hernandez J,Galvan-Arzate S,Jimenez-Capdeville ME,Ali SF. 2003b. Protective effects of the antioxidant selenium on quinolinic acid-induced neurotoxicity in rats: in vitro and in vivo studies. J Neurochem 86: 479-488.
Geiszt M. 2006. NADPH oxidases: new kids on the block. Cardiovasc Res 71: 289-299.
Miller RL,Sun GY,Sun AY. 2007. Cytotoxicity of paraquat in microglial cells: involvement of PKCdelta- and ERK1/2-dependent NADPH oxidase. Brain Res 1167: 129-139.
Block ML,Wu X,Pei Z,Li G,Wang T,Qin L,Wilson B,Yang J,Hong JS,Veronesi B. 2004. Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase. FASEB J 18: 1618-1620.
Babior BM. 2004. NADPH oxidase. Curr Opin Immunol 16: 42-47.
Mcintosh TK,Vink R,Soares H,Hayes R,Simon R. 1989. Effects of the N-methyl-D-aspartate receptor blocker MK-801 on neurologic function after experimental brain injury. J Neurotrauma 6: 247-259.
Aguilera P,Chanez-Cardenas ME,Floriano-Sanchez E,Barrera D,Santamaria A,Sanchez-Gonzalez DJ,Perez-Severiano F,Pedraza-Chaverri J,Jimenez PD. 2007. Time-related changes in constitutive and inducible nitric oxide synthases in the rat striatum in a model of Huntington's disease. Neurotoxicology 28: 1200-1207.
Gao X,Hu X,Qian L,Yang S,Zhang W,Zhang D,Wu X,Fraser A,Wilson B,Flood PM,Block M,Hong JS. 2008. Formyl-methionyl-leucyl-phenylalanine-induced dopaminergic neurotoxicity via microglial activation: a mediator between peripheral infection and neurodegeneration? Environ Health Perspect 116: 593-598.
Reznick AZ,Packer L. 1994. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233: 357-363.
Casarejos MJ,Menendez J,Solano RM,Rodríguez-Navarro JA,García de Yebenes J,Mena MA. 2006. Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline. J Neurochem 97: 934-946.
Hirose S,Momosaki S,Hosoi R,Abe K,Gee A,Inoue O. 2009. Role of NMDA receptor upon [14C]acetate uptake into intact rat brain. Ann Nucl Med 23: 143-147.
Shimohama S,Tanino H,Kawakami N,Okamura N,Kodama H,Yamaguchi T,Hayakawa T,Nunomura A,Chiba S,Perry G,Smith MA,Fujimoto S. 2000. Activation of NADPH oxidase in Alzheimer's disease brains. Biochem Biophys Res Commun 273: 5-9.
Quinn MT,Ammons MC,Deleo FR. 2006. The expanding role of NADPH oxidases in health and disease: no longer just agents of death and destruction. Clin Sci 111: 1-20.
Satoh M,Fujimoto S,Haruna Y,Arakawa S,Horike H,Komai N,Sasaki T,Tsujioka K,Makino H,Kashihara N. 2005. NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy. Am J Physiol Renal Physiol 288: F1144-F1152.
Hashimoto Y,Chiba T,Yamada M,Nawa M,Kanekura K,Suzuki H,Terracita K,Aiso S,Nishimoto I,Matsuoka M. 2005. Transforming growth factor β2 is a neuronal death-inducing ligand for amyloid-β precursor protein. Mol Cell Biol 25: 9304-9317.
Shelat PB,Chalimoniuk M,Wang JH,Strosznajder JB,Lee JC,Sun AY,Simonyi A,Sun GY. 2008. Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J Neurochem 106: 45-55.
Paxinos G,Watson C. 1998. The rat brain in stereotaxic coordinates. San Diego: Academic Press.
Abramov AY,Duchen MR. 2005. The role of an astrocytic NADPH oxidase in the neurotoxicity of amyloid beta peptides. Philos Trans R Soc Lond B Biol Sci 360: 2309-2314.
Avila DS,Gubert P,Palma A,Colle D,Alves D,Nogueira CW,Rocha JB,Soares FA. 2008. An organotellurium compound with antioxidant activity against excitotoxic agents without neurotoxic effects in brain of rats. Brain Res Bull 76: 114-123.
