Generalized Regression Neural Network for Prediction of Peak Outflow from Dam Breach
Several techniques have been used for estimation of peak outflow from breach when dam failure occurs. This study proposes using a generalized regression artificial neural network (GRNN) model as a new technique for peak outflow from the dam breach estimation and compare the results of GRNN with the...
Saved in:
Published in: | Water resources management Vol. 31; no. 1; pp. 549 - 562 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Dordrecht
Springer Netherlands
2017
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Several techniques have been used for estimation of peak outflow from breach when dam failure occurs. This study proposes using a generalized regression artificial neural network (GRNN) model as a new technique for peak outflow from the dam breach estimation and compare the results of GRNN with the results of the existing methods. Six models have been built using different dam and reservoir characteristics, including depth, volume of water in the reservoir at the time of failure, the dam height and the storage capacity of the reservoir. To get the best results from GRNN model, optimized for smoothing control factor values has been done and found to be ranged from 0.03 to 0.10. Also, different scenarios for dividing data were considered for model training and testing. The recommended scenario used 90% and 10% of the total data for training and testing, respectively, and this scenario shows good performance for peak outflow prediction compared to other studied scenarios. GRNN models were assessed using three statistical indices: Mean Relative Error (MRE), Root Mean Square Error (RMSE) and Nash – Sutcliffe Efficiency (NSE). The results indicate that MRE could be reduced by using GRNN models from 20% to more than 85% compared with the existing empirical methods. |
---|---|
AbstractList | Several techniques have been used for estimation of peak outflow from breach when dam failure occurs. This study proposes using a generalized regression artificial neural network (GRNN) model as a new technique for peak outflow from the dam breach estimation and compare the results of GRNN with the results of the existing methods. Six models have been built using different dam and reservoir characteristics, including depth, volume of water in the reservoir at the time of failure, the dam height and the storage capacity of the reservoir. To get the best results from GRNN model, optimized for smoothing control factor values has been done and found to be ranged from 0.03 to 0.10. Also, different scenarios for dividing data were considered for model training and testing. The recommended scenario used 90% and 10% of the total data for training and testing, respectively, and this scenario shows good performance for peak outflow prediction compared to other studied scenarios. GRNN models were assessed using three statistical indices: Mean Relative Error (MRE), Root Mean Square Error (RMSE) and Nash - Sutcliffe Efficiency (NSE). The results indicate that MRE could be reduced by using GRNN models from 20% to more than 85% compared with the existing empirical methods. |
Author | Sidek, L. M. Mohamed, T. A. Sammen, Saad SH Ghazali, A. H. El-Shafie, A. H. |
