Understanding air-core photonic-bandgap fibers: analogy to conventional fibers
It is shown from basic principles that the core modes of an air-core photonic-bandgap fiber (PBF) exhibit similar qualitative and quantitative behavior as the linearly polarized (LP) modes of an equivalent conventional fiber whose step-index profile is entirely determined by the band edges of the PB...
Saved in:
Published in: | Journal of lightwave technology Vol. 23; no. 12; pp. 4169 - 4177 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
IEEE
01-12-2005
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It is shown from basic principles that the core modes of an air-core photonic-bandgap fiber (PBF) exhibit similar qualitative and quantitative behavior as the linearly polarized (LP) modes of an equivalent conventional fiber whose step-index profile is entirely determined by the band edges of the PBF. This analogy leads to the concept of effective numerical aperture (NA), which is used to provide an intuitive interpretation of the qualitative behavior of PBF modes. By using this equivalence, several key properties, including the number of modes, their cutoff, effective index, size, and divergence, and the dependence of these quantities on the PBF core and cladding parameters, can be predicted approximately by simulating the LP modes of the equivalent step-index fiber using standard LP-mode simulators or well-known formula. Besides providing a convenient tool to model the modes of a PBF, this analogy gives new physical insight into the fundamental characteristics of these complex waveguides. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0733-8724 1558-2213 |
DOI: | 10.1109/JLT.2005.859406 |