Santamaría A,Jiménez ME. 2005. Oxidative/nitrosative stress, a common factor in different neurotoxic paradigms: an overview. Curr Topics Neurochem 4: 1-20.
Gao HM,Liu B,Zhang W,Hong JS. 2003b. Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson's disease. FASEB J 17: 1954-1956.
Behan WM,McDonald M,Darlington LG,Stone TW. 1999. Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl. Br J Pharmacol 128: 1754-1760.
Choi SH,Lee DY,Chung ES,Hong YB
2000; 858
2006; 71
2007; 425
2005; 135
2003b; 86
2008; 106
2008; 76
2008; 105
1999; 128
2008; 2008
2003a; 35
2005; 25
2007; 28
2003b; 17
2006; 20
2008; 116
2007; 4
2001; 12
2007; 22
2003a; 23
1998; 11
1983; 22
2009; 23
1994; 233
1993; 45
2006; 97
2007; 1167
2004a; 24
1989; 6
2004; 45
1998
2000; 273
2006; 111
1983; 219
1998; 22
2005; 360
2004b; 1742
2004; 279
1993; 119
2004; 18
2004; 16
1986; 321
2005; 288
1997; 30
1984; 35
2005; 95
2005; 4
2008; 45
2009; 109
1993; 159
2003; 100
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
Santamaría A (e_1_2_6_38_1) 2005; 4
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
Stone TW (e_1_2_6_52_1) 1993; 45
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 360
  start-page: 2309
  year: 2005
  end-page: 2314
  article-title: The role of an astrocytic NADPH oxidase in the neurotoxicity of amyloid beta peptides
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 22
  start-page: 1281
  year: 2007
  end-page: 1288
  article-title: Novel sources of reactive oxygen species in the human body
  publication-title: Nephrol Dial Transplant
– volume: 106
  start-page: 45
  year: 2008
  end-page: 55
  article-title: Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons
  publication-title: J Neurochem
– volume: 1167
  start-page: 129
  year: 2007
  end-page: 139
  article-title: Cytotoxicity of paraquat in microglial cells: involvement of PKCdelta‐ and ERK1/2‐dependent NADPH oxidase
  publication-title: Brain Res
– volume: 279
  start-page: 51451
  year: 2004
  end-page: 51459
  article-title: Fibrillar amyloid‐β peptides kill human primary neurons via NADPH oxidase‐mediated activation of neutral sphingomyelinase: implications for Alzheimer's disease
  publication-title: J Biol Chem
– volume: 45
  start-page: 309
  year: 1993
  end-page: 379
  article-title: Neuropharmacology of quinolinic and kynurenic acids
  publication-title: Pharmacol Rev
– volume: 97
  start-page: 934
  year: 2006
  end-page: 946
  article-title: Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline
  publication-title: J Neurochem
– volume: 116
  start-page: 593
  year: 2008
  end-page: 598
  article-title: Formyl‐methionyl‐leucyl‐phenylalanine‐induced dopaminergic neurotoxicity via microglial activation: a mediator between peripheral infection and neurodegeneration?