Author_xml | – sequence: 1 givenname: Saad SH surname: Sammen fullname: Sammen, Saad SH email: SAAD123engineer@yahoo.com organization: Department of Civil Engineering, Faculty of Engineering, University Putra Malaysia, Department of Civil Engineering, College of Engineering, Diyala University – sequence: 2 givenname: T. A. surname: Mohamed fullname: Mohamed, T. A. organization: Department of Civil Engineering, Faculty of Engineering, University Putra Malaysia – sequence: 3 givenname: A. H. surname: Ghazali fullname: Ghazali, A. H. organization: Department of Civil Engineering, Faculty of Engineering, University Putra Malaysia – sequence: 4 givenname: A. H. surname: El-Shafie fullname: El-Shafie, A. H. organization: Department of Civil Engineering, Faculty of Engineering, University of Malaya – sequence: 5 givenname: L. M. surname: Sidek fullname: Sidek, L. M. organization: Department of Civil engineering, College of Engineering, University Tenaga Nasional |
BookMark | eNqNkUFLHTEQx4Mo-LR-AG-BXnpZnckm2c2xta0K0vcQPYeYndjVfRub7CL105vH8yCFgqeBmd__D8PvgO2OcSTGjhFOEKA5zYhCmwpQV6hkU7U7bIGqqSvUCnbZAoyASjYS99lBzg8AJWVgwW7OaaTkhv6FOn5N94ly7uPIf9FctmVMzzE98hATXyXqej9trjHwFblHvpynMMRnHlJc8-9uzb8lcv73J7YX3JDp6G0estufP27OLqqr5fnl2derykuhpgo73zlozR2EhjqNTt8hOAPGG4LQSgimhsJ0hJ0kFYSrjfe1cFJrD4j1Ifuy7X1K8c9MebLrPnsaBjdSnLPFtpWIGkTzAVS3NSitZEE__4M-xDmN5ZENpYQyIEShcEv5FHNOFOxT6tcu_bUIdqPEbpXYosRulNi2ZMQ2kws73lN61_zf0Cs2II8f |
CitedBy_id | crossref_primary_10_1155_2022_4998200 crossref_primary_10_1007_s00477_021_02012_1 crossref_primary_10_1016_j_earscirev_2022_103991 crossref_primary_10_1016_j_flowmeasinst_2021_101916 crossref_primary_10_2166_ws_2021_047 crossref_primary_10_3389_fenvs_2022_873939 crossref_primary_10_1016_j_applthermaleng_2022_119263 crossref_primary_10_1007_s11356_021_12792_2 crossref_primary_10_1088_1755_1315_376_1_012009 crossref_primary_10_1007_s12517_020_06034_x crossref_primary_10_1007_s12517_021_07222_z crossref_primary_10_3390_su13147752 crossref_primary_10_5194_nhess_22_3859_2022 crossref_primary_10_1007_s00477_023_02429_w crossref_primary_10_1007_s12517_021_07479_4 crossref_primary_10_1007_s12517_021_07421_8 crossref_primary_10_1080_19942060_2021_1966837 crossref_primary_10_3390_w10010026 crossref_primary_10_1007_s12517_021_07707_x crossref_primary_10_1007_s13143_019_00133_w crossref_primary_10_1007_s42452_023_05579_2 crossref_primary_10_1016_j_envc_2021_100401 crossref_primary_10_1080_02626667_2019_1610565 crossref_primary_10_3390_app10155160 |
Cites_doi | 10.1007/s11269-012-0046-9 10.1016/j.jher.2013.11.004 10.1016/j.jhydrol.2004.10.027 10.1080/02626660109492804 10.1139/t86-053 10.1016/j.mcm.2006.02.002 10.1061/(ASCE)HE.1943-5584.0000849 10.1061/(ASCE)0733-9429(2004)130:5(389) 10.1016/j.advwatres.2003.10.003 10.1016/j.advwatres.2009.11.004 10.13031/2013.20012 10.1061/(ASCE)GT.1943-5606.0000162 10.1016/j.jhydrol.2006.08.002 10.1061/(ASCE)0733-9429(2003)129:10(777) 10.1061/(ASCE)0733-9429(2002)128:9(829) 10.1061/(ASCE)0733-9496(1995)121:1(90) 10.1061/(ASCE)0733-9429(2008)134:12(1688) 10.1016/j.advwatres.2009.05.008 10.1061/(ASCE)0733-9429(1984)110:5(567) 10.2166/hydro.2011.114 10.1061/(ASCE)0733-9429(1988)114:1(21) 10.1061/(ASCE)HY.1943-7900.0000274 10.1016/j.advengsoft.2005.05.002 10.3233/IFS-141206 10.1016/j.vacuum.2004.05.018 10.1002/hyp.554 10.1088/1755-1315/16/1/012030 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media Dordrecht 2016 Water Resources Management is a copyright of Springer, 2017. |
Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2016 – notice: Water Resources Management is a copyright of Springer, 2017. |
DBID | AAYXX CITATION 0U~ 1-H 3V. 7QH 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ KR7 L.- L.0 L.G L6V LK8 M0C M2P M7P M7S PATMY PCBAR PQBIZ PQBZA PQEST PQQKQ PQUKI PTHSS PYCSY Q9U SOI 7QO 7TG KL. P64 |
DOI | 10.1007/s11269-016-1547-8 |
