Design and optimization of carbon-free power generation based on coal hydrogasification integrated with SOFC
The zero emissions coal alliance (ZECA) have proposed a highly efficient integrated coal hydrogasification power producing scheme, where carbon is removed from product gas through a cyclic CaO–CaCO 3 process and electricity is produced with solid oxide fuel cells. In recent years a lot of research e...
Saved in:
Published in: | Fuel (Guildford) Vol. 88; no. 8; pp. 1365 - 1375 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Kidlington
Elsevier Ltd
01-08-2009
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The zero emissions coal alliance (ZECA) have proposed a highly efficient integrated coal hydrogasification power producing scheme, where carbon is removed from product gas through a cyclic CaO–CaCO
3 process and electricity is produced with solid oxide fuel cells. In recent years a lot of research effort has been put towards the realisation of the ZECA cycle. This paper has two purposes: (a) to present optimal solutions to the technical challenges of the envisaged cycle, i.e. achieving the required product gas recycling to the gasifier with steam ejector, heat transfer to the calcination process via heat pipes, and required gas cleaning with appropriate sorbents and (b) to re-evaluate the cycle’s performance and operating regime adopting these solutions.
The complete power plant was designed in detail using ASPENPLUS™ simulation software and results include all critical operation parameters in order to achieve optimal integration. The maximum realistically achievable net power production efficiency was estimated at ∼40%, with ∼90% decarbonisation. |
---|---|
AbstractList | The zero emissions coal alliance (ZECA) have proposed a highly efficient integrated coal hydrogasification power producing scheme, where carbon is removed from product gas through a cyclic CaO–CaCO
3 process and electricity is produced with solid oxide fuel cells. In recent years a lot of research effort has been put towards the realisation of the ZECA cycle. This paper has two purposes: (a) to present optimal solutions to the technical challenges of the envisaged cycle, i.e. achieving the required product gas recycling to the gasifier with steam ejector, heat transfer to the calcination process via heat pipes, and required gas cleaning with appropriate sorbents and (b) to re-evaluate the cycle’s performance and operating regime adopting these solutions.
The complete power plant was designed in detail using ASPENPLUS™ simulation software and results include all critical operation parameters in order to achieve optimal integration. The maximum realistically achievable net power production efficiency was estimated at ∼40%, with ∼90% decarbonisation. The zero emissions coal alliance (ZECA) have proposed a highly efficient integrated coal hydrogasification power producing scheme, where carbon is removed from product gas through a cyclic CaO-CaCO[sub]3 process and electricity is produced with solid oxide fuel cells. In recent years a lot of research effort has been put towards the realisation of the ZECA cycle. This paper has two purposes: (a) to present optimal solutions to the technical challenges of the envisaged cycle, i.e. achieving the required product gas recycling to the gasifier with steam ejector, heat transfer to the calcination process via heat pipes, and required gas cleaning with appropriate sorbents and (b) to re-evaluate the cycle's performance and operating regime adopting these solutions. The complete power plant was designed in detail using ASPENPLUS[TM] simulation software and results include all critical operation parameters in order to achieve optimal integration. The maximum realistically achievable net power production efficiency was estimated at [not, vert, similar]40%, with [not, vert, similar]90% decarbonisation. |