  publication-title: Environ Health Perspect
– volume: 11
  start-page: 1176
  year: 1998
  end-page: 1183
  article-title: Reactions of 1‐methyl‐2‐phenylindole with malondialdehyde and 4 hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation
  publication-title: Chem Res Toxicol
– year: 1998
– volume: 2008
  start-page: 1
  year: 2008
  end-page: 10
  article-title: Apocynin: molecular aptitudes
  publication-title: Mediators Inflamm
– volume: 23
  start-page: 143
  year: 2009
  end-page: 147
  article-title: Role of NMDA receptor upon [ C]acetate uptake into intact rat brain
  publication-title: Ann Nucl Med
– volume: 20
  start-page: 1021
  year: 2006
  end-page: 1023
  article-title: Brain mitochondrial defects amplify intracellular [Ca ] rise and neurodegeneration but not Ca entry during NMDA receptor activation
  publication-title: FASEB J
– volume: 30
  start-page: 233
  year: 1997
  end-page: 237
  article-title: The effect of quinolinate on rat brain lipid peroxidation is dependent on iron
  publication-title: Neurochem Int
– volume: 76
  start-page: 114
  year: 2008
  end-page: 123
  article-title: An organotellurium compound with antioxidant activity against excitotoxic agents without neurotoxic effects in brain of rats
  publication-title: Brain Res Bull
– volume: 273
  start-page: 5
  year: 2000
  end-page: 9
  article-title: Activation of NADPH oxidase in Alzheimer's disease brains
  publication-title: Biochem Biophys Res Commun
– volume: 105
  start-page: 677
  year: 2008
  end-page: 689
  article-title: Excitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain: antioxidant and neuroprotective effects of L‐carnitine
  publication-title: J Neurochem
– volume: 45
  start-page: 1056
  year: 2008
  end-page: 1064
  article-title: Role of NADPH oxidase in the apoptotic death of cultured cerebellar granule neurons
  publication-title: Free Radic Biol Med
– volume: 100
  start-page: 6145
  year: 2003
  end-page: 6150
  article-title: NADPH oxidase mediates oxidative stress in the 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine model of Parkinson's disease
  publication-title: Proc Natl Acad Sci U S A
– volume: 25
  start-page: 1769
  year: 2005
  end-page: 1777
  article-title: NADPH oxidase‐derived reactive oxygen species mediate the cerebrovascular dysfunction induced by the amyloid β peptide
  publication-title: J Neurosci
– volume: 233
  start-page: 357
  year: 1994
  end-page: 363
  article-title: Oxidative damage to proteins: spectrophotometric method for carbonyl assay
  publication-title: Methods Enzymol
– volume: 119
  start-page: 46
  year: 1993
  end-page: 71
  article-title: Excitotoxin lesions in primates as a model for Huntington's disease: histopathologic and neurochemical characterization
  publication-title: Exp Neurol
– volume: 159
  start-page: 51
  year: 1993
  end-page: 54
  article-title: MK‐801, an N‐methyl‐D‐aspartate receptor antagonist, blocks quinolinic acid‐induced lipid peroxidation in rat corpus striatum
  publication-title: Neurosci Lett
– volume: 22
  start-page: 1331
  year: 1983
  end-page: 1342
  article-title: On the excitotoxic properties of quinolinic acid, 2,3‐piperidine dicarboxylic acids and structurally related compounds
  publication-title: Neuropharmacology
– volume: 18
  start-page: 1618
  year: 2004
  end-page: 1620