DatabaseName | CrossRef Global News & ABI/Inform Professional Trade PRO ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ABI/INFORM Professional Standard Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Biological Sciences ABI/INFORM Collection Science Database Biological Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts Biotechnology Research Abstracts Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection Trade PRO ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Global News & ABI/Inform Professional Natural Science Collection Biological Science Collection Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) Biotechnology and BioEngineering Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) Technology Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-1650 |
EndPage | 562 |
ExternalDocumentID | 4312392811 10_1007_s11269_016_1547_8 |
Genre | Feature |
GrantInformation_xml | – fundername: No |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AAMRO AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZAB ABBBX ABBXA ABDZT ABECU ABEOS ABFGW ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACSNA ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM AACDK AAEOY AAHBH AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AFEUZ AGQEE AGRTI AIGIU CITATION H13 PQBZA 0U~ 1-H 7QH 7ST 7UA 7XB 8FD 8FK C1K F1W FR3 H97 KR7 L.- L.0 L.G PQEST PQUKI Q9U SOI 7QO 7TG KL. P64 |
ID | FETCH-LOGICAL-c425t-1dcda089b0f7ed61a6b10a909c9e0f840f930dcdde1d4e5f2a39cc32a466c0113 |
IEDL.DBID | AEJHL |
ISSN | 0920-4741 |
IngestDate | Fri Oct 25 03:30:39 EDT 2024 Fri Oct 25 08:09:43 EDT 2024 Sun Nov 24 18:54:26 EST 2024 Thu Nov 21 23:13:22 EST 2024 Sat Dec 16 12:00:33 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Dam safety Dam failure Generalized regression neural network Peak outflow discharge Breach outflow |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-1dcda089b0f7ed61a6b10a909c9e0f840f930dcdde1d4e5f2a39cc32a466c0113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://psasir.upm.edu.my/id/eprint/61947/1/Generalized%20regression%20neural%20network%20for%20prediction%20of%20peak%20outflow%20from%20dam%20breach.pdf |
PQID | 1865259022 |
PQPubID | 54174 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1884116027 proquest_miscellaneous_1868305654 proquest_journals_1865259022 crossref_primary_10_1007_s11269_016_1547_8 springer_journals_10_1007_s11269_016_1547_8 |
PublicationCentury | 2000 |
PublicationDate | 1-2017 2017-1-00 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 1-2017 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) |
PublicationTitle | Water resources management |
PublicationTitleAbbrev | Water Resour Manage |
PublicationYear | 2017 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Cigizoglu, Alp (CR4) 2005; 37 Xu, Zhang (CR43) 2010; 135 Pierce, Thornton, Abt (CR26) 2010; 15 Babaeyan, Nourani, Hakimzadeh (CR1) 2011; 4 CR18 CR38 Coleman, Andrews, Webby (CR5) 2002; 128 Ponce, Tahershamsi, Shetty (CR28) 2003; 129 Liang, Lin, Falconer (CR22) 2007; 332 CR11 CR10 CR32 CR31 Cigizoglu (CR3) 2004; 27 Froehlich (CR12) 1995; 121 Wahl (CR39) 2004; 130 Froehlich (CR13) 2008; 134 Hooshyaripor, Tahershamsi, Golian (CR20) 2014; 8 Wasserman (CR41) 1993 Gallegos (CR14) 2009; 32 Singh (CR30) 1988; 114 Tsakiris, Spiliotis (CR36) 2014; 27 Evans (CR9) 1986; 23 Razad, Muda, Sidek, Azia, Mansor, Yalit (CR29) 2013 CR8 CR7 Nourani, Hakimzadeh, Babaeyan Amini (CR25) 2012; 14 CR27 Tsakiris, Spiliotis (CR35) 2013; 27 Cristofano (CR6) 1965 Hanson, Cook, Hunt (CR17) 2005; 48 Gaucher, Marche, Mahdi (CR15) 2010; 136 Hakimzadeh, Nourani, Babaeyan (CR16) 2014; 19 CR21 Xia, Lin, Falconer, Wang (CR42) 2010; 33 CR40 MacDonald, Langridge-Monopolis (CR24) 1984; 110 (CR37) 1982 Tsai (CR34) 2005; 308 Hooshyaripor, Tahershamsi (CR19) 2012; 1 Tingsanchali, Chinnarasri (CR33) 2001; 46 Macchione (CR23) 2008; 134 Celikoglu (CR2) 2006; 44 J Xia (1547_CR42) 2010; 33 SE Coleman (1547_CR5) 2002; 128 G Tsakiris (1547_CR36) 2014; 27 AZA Razad (1547_CR29) 2013 T Tingsanchali (1547_CR33) 2001; 46 F Hooshyaripor (1547_CR19) 2012; 1 E Cristofano (1547_CR6) 1965 Y Xu (1547_CR43) 2010; 135 CW Tsai (1547_CR34) 2005; 308 SG Evans (1547_CR9) 1986; 23 1547_CR31 1547_CR10 DC Froehlich (1547_CR13) 2008; 134 1547_CR32 1547_CR11 HK Cigizoglu (1547_CR3) 2004; 27 TC MacDonald (1547_CR24) 1984; 110 AA Babaeyan (1547_CR1) 2011; 4 G Tsakiris (1547_CR35) 2013; 27 1547_CR38 1547_CR18 HB Celikoglu (1547_CR2) 2006; 44 1547_CR8 1547_CR7 DF Liang (1547_CR22) 2007; 332 HK Cigizoglu (1547_CR4) 2005; 37 MW Pierce (1547_CR26) 2010; 15 J Gaucher (1547_CR15) 2010; 136 VM Ponce (1547_CR28) 2003; 129 V Nourani (1547_CR25) 2012; 14 H Hakimzadeh (1547_CR16) 2014; 19 G Hanson (1547_CR17) 2005; 48 F Hooshyaripor (1547_CR20) 2014; 8 VP Singh (1547_CR30) 1988; 114 1547_CR40 F Macchione (1547_CR23) 2008; 134 1547_CR21 DC Froehlich (1547_CR12) 1995; 121 United States Bureau of Reclamation (1547_CR37) 1982 TL Wahl (1547_CR39) 2004; 130 HS Gallegos (1547_CR14) 2009; 32 1547_CR27 PD Wasserman (1547_CR41) 1993 |
References_xml | – volume: 1 start-page: 55 issue: 6 year: 2012 end-page: 67 ident: CR19 article-title: Comparing the performance of neural networks for predicting peak outflow from breached embankments when back propagation algorithms meet evolutionary Alg rithms publication-title: Int J Hydrocarb Eng contributor: fullname: Tahershamsi – ident: CR18 – year: 1965 ident: CR6 publication-title: Method of computing erosion rate for failure of earthfill dams, US Department of the Interior contributor: fullname: Cristofano – volume: 27 start-page: 1751 year: 2013 end-page: 1762 ident: CR35 article-title: (2013) dam- breach hydrograph modelling: an innovative semi- analytical approach publication-title: Water Resour Manag doi: 10.1007/s11269-012-0046-9 contributor: fullname: Spiliotis – volume: 8 start-page: 292 issue: 3 year: 2014 end-page: 303 ident: CR20 article-title: Application of copula method and neural networks for predicting peak outflow from breached embankments publication-title: J Hydro-Environment Res doi: 10.1016/j.jher.2013.11.004 contributor: fullname: Golian – start-page: 25 year: 1982 ident: CR37 publication-title: Guidelines for defining inundated areas Downstream from Bureau of Reclamation dams. Reclamation planning instruction no 82–11 – volume: 308 start-page: 151 year: 2005 end-page: 167 ident: CR34 article-title: Flood routing in mild-sloped rivers wave characteristics and downstream backwater effect publication-title: J Hydrol doi: 10.1016/j.jhydrol.2004.10.027 contributor: fullname: Tsai – volume: 46 start-page: 113 issue: 1 year: 2001 end-page: 130 ident: CR33 article-title: Numerical modelling of dam failure due to flow overtopping publication-title: Hydrol Sci J doi: 10.1080/02626660109492804 contributor: fullname: Chinnarasri – ident: CR10 – start-page: 155 year: 1993 end-page: 161 ident: CR41 publication-title: Advanced methods in neural computing contributor: fullname: Wasserman – volume: 23 start-page: 385 issue: 4 year: 1986 end-page: 387 ident: CR9 article-title: The maximum discharge of outburst floods caused by the breaching of man-made and natural dams publication-title: Canad Geotech J doi: 10.1139/t86-053 contributor: fullname: Evans – year: 2013 ident: CR29 article-title: Simulation of breach outflow for earthfill dam publication-title: IOP Conf Ser Earth Environ Sci contributor: fullname: Yalit – volume: 44 start-page: 640 year: 2006 end-page: 658 ident: CR2 article-title: Application of radial basis function and generalized regression neural networks in non-linear utility function specification for travel mode choice modelling publication-title: Math