Author | Perdikaris, N. Kakaras, E. Panopoulos, K.D. Fryda, L. |
Author_xml | – sequence: 1 givenname: N. surname: Perdikaris fullname: Perdikaris, N. organization: Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering, Thermal Engineering Section, National Technical University of Athens, 9 Heroon Polytechniou Avenue, Zografou, 15780 Athens, Greece – sequence: 2 givenname: K.D. surname: Panopoulos fullname: Panopoulos, K.D. email: panopoulos@certh.gr organization: Institute for Solid Fuels Technology and Applications, Centre for Research and Technology Hellas, 4[th] km N.R. Ptolemais-Kozani, P.O. Box 95, 50200 Ptolemais, Greece – sequence: 3 givenname: L. surname: Fryda fullname: Fryda, L. organization: Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering, Thermal Engineering Section, National Technical University of Athens, 9 Heroon Polytechniou Avenue, Zografou, 15780 Athens, Greece – sequence: 4 givenname: E. surname: Kakaras fullname: Kakaras, E. organization: Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering, Thermal Engineering Section, National Technical University of Athens, 9 Heroon Polytechniou Avenue, Zografou, 15780 Athens, Greece |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21517013$$DView record in Pascal Francis |
BookMark | eNqF0c9rFDEUB_AgFdxW_wFPc1FPs83vzIIXWa0KhR7sPbwmL9sss8mazFrav94MUzxWeJDD-7xvQt45OUs5ISHvGV0zyvTlfh1OOK45pcN6LqpekRUbjOgNU-KMrGhTPReavSHnte4ppWZQckXGr1jjLnWQfJePUzzEJ5hiTl0OnYNyl1MfCmJ3zA9Yuh0mLEv_Diq2kdS5DGN3_-hL3kGNIbqlH9OEu2YbeojTfffr5mr7lrwOMFZ893xekNurb7fbH_31zfef2y_XvZNcTr03GyoUeCE3AoCpYWAeqNLaML_hwnMTggqaS0A1OL9RzihgUnrahObignxaYo8l_z5hnewhVofjCAnzqdqWrpkx2jT58UUppGRUSPVfyKlur9W6Qb5AV3KtBYM9lniA8mgZtfOq7N7Oq7LzquxcdE7_8JwO1cEYCiQX679JzhQzlInmPi8O2-f9iVhsdRGTQx8Lusn6HF-65i-3K6t0 |
CitedBy_id | crossref_primary_10_1016_j_enconman_2018_05_096 crossref_primary_10_3390_catal13020417 crossref_primary_10_1007_s13762_021_03787_0 crossref_primary_10_1016_j_seta_2016_04_003 crossref_primary_10_1016_j_energy_2012_03_075 crossref_primary_10_1515_ijcre_2012_0031 crossref_primary_10_1016_j_energy_2013_04_006 crossref_primary_10_4028_www_scientific_net_AMM_699_510 crossref_primary_10_1016_j_energy_2011_04_022 crossref_primary_10_1016_j_ijhydene_2011_02_045 crossref_primary_10_1016_j_biortech_2017_03_087 crossref_primary_10_1016_j_rser_2009_10_013 crossref_primary_10_1007_s10163_013_0171_4 crossref_primary_10_1002_cjce_22369 crossref_primary_10_1016_j_enconman_2016_12_025 crossref_primary_10_1016_j_ijhydene_2020_08_010 crossref_primary_10_1016_j_apenergy_2012_02_056 crossref_primary_10_1016_j_applthermaleng_2023_121140 crossref_primary_10_1016_j_fuel_2009_04_019 crossref_primary_10_1016_j_ijhydene_2011_08_053 crossref_primary_10_1016_j_ijhydene_2014_08_115 crossref_primary_10_1016_j_ijhydene_2012_03_079 crossref_primary_10_1016_j_fuproc_2011_05_014 crossref_primary_10_1021_ie2007455 crossref_primary_10_1016_j_egypro_2013_05_095 crossref_primary_10_1016_j_apenergy_2015_01_100 crossref_primary_10_1016_j_enconman_2017_09_023 crossref_primary_10_1002_er_3042 crossref_primary_10_1007_s10973_011_1901_2 crossref_primary_10_1021_ef201156x crossref_primary_10_1002_er_6173 crossref_primary_10_1016_j_enconman_2013_10_020 crossref_primary_10_1016_j_applthermaleng_2020_114908 crossref_primary_10_1016_j_enconman_2019_112260 crossref_primary_10_1016_j_applthermaleng_2017_09_039 crossref_primary_10_1016_j_ijhydene_2016_02_051 |