  article-title: Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase
  publication-title: FASEB J
– volume: 288
  start-page: F1144
  year: 2005
  end-page: F1152
  article-title: NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy
  publication-title: Am J Physiol Renal Physiol
– volume: 35
  start-page: 19
  year: 1984
  end-page: 32
  article-title: Excitotoxic models for neurodegenerative disorders
  publication-title: Life Sci
– volume: 109
  start-page: 656
  year: 2009
  end-page: 569
  article-title: The inflammatory response in the MPTP model of Parkinson's disease is mediated by brain angiotensin: relevance to progression of the disease
  publication-title: J Neurochem
– volume: 858
  start-page: 436
  year: 2000
  end-page: 439
  article-title: Effect of quinolinic acid on endogenous antioxidants in rat corpus striatum
  publication-title: Brain Res
– volume: 24
  start-page: 565
  year: 2004a
  end-page: 575
  article-title: α‐Amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase
  publication-title: J Neurosci
– volume: 128
  start-page: 1754
  year: 1999
  end-page: 1760
  article-title: Oxidative stress as a mechanism for quinolinic acid‐induced hippocampal damage: protection by melatonin and deprenyl
  publication-title: Br J Pharmacol
– volume: 28
  start-page: 1200
  year: 2007
  end-page: 1207
  article-title: Time‐related changes in constitutive and inducible nitric oxide synthases in the rat striatum in a model of Huntington's disease
  publication-title: Neurotoxicology
– volume: 4
  start-page: 23
  year: 2007
  article-title: Sinomenine, a natural dextrorotatory morphinan analog, is anti‐inflammatory and neuroprotective through inhibition of microglial NADPH oxidase
  publication-title: J Neuroinflammation
– volume: 45
  start-page: 1175
  year: 2004
  end-page: 1183
  article-title: S‐allylcysteine, a garlic‐derived antioxidant, ameliorates quinolinic acid‐induced neurotoxicity and oxidative damage in rats
  publication-title: Neurochem Int
– volume: 17
  start-page: 1954
  year: 2003b
  end-page: 1956
  article-title: Critical role of microglial NADPH oxidase‐derived free radicals in the in vitro MPTP model of Parkinson's disease
  publication-title: FASEB J
– volume: 111
  start-page: 1
  year: 2006
  end-page: 20
  article-title: The expanding role of NADPH oxidases in health and disease: no longer just agents of death and destruction
  publication-title: Clin Sci
– volume: 1742
  start-page: 81
  year: 2004b
  end-page: 87
  article-title: Calcium signals induced by amyloid beta peptide and their consequences in neurons and astrocytes in culture
  publication-title: Biochim Biophys Acta
– volume: 22
  start-page: 1217
  year: 1998
  end-page: 1240
  article-title: Comparison of intrastriatal injections of quinolinic acid and 3‐nitropropionic acid for use in animal models of Huntington's disease
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
– volume: 16
  start-page: 42
  year: 2004
  end-page: 47
  article-title: NADPH oxidase
  publication-title: Curr Opin Immunol
– volume: 425
  start-page: 28
  year: 2007
  end-page: 33
  article-title: Poly(ADP‐ribose) polymerase‐1 is involved in the neuronal death induced by quinolinic acid in rats
  publication-title: Neurosci Lett
– volume: 23
  start-page: 6181
  year: 2003a
  end-page: 6187