Comput Model doi: 10.1016/j.mcm.2006.02.002 contributor: fullname: Celikoglu – volume: 134 start-page: 1708 issue: 12 year: 2008 end-page: 1721 ident: CR13 article-title: Embankment dam breach parameters and their uncertainties, J. Hydraul. Eng publication-title: ASCE contributor: fullname: Froehlich – ident: CR8 – volume: 19 start-page: 757 issue: 4 year: 2014 end-page: 768 ident: CR16 article-title: Genetic programming simulation of dam breach hydrograph and peak outflow discharge publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0000849 contributor: fullname: Babaeyan – volume: 130 start-page: 389 issue: 5 year: 2004 end-page: 397 ident: CR39 article-title: Uncertainty of predictions of embankment dam breach parameters publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(2004)130:5(389) contributor: fullname: Wahl – volume: 27 start-page: 185 year: 2004 end-page: 195 ident: CR3 article-title: Estimation and forecasting of daily suspended sediment data by multilayer perceptrons publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2003.10.003 contributor: fullname: Cigizoglu – volume: 4 start-page: 243 issue: 6 year: 2011 end-page: 246 ident: CR1 article-title: Application of artificial intelligence tools to estimate peak outflow from earth dam breach publication-title: Int J Earth Sci Eng contributor: fullname: Hakimzadeh – ident: CR40 – volume: 33 start-page: 171 issue: 2 year: 2010 end-page: 183 ident: CR42 article-title: Modelling dam-break flows over mobile beds using a 2D coupled approach publication-title: dv Water Resour doi: 10.1016/j.advwatres.2009.11.004 contributor: fullname: Wang – volume: 48 start-page: 1783 issue: 5 year: 2005 end-page: 1794 ident: CR17 article-title: Physical modeling of over -topping erosion and breach formation of cohesive embankments publication-title: Transactions ASAE doi: 10.13031/2013.20012 contributor: fullname: Hunt – volume: 135 start-page: 1957 year: 2010 end-page: 1970 ident: CR43 article-title: Breaching parameters for earth and Rockfill dams publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)GT.1943-5606.0000162 contributor: fullname: Zhang – volume: 332 start-page: 477 issue: 3–4 year: 2007 end-page: 486 ident: CR22 article-title: A boundary-fitted numerical model for flood routing with shock-capturing capability publication-title: J Hydrol doi: 10.1016/j.jhydrol.2006.08.002 contributor: fullname: Falconer – ident: CR27 – volume: 129 start-page: 777 issue: 10 year: 2003 end-page: 782 ident: CR28 article-title: Dam-breach flood wave propagation using dimensionless parameters publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(2003)129:10(777) contributor: fullname: Shetty – ident: CR21 – volume: 128 start-page: 829 issue: 9 year: 2002 end-page: 838 ident: CR5 article-title: Overtopping breaching of noncohesive homogeneous embankments publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(2002)128:9(829) contributor: fullname: Webby – volume: 121 start-page: 90 year: 1995 end-page: 97 ident: CR12 article-title: Peak outflow from breached Empankment dams publication-title: J Water Resour Plan Manag doi: 10.1061/(ASCE)0733-9496(1995)121:1(90) contributor: fullname: Froehlich – volume: 134 start-page: 1688 issue: 12 year: 2008 end-page: 1696 ident: CR23 article-title: Model for predicting floods due to earthen dam breaching. I: formulation and evaluation publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(2008)134:12(1688) contributor: fullname: Macchione – volume: 32 start-page: 1323 issue: 8 year: 2009 end-page: 1335 ident: CR14 article-title: Two-dimensional, high- resolution modeling of urban dam-break flooding: a case study of bald- win hills publication-title: California Adv Water Resour doi: 10.1016/j.advwatres.2009.05.008 contributor: fullname: Gallegos – ident: CR38 – volume: 110 start-page: 567 issue: 5 year: 1984 end-page: 586 ident: CR24 article-title: Breaching characteristics of dam failures publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(1984)110:5(567) contributor: fullname: Langridge-Monopolis – ident: CR31 – ident: CR11 – volume: 15 start-page: 338 issue: 5 year: 2010 end-page: 349 ident: CR26 article-title: Predicting peak outflow from breached embankment dams publication-title: J Hydraul Eng contributor: fullname: Abt – ident: CR32 – volume: 14 start-page: 478 issue: 2 year: 2012 end-page: 496 ident: CR25 article-title: Implementation of artificial neural network technique in the simulation of dam breach hydrograoh publication-title: J Hydroinform doi: 10.2166/hydro.2011.114 contributor: fullname: Babaeyan Amini – volume: 114 start-page: 21 issue: 1 year: 1988 end-page: 42 ident: CR30 article-title: Analysis of gradual earth-dam failure publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(1988)114:1(21) contributor: fullname: Singh – ident: CR7 – volume: 136 start-page: 901 issue: 11 year: 2010 end-page: 913 ident: CR15 article-title: Experimental investigation of the hydraulic erosion of noncohesive compacted soils publication-title: J Hydraul Eng doi: 10.1061/(ASCE)HY.1943-7900.0000274 contributor: fullname: Mahdi – volume: 27 start-page: 2365 issue: 6 year: 2014 end-page: 2378 ident: CR36 article-title: Embankment dam break: uncertainty of outflow based on fuzzy representation of breach formation parameters publication-title: J Intell Fuzzy Syst contributor: fullname: Spiliotis – volume: 37 start-page: 63 year: 2005 end-page: 80 ident: CR4 article-title: Generalized regression neural network in modelling river sediment yield publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2005.05.002 contributor: fullname: Alp – volume: 129 start-page: 777 issue: 10 year: 2003 ident: 1547_CR28 publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(2003)129:10(777) contributor: fullname: VM Ponce – volume: 46 start-page: 113 issue: 1 year: 2001 ident: 1547_CR33 publication-title: Hydrol Sci J doi: 10.1080/02626660109492804 contributor: fullname: T Tingsanchali – start-page: 155 volume-title: Advanced methods in neural computing year: 1993 ident: 1547_CR41 contributor: fullname: PD Wasserman – volume: 33 start-page: 171 issue: 2 year: 2010 ident: 1547_CR42 publication-title: dv Water Resour doi: 10.1016/j.advwatres.2009.11.004 contributor: fullname: J Xia – volume: 128 start-page: 829 issue: 9 year: 2002 ident: 1547_CR5 publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(2002)128:9(829) contributor: fullname: SE Coleman – volume: 48 start-page: 1783 issue: 5 year: 2005 ident: 1547_CR17 publication-title: Transactions ASAE doi: 10.13031/2013.20012 contributor: fullname: G Hanson – start-page: 25 volume-title: Guidelines for defining inundated areas Downstream from Bureau of Reclamation dams. Reclamation planning instruction no 82–11 year: 1982 ident: 1547_CR37 contributor: fullname: United States Bureau of Reclamation – ident: 1547_CR10 – volume: 27 start-page: 2365 issue: 6 year: 2014 ident: 1547_CR36 publication-title: J Intell Fuzzy Syst doi: 10.3233/IFS-141206 contributor: fullname: G Tsakiris – volume: 27 start-page: 1751 year: 2013 ident: 1547_CR35 publication-title: Water Resour Manag doi: 10.1007/s11269-012-0046-9 contributor: fullname: G Tsakiris – ident: 1547_CR18 – volume: 32 start-page: 1323 issue: 8 year: 2009 ident: 1547_CR14 publication-title: California Adv Water Resour doi: 10.1016/j.advwatres.2009.05.008 contributor: fullname: HS Gallegos – ident: 1547_CR8 – volume: 23 start-page: 385 issue: 4 year: 1986 ident: 1547_CR9 publication-title: Canad Geotech J doi: 10.1139/t86-053 contributor: fullname: SG Evans – ident: 1547_CR21 doi: 10.1016/j.vacuum.2004.05.018 – ident: 1547_CR31 doi: 10.1002/hyp.554 – volume: 44 start-page: 640 year: 2006 ident: 1547_CR2 publication-title: Math Comput Model doi: 10.1016/j.mcm.2006.02.002 contributor: fullname: HB Celikoglu – volume: 114 start-page: 21 issue: 1 year: 1988 ident: 1547_CR30 publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(1988)114:1(21) contributor: fullname: VP Singh – volume: 15 start-page: 338 issue: 5 year: 2010 ident: 1547_CR26 publication-title: J Hydraul Eng contributor: fullname: MW Pierce – volume: 308 start-page: 151 year: 2005 ident: 1547_CR34 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2004.10.027 contributor: fullname: CW Tsai – volume: 37 start-page: 63 year: 2005 ident: 1547_CR4 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2005.05.002 contributor: fullname: HK Cigizoglu – year: 2013 ident: 1547_CR29 publication-title: IOP Conf Ser Earth Environ Sci doi: 10.1088/1755-1315/16/1/012030 contributor: fullname: AZA Razad – volume: 134 start-page: 1708 issue: 12 year: 2008 ident: 1547_CR13 publication-title: ASCE contributor: fullname: DC Froehlich – ident: 1547_CR11 – volume: 14 start-page: 478 issue: 2 year: 2012 ident: 1547_CR25 publication-title: J Hydroinform doi: 10.2166/hydro.2011.114 contributor: fullname: V Nourani – volume: 8 start-page: 292 issue: 3 year: 2014 ident: 1547_CR20 publication-title: J Hydro-Environment Res doi: 10.1016/j.jher.2013.11.004 contributor: fullname: F Hooshyaripor – ident: 1547_CR32 – ident: 1547_CR38 – volume: 19 start-page: 757 issue: 4 year: 2014 ident: 1547_CR16 publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0000849 contributor: fullname: H Hakimzadeh – volume: 1 start-page: 55 issue: 6 year: 2012 ident: 1547_CR19 publication-title: Int J Hydrocarb Eng contributor: fullname: F Hooshyaripor – volume: 4 start-page: 243 issue: 6 year: 2011 ident: 1547_CR1 publication-title: Int J Earth Sci Eng contributor: fullname: AA Babaeyan – volume: 27 start-page: 185 year: 2004 ident: 1547_CR3 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2003.10.003 contributor: fullname: HK Cigizoglu – ident: 1547_CR7 – volume: 130 start-page: 389 issue: 5 year: 2004 ident: 1547_CR39 publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(2004)130:5(389) contributor: fullname: TL Wahl – volume: 135 start-page: 1957 year: 2010 ident: 1547_CR43 publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)GT.1943-5606.0000162 contributor: fullname: Y Xu – volume-title: Method of computing erosion rate for failure of earthfill dams, US Department of the Interior year: 1965 ident: 1547_CR6 contributor: fullname: E Cristofano – volume: 134 start-page: 1688 issue: 12 year: 2008 ident: 1547_CR23 publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(2008)134:12(1688) contributor: fullname: F Macchione – volume: 332 start-page: 477 issue: 3–4 year: 2007 ident: 1547_CR22 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2006.08.002 contributor: fullname: DF Liang – volume: 110 start-page: 567 issue: 5 year: 1984 ident: 1547_CR24 publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(1984)110:5(567) contributor: fullname: TC MacDonald – volume: 121 start-page: 90 year: 1995 ident: 1547_CR12 publication-title: J Water Resour Plan Manag doi: 10.1061/(ASCE)0733-9496(1995)121:1(90) contributor: fullname: DC Froehlich – volume: 136 start-page: 901 issue: 11 year: 2010 ident: 1547_CR15 publication-title: J Hydraul Eng doi: 10.1061/(ASCE)HY.1943-7900.0000274 contributor: fullname: J Gaucher – ident: 1547_CR40 – ident: 1547_CR27 |