Cites_doi | 10.1080/00986449508936375 10.1021/ie010867l 10.1016/j.jpowsour.2006.10.020 10.1021/ef020152a 10.1021/ef060258w 10.1016/S0378-7753(00)00668-6 10.1002/aic.690290111 10.1021/ef980266f 10.1016/j.jpowsour.2004.01.043 10.1016/B978-008044704-9/50024-0 10.1016/j.enconman.2004.06.008 10.1002/jctb.5020231005 10.1016/j.ces.2006.09.026 10.2172/806697 10.1021/ba-1967-0069.ch010 10.1016/j.energy.2005.01.011 10.1016/j.ijhydene.2005.08.012 10.1016/j.fuel.2003.10.030 10.1016/S0016-2361(02)00187-4 10.1021/es0496221 10.1016/S0009-2509(98)00425-4 10.1016/B978-008044276-1/50026-X 10.1016/S1385-8947(02)00126-2 10.1016/j.jpowsour.2005.09.015 10.1016/S0306-2619(00)00072-6 10.1016/j.jpowsour.2005.12.024 10.1039/JR9620000464 10.1016/j.cej.2003.08.011 10.1205/026387699525882 |
ContentType | Journal Article |
Copyright | 2008 Elsevier Ltd 2009 INIST-CNRS |
Copyright_xml | – notice: 2008 Elsevier Ltd – notice: 2009 INIST-CNRS |
DBID | IQODW AAYXX CITATION 7ST 7U6 C1K SOI 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1016/j.fuel.2008.08.005 |
DatabaseName | Pascal-Francis CrossRef Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Environment Abstracts Aerospace Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-7153 |
EndPage | 1375 |
ExternalDocumentID | 10_1016_j_fuel_2008_08_005 21517013 S0016236108003207 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABDEX ABEFU ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACIWK ACNCT ACNNM ACPRK ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SDF SDG SDP SES SEW SPC SPCBC SSG SSJ SSK SSR SSZ T5K TWZ VH1 WH7 WUQ XPP ZMT ZY4 ~02 ~G- 08R AAPBV ABPIF ABPTK IQODW AAXKI AAYXX AFJKZ AKRWK CITATION 7ST 7U6 C1K SOI 7TB 8FD F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c424t-d79035ad3493aa15881da056671d923d27ff5f624ae58cd95c75a144d0671623 |
ISSN | 0016-2361 |
IngestDate | Fri Oct 25 02:14:46 EDT 2024 Fri Oct 25 22:24:48 EDT 2024 Fri Oct 25 22:17:51 EDT 2024 Thu Sep 26 18:14:19 EDT 2024 Sun Oct 22 16:05:21 EDT 2023 Fri Feb 23 02:21:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Hydrogasification ZECA Solid oxide fuel cell CO 2 capture Coal Calcium oxide Fuel cell power plant CO2 sequestration capture CO Optimization Calcium carbonate Numerical simulation Performance Sorbent Heat transfer |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c424t-d79035ad3493aa15881da056671d923d27ff5f624ae58cd95c75a144d0671623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PQID | 20634966 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_903617767 proquest_miscellaneous_34410345 proquest_miscellaneous_20634966 crossref_primary_10_1016_j_fuel_2008_08_005 pascalfrancis_primary_21517013 elsevier_sciencedirect_doi_10_1016_j_fuel_2008_08_005 |
PublicationCentury | 2000 |
PublicationDate | 2009-08-01 |
PublicationDateYYYYMMDD | 2009-08-01 |
PublicationDate_xml | – month: 08 year: 2009 text: 2009-08-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Fuel (Guildford) |
PublicationYear | 2009 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Commissions of the European Communities, Sustainable power generation from fossil fuels: aiming for near zero emissions from coal after 2020, COM (2006) 843 final, Brussels, 10.01.2007. Fuel Cell Handbook – (Seventh Edition), By EG&G Technical Services, Inc., Under Contract No. DE-AM26-99FT40575, US Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, P.O. Box 880, Morgantown, West Virginia 26507-0880, November 2004. Newby RA, Lippert TE, Slimane RB, Akpolat OM, Pandya K, Lau FS, et al. Novel gas cleaning/conditioning for integrated gasification combined cycle. National Energy Technology Lab, Technical Report/AC26-99FT40674-02, 2001. Dijkstra JW, Jansen D. Novel concepts for CO Selimovic A. Modelling of solid oxide fuel cells applied to the analysis of integrated systems with gas turbines. Doctoral Thesis, Sweden 2002, Lund University, Department of Heat and Power Engineering. Abanades JC, Akai M, Benson S, Caldeira K, Cook P, Davinson O, et al. Technical summary. In: Metz B, Davidson O, Coninck Hd, Loos M, Meyer L, editors. IPCC Special Report on Carbon Dioxide Capture and Storage, New York: Cambridge University Press; 2005. p. 29. Energy information administration. International Energy Outlook, 2007. Commissions of the European Communities, An Energy Policy for Europe, COM (2007) 1 final, Brussels, 10.01.2007. Ratafia-Brown J, Manfredo L, Hoffmann J, Ramezzan M. Major environment aspects of gasification-based power generation technologies. Final Report, US Department of Energy, 2002. capture. In: GHGT-7, September 2004, Vancouver. Thorud B. Dynamic modelling and characterisation of a solid oxide fuel cell integrated in a gas turbine cycle. Doctoral thesis, Trondheim, Norwegian University of Science and Technology Faculty of Engineering Science and Technology, Department of Energy and Process Engineering, October 2005. Lin, Harada, Suzuki, Hatano (bib14) 2005; 46 Bandi, A, Specht M, Sichler P, Nicoloso N. In situ gas conditioning in fuel reforming for hydrogen generation. In: 5th International symposium on gas cleaning at high temperature, US DOE, National Energy Technology Laboratory, Morgantown, USA, 2002. Lin, Harada, Suzuki, Hatano (bib13) 2004; 83 European Commission, High Level Group on Hydrogen and Fuel Cells, Hydrogen and Fuel Cells – A vision of our future, Final Report, 2003. Mess, Sarofim, Longwell (bib31) 1999; 13 Dekker N, Rietveld G. Highly efficient conversion of ammonia into electricity by solid oxide fuel cells. In: Proceedings of the sixth european solid oxide fuel cell forum, Lucerne, Switzerland, 28 June–2 July, 2004. Panopoulos, Fryda, Karl, Poulou, Kakaras (bib45) 2006; 159 Abanades, Anthony, Wang, Oakley (bib35) 2005; 39,8 Higman, Burgt (bib46) 2003 Abanades, Anthony, Lu, Salvador, Alvarez (bib34) 2004; 50 Dunn, Reay (bib55) 1994 Abanades (bib36) 2002; 90 Bhatia, Perlmutter (bib30) 1983; 29 Cupta, Fan (bib39) 2002; 41 . Campanari, Iora (bib50) 2004; 132 Gorin E. Synthetic CO Gray D, Tomlinson G. Hydrogen from coal. Mitretek Technical Paper MTR-2003-13, prepared for the National Energy Technology Laboratory, US DOE, April 2003. Specht M, Bandi A, Baumgart F, Moellenstend T, Textor O, Weimer T. Enhanced reforming reaction for hydrogen production from carbonaceous feedstock. In: Mao ZQ, Vezoroglou TN, editors. Hydrogen energy progress XIII, 2000. p. 1203. Chapter 3: Sulfur. Ziock HJ, Anthony EJ, Brosha EL, Garson FH, Guthrie GD, Johnson AA, et al. Technical progress in the development of zero emission coal technologies. Curran, Fink, Gorin (bib28) 1967; 69 Verma, Rao, Samuelsen (bib22) 2006; 158 Stiller C. Design, operation and control modelling of SOFC/GT hybrid systems. Doctoral Theses at NTNU, 2006:28, Trondheim, March 2006 Norwegian University of Science and Technology Faculty of Engineering Science and Technology, Department of Energy and Process Engineering. Zevenhoven R, Kilpinen P. Control of pollutants in flue gases and fuel gases. e-book, last update 17.01.2005, available at Feng, Wenqiang, Xiang, Hui (bib40) 2006; 20 EU Funded Project Biomass Heatpipe Reformer – Project Acronym: BioHPR Contract No. ENK5-CT-2000-0311. Balasubramanian, Lopez Ortiz, Kaytakoglu, Harrison (bib11) 1999; 54 Commissions of the European Communities, Green Paper: A European Strategy for Sustainable, Competitive and Secure Energy, 8 March 2006, Brussels, {SEC (2006) 317}. capture with SOFC. In: 6th International conference on greenhouse gas control technologies (GHGT 6), 30th September–4th October, 2002, Kyoto, Japan. Harrison DP, Han C, Lee G. A calcium oxide sorbent process for bulk separation of carbon dioxide. In: Proceedings of advanced coal-fired power systems ’95 review meeting, Morgantown, West Virginia, June 27–29, 1995. DOE/MC/26366-96/C0537. acceptor and gasification process therewith. US Patent 4,191,538, 1980. Brun-Tsekhovoi AR, Zadorin AN, Katsobashvili YaR, Kourdyumov SS. The process of catalytic steam-reforming of hydrocarbons in the presence of carbon dioxide acceptor. Hydrogen energy process VII. In: Proceedings of the world hydrogen energy conference, V2, New York, 1988. Lin, Harada, Suzuki, Hatano (bib12) 2002; 81 Salvador, Lu, Anthony, Abanades (bib33) 2003; 96 Slowinski (bib41) 2006; 31 Costamagna, Magistry, Massardo (bib51) 2001; 96 Baker (bib8) 1962; 70 Aihara, Nagai, Matsushita, Negishi, Ohya (bib37) 2001; 69 Ziock HJ, Johnson AA, Lackner K. Elements of advanced zero emission carbon processes. Abanades, Alvarez (bib32) 2003; 17 Shimizu, Hirama, Hosoda, Kitano, Inagaki, Tejima (bib42) 1999; 77-A Chapter 7: Halide. Trembly, Gemmen, Bayless (bib58) 2007; 163 Ghosh, De (bib23) 2006; 31 Mills (bib52) 1995 Zhang W. Simulation of solid oxide fuel cell-based power generation processes with CO Barker (bib29) 1973; 23 Hufton J, Weigel S, Waldron W, Nataraj S, Rao M, Sircar S. Sorption enhanced reaction process (SERP) for the production of hydrogen. In: Proceedings of the 1999 US DOE hydrogen program review. NREL/CP-570-26938. capture. MS thesis presented to the University of Waterloo, Waterloo, Ontario, Canada, 2006. Kvamsdal HM, Maurstad O, Jordal K, Bolland O. Benchmarking of gas turbine cycles with CO Grasa, Abanades (bib43) 2007; 62 Silaban, Harrison (bib7) 1995; 137 Nawaz M, Ruby J, Bechtel A. Zero emissions coal alliance project. Conceptual design and economics. Lackner K, Ziock HJ, Harrison DP. 2001: Hydrogen production from carbonaceous material. United States Patent WO 0142132. Weimer T, Berger R, Howthorne C. Production of hydrogen from carbonaceous energy carriers. Proceedings international hydrogen energy congress and exhibition IHEC 2005, Instanbul, Turkey, 13–15 July 2005. Hein KRG, Minchener AJ, Pruschek R, Roberts PA (Eds.), Integrated hot fuel gas cleaning for advanced gasification combined cycle processes, JOULE II—Programme Clean Coal Technology R&D, vol. IV, Contract No. JOU2-CT93-0431, European Commission, 1998. 10.1016/j.fuel.2008.08.005_bib10 10.1016/j.fuel.2008.08.005_bib54 Costamagna (10.1016/j.fuel.2008.08.005_bib51) 2001; 96 Mills (10.1016/j.fuel.2008.08.005_bib52) 1995 10.1016/j.fuel.2008.08.005_bib53 Lin (10.1016/j.fuel.2008.08.005_bib14) 2005; 46 Salvador (10.1016/j.fuel.2008.08.005_bib33) 2003; 96 10.1016/j.fuel.2008.08.005_bib15 10.1016/j.fuel.2008.08.005_bib59 Abanades (10.1016/j.fuel.2008.08.005_bib32) 2003; 17 10.1016/j.fuel.2008.08.005_bib57b 10.1016/j.fuel.2008.08.005_bib56 10.1016/j.fuel.2008.08.005_bib57a Trembly (10.1016/j.fuel.2008.08.005_bib58) 2007; 163 Ghosh (10.1016/j.fuel.2008.08.005_bib23) 2006; 31 Abanades (10.1016/j.fuel.2008.08.005_bib35) 2005; 39,8 Barker (10.1016/j.fuel.2008.08.005_bib29) 1973; 23 Campanari (10.1016/j.fuel.2008.08.005_bib50) 2004; 132 Mess (10.1016/j.fuel.2008.08.005_bib31) 1999; 13 Grasa (10.1016/j.fuel.2008.08.005_bib43) 2007; 62 10.1016/j.fuel.2008.08.005_bib49 Verma (10.1016/j.fuel.2008.08.005_bib22) 2006; 158 10.1016/j.fuel.2008.08.005_bib44 10.1016/j.fuel.2008.08.005_bib48 Abanades (10.1016/j.fuel.2008.08.005_bib34) 2004; 50 10.1016/j.fuel.2008.08.005_bib47 Feng (10.1016/j.fuel.2008.08.005_bib40) 2006; 20 Curran (10.1016/j.fuel.2008.08.005_bib28) 1967; 69 Lin (10.1016/j.fuel.2008.08.005_bib12) 2002; 81 Slowinski (10.1016/j.fuel.2008.08.005_bib41) 2006; 31 10.1016/j.fuel.2008.08.005_bib38 Cupta (10.1016/j.fuel.2008.08.005_bib39) 2002; 41 Silaban (10.1016/j.fuel.2008.08.005_bib7) 1995; 137 Panopoulos (10.1016/j.fuel.2008.08.005_bib45) 2006; 159 Balasubramanian (10.1016/j.fuel.2008.08.005_bib11) 1999; 54 Aihara (10.1016/j.fuel.2008.08.005_bib37) 2001; 69 Shimizu (10.1016/j.fuel.2008.08.005_bib42) 1999; 77-A Baker (10.1016/j.fuel.2008.08.005_bib8) 1962; 70 10.1016/j.fuel.2008.08.005_bib27 Higman (10.1016/j.fuel.2008.08.005_bib46) 2003 10.1016/j.fuel.2008.08.005_bib21 10.1016/j.fuel.2008.08.005_bib9 10.1016/j.fuel.2008.08.005_bib20 10.1016/j.fuel.2008.08.005_bib3 10.1016/j.fuel.2008.08.005_bib26 10.1016/j.fuel.2008.08.005_bib4 10.1016/j.fuel.2008.08.005_bib25 10.1016/j.fuel.2008.08.005_bib5 10.1016/j.fuel.2008.08.005_bib24 10.1016/j.fuel.2008.08.005_bib6 Lin (10.1016/j.fuel.2008.08.005_bib13) 2004; 83 10.1016/j.fuel.2008.08.005_bib1 10.1016/j.fuel.2008.08.005_bib2 10.1016/j.fuel.2008.08.005_bib61 10.1016/j.fuel.2008.08.005_bib60 Bhatia (10.1016/j.fuel.2008.08.005_bib30) 1983; 29 10.1016/j.fuel.2008.08.005_bib19 10.1016/j.fuel.2008.08.005_bib18 10.1016/j.fuel.2008.08.005_bib17 Dunn (10.1016/j.fuel.2008.08.005_bib55) 1994 10.1016/j.fuel.2008.08.005_bib16 Abanades (10.1016/j.fuel.2008.08.005_bib36) 2002; 90 |
References_xml | – volume: 46 start-page: 869 year: 2005 end-page: 880 ident: bib14 article-title: Process analysis for hydrogen production by reaction integrated novel gasification (HyPr-RING) publication-title: Energy Convers Manage contributor: fullname: Hatano – volume: 29 start-page: 79 year: 1983 end-page: 86 ident: bib30 article-title: Effect of the product layer on the kinetic of the CO publication-title: AICHE J contributor: fullname: Perlmutter – volume: 23 start-page: 733 year: 1973 end-page: 742 ident: bib29 article-title: The reversibility of the reaction CaCO publication-title: J Appl Chem Biotechnol contributor: fullname: Barker – volume: 90 start-page: 303 year: 2002 end-page: 306 ident: bib36 article-title: The maximum capture efficiency of CO publication-title: Chem Eng J contributor: fullname: Abanades – volume: 31 start-page: 1091 year: 2006 end-page: 1102 ident: bib41 article-title: Some technical issues of zero emission coal technology publication-title: Int J Hydrogen Energy contributor: fullname: Slowinski – volume: 69 start-page: 141 year: 1967 end-page: 165 ident: bib28 article-title: Carbon dioxide-acceptor gasification process: studies of acceptor properties publication-title: Adv Chem contributor: fullname: Gorin – volume: 81 start-page: 2079 year: 2002 end-page: 2085 ident: bib12 article-title: Hydrogen production from coal by separating carbon dioxide during gasification publication-title: Fuel contributor: fullname: Hatano – year: 1995 ident: bib52 article-title: Heat and mass transfer contributor: fullname: Mills – year: 1994 ident: bib55 article-title: Heat pipes contributor: fullname: Reay – volume: 70 start-page: 464 year: 1962 end-page: 470 ident: bib8 article-title: The calcium oxide–carbon dioxide system in the pressure range 1–300 atmospheres publication-title: J Chem Soc contributor: fullname: Baker – volume: 83 start-page: 869 year: 2004 end-page: 874 ident: bib13 article-title: Continuous