  article-title: Critical role for microglial NADPH oxidase in rotenone‐induced degeneration of dopaminergic neurons
  publication-title: J Neurosci
– volume: 12
  start-page: 2693
  year: 2001
  end-page: 2696
  article-title: In vivo hydroxyl radical formation alter quinolinic acid infusion into rat corpus striatum
  publication-title: Neuroreport
– volume: 25
  start-page: 9304
  year: 2005
  end-page: 9317
  article-title: Transforming growth factor β2 is a neuronal death‐inducing ligand for amyloid‐β precursor protein
  publication-title: Mol Cell Biol
– volume: 4
  start-page: 1
  year: 2005
  end-page: 20
  article-title: Oxidative/nitrosative stress, a common factor in different neurotoxic paradigms: an overview
  publication-title: Curr Topics Neurochem
– volume: 95
  start-page: 1755
  year: 2005
  end-page: 1765
  article-title: Inhibition of thrombin‐induced microglial activation and NADPH oxidase by minocycline protects dopaminergic neurons in the substantia nigra in vivo
  publication-title: J Neurochem
– volume: 321
  start-page: 168
  year: 1986
  end-page: 171
  article-title: Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid
  publication-title: Nature
– volume: 135
  start-page: 463
  year: 2005
  end-page: 474
  article-title: Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20‐tetrakis (4‐sulfonatophenyl)porphyrinate iron (III)
  publication-title: Neuroscience
– volume: 6
  start-page: 247
  year: 1989
  end-page: 259
  article-title: Effects of the N‐methyl‐D‐aspartate receptor blocker MK‐801 on neurologic function after experimental brain injury
  publication-title: J Neurotrauma
– volume: 86
  start-page: 479
  year: 2003b
  end-page: 488
  article-title: Protective effects of the antioxidant selenium on quinolinic acid‐induced neurotoxicity in rats: in vitro and in vivo studies
  publication-title: J Neurochem
– volume: 219
  start-page: 316
  year: 1983
  end-page: 318
  article-title: Quinolinic acid: an endogenous metabolite that produces axon‐sparing lesions in rat brain
  publication-title: Science
– volume: 71
  start-page: 289
  year: 2006
  end-page: 299
  article-title: NADPH oxidases: new kids on the block
  publication-title: Cardiovasc Res
– volume: 35
  start-page: 418
  year: 2003a
  end-page: 427
  article-title: Copper blocks quinolinic acid neurotoxicity in rats: contribution of antioxidant systems
  publication-title: Free Radic Biol Med
– ident: e_1_2_6_13_1
  doi: 10.1016/j.freeradbiomed.2008.06.027
– ident: e_1_2_6_45_1
  doi: 10.1016/0024-3205(84)90148-6
– ident: e_1_2_6_9_1
  doi: 10.1038/sj.bjp.0702940
– ident: e_1_2_6_23_1
  doi: 10.1096/fj.05-5085fje
– ident: e_1_2_6_29_1
  doi: 10.1093/ndt/gfm077
– ident: e_1_2_6_33_1
  doi: 10.1016/j.neuint.2004.06.008
– ident: e_1_2_6_43_1
  doi: 10.1152/ajprenal.00221.2004
– volume: 4
  start-page: 1
  year: 2005
  ident: e_1_2_6_38_1
  article-title: Oxidative/nitrosative stress, a common factor in different neurotoxic paradigms: an overview
  publication-title: Curr Topics Neurochem
  contributor:
    fullname: Santamaría A
– ident: e_1_2_6_31_1
  doi: 10.1074/jbc.M209532200
– ident: e_1_2_6_6_1
  doi: 10.1016/j.brainresbull.2007.12.008
– ident: e_1_2_6_14_1
  doi: 10.1006/exnr.1993.1006
– ident: e_1_2_6_7_1
  doi: 10.1016/j.coi.2003.12.001
– ident: e_1_2_6_8_1
  doi: 10.1038/321168a0
– ident: e_1_2_6_26_1
  doi: 10.1016/j.neulet.2007.08.013
– ident: e_1_2_6_18_1
  doi: 10.1289/ehp.11031
– ident: e_1_2_6_34_1
  doi: 10.1186/1742-2094-4-23
– ident: e_1_2_6_21_1
  doi: 10.1128/MCB.25.21.9304-9317.2005
– ident: e_1_2_6_2_1
  doi: 10.1098/rstb.2005.1766
– ident: e_1_2_6_35_1
  doi: 10.1042/CS20060059
– ident: e_1_2_6_51_1
  doi: 10.1016/S0197-0186(97)90002-4
– ident: e_1_2_6_36_1
  doi: 10.1016/S0076-6879(94)33041-7
– ident: e_1_2_6_24_1
  doi: 10.1074/jbc.M404635200
– ident: e_1_2_6_37_1
  doi: 10.1016/S0006-8993(99)02474-9
– ident: e_1_2_6_4_1
  doi: 10.1016/j.bbamcr.2004.09.006
– ident: e_1_2_6_10_1
  doi: 10.1096/fj.04-1945fje
– ident: e_1_2_6_28_1
  doi: 10.1016/j.brainres.2007.06.046
– ident: e_1_2_6_12_1
  doi: 10.1111/j.1471-4159.2005.03503.x
– ident: e_1_2_6_19_1
  doi: 10.1016/j.cardiores.2006.05.004
– ident: e_1_2_6_42_1
  doi: 10.1046/j.1471-4159.2003.01857.x
– ident: e_1_2_6_11_1
  doi: 10.1111/j.1471-4159.2006.03777.x
– ident: e_1_2_6_20_1
  doi: 10.1021/tx9701790
– volume: 45
  start-page: 309
  year: 1993
  ident: e_1_2_6_52_1
  article-title: Neuropharmacology of quinolinic and kynurenic acids
  publication-title: Pharmacol Rev
  contributor:
    fullname: Stone TW
– ident: e_1_2_6_30_1
  doi: 10.1523/JNEUROSCI.5207-04.2005
– ident: e_1_2_6_3_1
  doi: 10.1523/JNEUROSCI.4042-03.2004
– ident: e_1_2_6_47_1
  doi: 10.1111/j.1471-4159.2008.05347.x
– ident: e_1_2_6_48_1
  doi: 10.1006/bbrc.2000.2897
– ident: e_1_2_6_25_1
  doi: 10.1111/j.1471-4159.2009.05999.x
– ident: e_1_2_6_49_1
  doi: 10.1111/j.1471-4159.2007.05174.x
– ident: e_1_2_6_46_1
  doi: 10.1016/S0278-5846(98)00070-0
– ident: e_1_2_6_41_1
  doi: 10.1016/S0891-5849(03)00317-4
– ident: e_1_2_6_16_1
  doi: 10.1523/JNEUROSCI.23-15-06181.2003
– ident: e_1_2_6_27_1
  doi: 10.1089/neu.1989.6.247
– ident: e_1_2_6_39_1
  doi: 10.1016/0304-3940(93)90796-N
– ident: e_1_2_6_44_1
  doi: 10.1126/science.6849138
– ident: e_1_2_6_32_1
  doi: 10.1016/j.neuroscience.2005.06.027
– ident: e_1_2_6_17_1
  doi: 10.1096/fj.03-0109fje
– ident: e_1_2_6_22_1
  doi: 10.1007/s12149-008-0216-2
– ident: e_1_2_6_5_1
  doi: 10.1016/j.neuro.2007.07.010
– ident: e_1_2_6_40_1
  doi: 10.1097/00001756-200108280-00020
– ident: e_1_2_6_50_1
  doi: 10.1155/2008/106507
– ident: e_1_2_6_15_1
  doi: 10.1016/0028-3908(83)90221-6
– ident: e_1_2_6_53_1
  doi: 10.1073/pnas.0937239100
SSID ssj0009953
Score 2.2243721
Snippet Intrastriatal injection of quinolinic acid (QUIN) to rodents reproduces some biochemical, morphological, and behavioral characteristics of Huntington's...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 620
SubjectTerms Acetophenones - pharmacology
Animals
apocynin
Corpus Striatum - drug effects
Corpus Striatum - metabolism
Corpus Striatum - pathology
Disease Models, Animal
Huntington Disease - chemically induced
Huntington Disease - drug therapy
Huntington Disease - metabolism
Lipid Peroxidation - drug effects
Male
Malondialdehyde - metabolism
Motor Activity - drug effects
NAD(P)H oxidase
NADPH Oxidases - antagonists & inhibitors
NADPH Oxidases - metabolism
Neuroprotective Agents - pharmacology
neurotoxicity
Nitric Oxide Synthase - metabolism
oxidative stress
Protein Carbonylation - drug effects
Quinolinic Acid
Rats
Rats, Wistar
Superoxides - metabolism
Time Factors
Xanthine Oxidase - metabolism
Title NAD(P)H oxidase contributes to neurotoxicity in an excitotoxic/prooxidant model of Huntington's disease in rats: Protective role of apocynin
URI https://api.istex.fr/ark:/67375/WNG-ZH3GSG1N-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjnr.22240
https://www.ncbi.nlm.nih.gov/pubmed/19795371
https://search.proquest.com/docview/869585768
https://search.proquest.com/docview/883021844
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagXLjQlgJdXrIQKuUQmjhOHNPTij5WHKIVBYG4WE5sSwuqU212pe1_6I9mxt6HKgFC4paHJ7Ls8cx88cxnQl6Dx3Ut4IDEmrJIeGFkIvOMJyWvrEi10LzE4uTRhai_VSenSJNzvKqFifwQ6x9uuDKCvcYFrpv-aEMa-sNP3zF0SGB_ASWE8o18vCHclZGBMi9TwEgZW7EKpexoLXnLF93DYV38LtC8HbcGx3O2_V9d3iEPlvEmHUYF2SV3rH9I9oYesPblNT2gIQM0_FrfIzf18ORw_HZEu8XEgHejIY8dD8SyPZ11NHBfzuBlC6E7nXiqPbULuIkPsaovSPoZDQfs0M7RUTyKAiLMNz1d7gahKChe_56OI0sEWFyKaY4ooK-69tpP_CPy5ez084dRsjytIWmR5T5xTCITTWFsZXghG5YjNb0DfMeromxkYRizQrhWQwwnSo1YxjjrrNSyaTXPH5Mt33m7T2iT4-6jcWUlK-4yUaU2kyJNndBt7mw7IK9W86auIimHivTLTMEYqzDGA3IQZnTdQk9_YhabKNTX-lx9ByNzcZ7VKhsQuppyBWsLN0y0t928V1UpAU0BIPtLE-RPA5TMB-RJ1JZNj6QAHRTw_cOgFH_uqvpYfwoXT_-96TNyPyYysCQrnpOt2XRuX5C7vZm_DAvhF1_0CkQ
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoe4ALBcpj2wIWQqUcQhPHiWPEZUUfAUq0oq1AXCxvYksLwqk2u9L2P_CjmbH3oUqAkLjl4bEse8YzY898Q8hz0Li2Bj8gMk2eRTxrZCTThEc5L4yItdA8x-Tk8kxUX4rDI4TJebPIhQn4EMsDN5QMv1-jgOOB9MEKNfSbG79iqJHWyAaHvn0CRzpYQe7KgEGZ5jF4SQlb4ArF7GBJek0bbeDEzn5nal63XL3qOd78v0HfIbfnJiftBx65S24Yd49s9R242z-u6B71QaD-dH2L_Kz6h_uDlyVtZ6MGFBz1oexYE8t0dNJSD385gZ81WO905Kh21MzgJXzExD5P6SbU19ihraVlqEYBRuaLjs4vhJAUeK97TQcBKAI2XYqRjkigL9v6yo3cfXJxfHT-tozmBRuiGoHuI8skgtFkjSkanskhSxGd3oKLx4ssH8qsYcwIYWsNZpzINbozjTXWSC2HtebpA7LuWmceETpM8QKysXkhC24TUcQmkSKOrdB1ak3dI88WC6cuAy6HCgjMTMEcKz_HPbLnl3TZQo-_YyCbyNTn6kR9hX3m7CSpVNIjdLHmCsQL70y0M-20U0UuwaECn-wvTRBCDRxl3iMPA7usRiQFMKGA_vc9V_x5qOp99ck_bP9706fkZnn-8VSdvqs-7JBbIa6BRUm2S9Yn46l5TNa6ZvrES8UvIpMObA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZaxsxEBZNAqUv6ZEe7ilKSdOHTfbQrlbpk6njuAeLaVpa8iLklQROqdZ4bXD-Q390ZiQfBNpS6NsemkVIM5r5VqNvCHkFHtfWgAMio4s8YrkWkcgSFhWsNDxWXLECDycPznj1veydIE3O29VZmMAPsf7hhpbh12s08Im2RxvS0As3PUzRIW2RHQZhOBLnZ9lww7grAgVlVsQAkpJ0RSsUp0dr0WvOaAfHdfG7SPN64Oo9T__2f_X5DtldBpy0GzTkLrlh3D2y13UAtn9e0n3qU0D9v_U98qvq9g6Gbwa0WYw1uDfqE9mxIpZp6ayhnvxyBi9riN3p2FHlqFnATXiIx_q8pJtRX2GHNpYOQi0KCDFft3S5HYSioHntMR0GmghYcinmOaKAmjT1pRu7--Rr_-TLu0G0LNcQ1UhzH9lUIBVNrk2pWS5GaYbc9BYAHivzYiRynaaGc1srCOJ4oRDMaGusEUqMasWyB2TbNc48InSU4fajtkUpSmYTXsYmETyOLVd1Zk3dIS9X8yYngZVDBv7lVMIYSz_GHbLvZ3TdQk1_YBobz-W36lSewypzdppUMukQuppyCcaFOybKmWbeyrIQAKcAkf2lCRKoAUxmHfIwaMumR4KDDnL4_oFXij93VX6oPvuLx__e9AW5Oez15af31ccn5FZIakijJH9KtmfTuXlGtlo9f-5t4grQpw0S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NAD%28P%29H+oxidase+contributes+to+neurotoxicity+in+an+excitotoxic%2Fprooxidant+model+of+Huntington%27s+disease+in+rats%3A+Protective+role+of+apocynin&rft.jtitle=Journal+of+neuroscience+research&rft.au=Maldonado%2C+P.D.&rft.au=Molina%E2%80%90Jij%C3%B3n%2C+E.&rft.au=Villeda%E2%80%90Hern%C3%A1ndez%2C+J.&rft.au=Galv%C3%A1n%E2%80%90Arzate%2C+S.&rft.date=2010-02-15&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0360-4012&rft.eissn=1097-4547&rft.volume=88&rft.issue=3&rft.spage=620&rft.epage=629&rft_id=info:doi/10.1002%2Fjnr.22240&rft.externalDBID=10.1002%252Fjnr.22240&rft.externalDocID=JNR22240
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-4012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-4012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-4012&client=summon