SSID | ssj0010090 |
Score | 2.3444686 |
Snippet | Several techniques have been used for estimation of peak outflow from breach when dam failure occurs. This study proposes using a generalized regression... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 549 |
SubjectTerms | Atmospheric Sciences Civil Engineering Dam construction Dam failure Dams Earth and Environmental Science Earth Sciences Engineering schools Environment Expected values Failure Flood control Floods Geotechnical Engineering & Applied Earth Sciences Hydrogeology Hydrology/Water Resources Mathematical models Monte Carlo simulation Neural networks Outflow Regression Reservoirs Root-mean-square errors Storage capacity Studies Training Water depth Water resources management Water storage Water supply |
Title | Generalized Regression Neural Network for Prediction of Peak Outflow from Dam Breach |
URI | https://link.springer.com/article/10.1007/s11269-016-1547-8 https://www.proquest.com/docview/1865259022 https://search.proquest.com/docview/1868305654 https://search.proquest.com/docview/1884116027 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vejBt7i-iOBJqTRpmk2OPnZ9ICq6greSNomI2pV1F8Ff76Tb7qqooKceOk3DTDLvfAHYcjFLHXVxkEmTBqj9dKB1agLlGlZHkYt5VFxie904v5WHTQ-Tw4api_xht6pIFop6dNaNMuFbe0SAVh816zhMoOmJeQ0m9pqnx2fD2gF6DUVmRWFgxNFgVrXM7wb5bI1GLuaXqmhhbFoz_5nmLEyXriXZG6yFORiz-TxMfQAcXIB2iTJ9_2YNubJ3gybYnHiIDvz0fNATTtCRJZddX8LxYiMdR1BzPpCLfs89dl6JP5JCDvUT2e_6XsxFuGk12wfHQXmvQpDhDu0F1GRGh1KlIQrECKpFSkOtQpUpGzqM-JyKQqQxlhpuY8d0pLIsYpoLkaE-iJaglndyuwxEC8VcnDW4kJIbHBMlH2ruQV5U2khNHbYr_ibPA_iMZASU7FmV-BYzz6pE1mGtkkBS7qSXhEoRM48xw-qwOXyNe8AXNnRuO_2CRvpQKOa_0UhOqcAovA47leg-_OanSa38iXoVJpm3-0WOZg1qvW7frsP4i-lvlMvUP0_aR613kLDjBw |
link.rule.ids | 315,782,786,27934,27935,41074,42143,48345,48348,48358,49650,49653,49663,52154 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH3-L6jOBJKTRtmk2OvlbFdRVdwVtJm0RE7co-EPz1TrrtrooKeu40CZnMKzPzBWDHRkFiqY28VOjEQ-2nPKUS7UlbMyoMbcTC_BHbm1rzThwdO5icsOyFyavdy5RkrqlHzW404K62h3to9lG1jsOEAzv3KzCxf9Y6qQ-TB-g25FcrEiMjhhazTGZ-N8hnczTyMb-kRXNrU5_91zrnYKZwLsn-4DTMw5jJFmD6A-TgIrQKnOmHN6PJtbkflMFmxIF04K_NQVU4QVeWXHVcEscxjrQtQd35SC77PfvUfiWuKYUcqWdy0HHVmEtwWz9uHZ56xcsKXooy2vOoTrXyhUx8ZInmVPGE-kr6MpXGtxjzWRn6SKMN1cxENlChTNMwUIzzFDVCuAyVrJ2ZFSCKy8BGaY1xIZjGMZH3vmIO5kUmtURXYbfc4PhlAKARj6CS3VbFrsjMbVUsqrBesiAuZKkbU8GjwKHMBFXYHn5GKXCpDZWZdj-nES4YithvNIJRyjEOr8JeyboP0_y0qNU_UW_B5GnrohE3zprnazAVOC8gv7FZh0qv0zcbMN7V_c3izL4D_VjlYA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED6NIk3wwNgGooyBkfY0FBEnjms_Td3aChgqaGMSb5ET22gapFVpNWl__e7yo2UIJiGec7Etn32-8333GeCDT6LMc58EubJZgNbPBMZkNtC-40wc-0TE5SO23zvDS9XrE03Op6YWpkS7NynJqqaBWJqK6eHY-sNF4RuPJOF8ZIAuAJrZJVgWBC1swXK3f3J0Ok8koAtRXrNojJIEnp5NYvOhRv49mhb-5r0UaXnyDF49e8zrsFY7naxbrZLX8MIVb2D1DhXhW7io-ad__nGWfXNXFTy2YETegb8OK7Q4QxeXnU8ouUMKZSPP0Kb-Ymezqb8e_WZUrMJ65oZ9nhBKcwN-DPoXX46C-sWFIMe9Ow24za0Jlc5CVJWV3MiMh0aHOtcu9BgLeh2HKGMdt8IlPjKxzvM4MkLKHC1FvAmtYlS4LWBG6sgneUdIpYTFNnFNhEYQ_YvOOpltw8dmstNxRayRLiiUaapSAp_RVKWqDTuNOtJ6j92mXMkkIvaZqA3788-4OyjlYQo3mpUyioKkRPxPRgnOJcbnbTho1Hinm8cGtf0k6T14ed4bpKfHw6_vYCUi56C8yNmB1nQyc-9h6dbOduvl-xfGY-4s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Regression+Neural+Network+for+Prediction+of+Peak+Outflow+from+Dam+Breach&rft.jtitle=Water+resources+management&rft.au=Sammen%2C+Saad+SH&rft.au=Mohamed%2C+T.+A.&rft.au=Ghazali%2C+A.+H.&rft.au=El-Shafie%2C+A.+H.&rft.date=2017-01-01&rft.pub=Springer+Netherlands&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=31&rft.issue=1&rft.spage=549&rft.epage=562&rft_id=info:doi/10.1007%2Fs11269-016-1547-8&rft.externalDocID=10_1007_s11269_016_1547_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |