Measurements and simulations of VUV emissions from plasma flat panel display pixel microdischarges

This paper reports on measurements of the principal vacuum ultra-violet emission lines from micro discharges operating with helium/xenon gas mixture used in full color plasma driven flat panel display pixels. The principal emission lines observed are the 147 and 129 nm lines from atomic xenon transi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on plasma science Vol. 26; no. 5; pp. 1532 - 1542
Main Authors: McGrath, R.T., Veerasingam, R., Hunter, J.A., Rockett, P.D., Campbell, R.B.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01-10-1998
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper reports on measurements of the principal vacuum ultra-violet emission lines from micro discharges operating with helium/xenon gas mixture used in full color plasma driven flat panel display pixels. The principal emission lines observed are the 147 and 129 nm lines from atomic xenon transitions and the relatively broad emissions from xenon dimers centered near 173 nm. We report on the changing intensities of these lines with variation in xenon concentration in the pixel gas mixtures, which affect the overall luminous efficiency of the display. A one-dimensional computer model has been used to simulate the discharge evolution. The model tracks the populations of twelve different representative quantum energy levels of the helium and xenon atoms, as well as the production and decay of the xenon dimers. The atomic physics description is sufficiently detailed to allow prediction of the relative intensities of the dominant emission lines. We find that model predicted intensities for xenon atomic and dimer emission lines agree well with experimental measurements.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0093-3813
1939-9375
DOI:10.1109/27.736057