experiment regarding hydrogen production by coal/CaO reaction with steam (I) gas products publication-title: Fuel contributor: fullname: Hatano – volume: 158 start-page: 417 year: 2006 end-page: 427 ident: bib22 article-title: Sensitivity analysis of a Vision 21 coal based zero emission power plant publication-title: J Power Sources contributor: fullname: Samuelsen – volume: 50 start-page: 7 year: 2004 ident: bib34 article-title: Capture of CO publication-title: Environ Energy Eng, AICHE J contributor: fullname: Alvarez – volume: 159 start-page: 570 year: 2006 end-page: 585 ident: bib45 article-title: High temperature solid oxide fuel cell integrated with novel allothermal biomass gasification. Part I: modelling and feasibility study publication-title: J Power Sources contributor: fullname: Kakaras – volume: 96 start-page: 352 year: 2001 end-page: 368 ident: bib51 article-title: Design and part load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine publication-title: J Power Sources contributor: fullname: Massardo – volume: 137 start-page: 177 year: 1995 end-page: 190 ident: bib7 article-title: High temperature capture of carbon dioxide: characteristics of the reversible reaction between CaO(s) and CO publication-title: Chem Eng Commun contributor: fullname: Harrison – volume: 31 start-page: 345 year: 2006 end-page: 363 ident: bib23 article-title: Energy analysis of a cogeneration plant using coal gasification and solid oxide fuel cell publication-title: Energy contributor: fullname: De – volume: 163 start-page: 986 year: 2007 end-page: 996 ident: bib58 article-title: The effect of IGFC warm gas cleanup system conditions on the gas–solid partitioning and form of trace species in coal syngas and their interactions with SOFC anodes publication-title: J Power Sources contributor: fullname: Bayless – year: 2003 ident: bib46 article-title: Gasification contributor: fullname: Burgt – volume: 62 start-page: 619 year: 2007 end-page: 626 ident: bib43 article-title: Narrow fluidised beds arranged to exchange heat between a combustion chamber and a CO2 sorbent regenerator publication-title: Chem Eng Sci contributor: fullname: Abanades – volume: 77-A start-page: 62 year: 1999 ident: bib42 article-title: A twin fluid-bed reactor for removal of CO publication-title: Trans Inst Chem Eng contributor: fullname: Tejima – volume: 132 start-page: 113 year: 2004 end-page: 126 ident: bib50 article-title: Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry publication-title: J Power Sources contributor: fullname: Iora – volume: 41 start-page: 4035 year: 2002 ident: bib39 article-title: Carbonation–calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas publication-title: Ind Eng Chem Res contributor: fullname: Fan – volume: 13 start-page: 999 year: 1999 end-page: 1005 ident: bib31 article-title: Product layer diffusion during the reaction of the calcium oxide with carbon dioxide publication-title: Energy Fuels contributor: fullname: Longwell – volume: 54 start-page: 3543 year: 1999 end-page: 3552 ident: bib11 article-title: Hydrogen from methane in a single-step process publication-title: Chem Eng Sci contributor: fullname: Harrison – volume: 39,8 start-page: 2861 year: 2005 end-page: 2866 ident: bib35 article-title: Fluidised bed combustion systems integrating CO publication-title: Environ Sci Technol contributor: fullname: Oakley – volume: 96 start-page: 187 year: 2003 end-page: 195 ident: bib33 article-title: Enhancement of CaO for CO publication-title: Chem Eng J contributor: fullname: Abanades – volume: 20 start-page: 2417 year: 2006 end-page: 2420 ident: bib40 article-title: Overcoming the problem of loss-in-capacity of calcium oxide in CO publication-title: Energy Fuel contributor: fullname: Hui – volume: 17 start-page: 308 year: 2003 end-page: 315 ident: bib32 article-title: The conversion limits in the reaction of CO publication-title: Energy Fuels contributor: fullname: Alvarez – volume: 69 start-page: 225 year: 2001 end-page: 238 ident: bib37 article-title: Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction publication-title: Appl Energy contributor: fullname: Ohya – ident: 10.1016/j.fuel.2008.08.005_bib3 – volume: 137 start-page: 177 year: 1995 ident: 10.1016/j.fuel.2008.08.005_bib7 article-title: High temperature capture of carbon dioxide: characteristics of the reversible reaction between CaO(s) and CO2(g) publication-title: Chem Eng Commun doi: 10.1080/00986449508936375 contributor: fullname: Silaban – volume: 41 start-page: 4035 year: 2002 ident: 10.1016/j.fuel.2008.08.005_bib39 article-title: Carbonation–calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas publication-title: Ind Eng Chem Res doi: 10.1021/ie010867l contributor: fullname: Cupta – volume: 163 start-page: 986 issue: 2 year: 2007 ident: 10.1016/j.fuel.2008.08.005_bib58 article-title: The effect of IGFC warm gas cleanup system conditions on the gas–solid partitioning and form of trace species in coal syngas and their interactions with SOFC anodes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2006.10.020 contributor: fullname: Trembly – ident: 10.1016/j.fuel.2008.08.005_bib53 – ident: 10.1016/j.fuel.2008.08.005_bib47 – ident: 10.1016/j.fuel.2008.08.005_bib20 – ident: 10.1016/j.fuel.2008.08.005_bib15 – ident: 10.1016/j.fuel.2008.08.005_bib38 – volume: 17 start-page: 308 year: 2003 ident: 10.1016/j.fuel.2008.08.005_bib32 article-title: The conversion limits in the reaction of CO2 with lime publication-title: Energy Fuels doi: 10.1021/ef020152a contributor: fullname: Abanades – ident: 10.1016/j.fuel.2008.08.005_bib24 – ident: 10.1016/j.fuel.2008.08.005_bib6 – volume: 20 start-page: 2417 year: 2006 ident: 10.1016/j.fuel.2008.08.005_bib40 article-title: Overcoming the problem of loss-in-capacity of calcium oxide in CO2 capture publication-title: Energy Fuel doi: 10.1021/ef060258w contributor: fullname: Feng – volume: 96 start-page: 352 year: 2001 ident: 10.1016/j.fuel.2008.08.005_bib51 article-title: Design and part load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine publication-title: J Power Sources doi: 10.1016/S0378-7753(00)00668-6 contributor: fullname: Costamagna – volume: 29 start-page: 79 year: 1983 ident: 10.1016/j.fuel.2008.08.005_bib30 article-title: Effect of the product layer on the kinetic of the CO2-lime reaction publication-title: AICHE J doi: 10.1002/aic.690290111 contributor: fullname: Bhatia – year: 2003 ident: 10.1016/j.fuel.2008.08.005_bib46 contributor: fullname: Higman – ident: 10.1016/j.fuel.2008.08.005_bib56 – ident: 10.1016/j.fuel.2008.08.005_bib4 – volume: 13 start-page: 999 year: 1999 ident: 10.1016/j.fuel.2008.08.005_bib31 article-title: Product layer diffusion during the reaction of the calcium oxide with carbon dioxide publication-title: Energy Fuels doi: 10.1021/ef980266f contributor: fullname: Mess – volume: 132 start-page: 113 year: 2004 ident: 10.1016/j.fuel.2008.08.005_bib50 article-title: Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry publication-title: J Power Sources doi: 10.1016/j.jpowsour.2004.01.043 contributor: fullname: Campanari – ident: 10.1016/j.fuel.2008.08.005_bib25 – ident: 10.1016/j.fuel.2008.08.005_bib19 doi: 10.1016/B978-008044704-9/50024-0 – ident: 10.1016/j.fuel.2008.08.005_bib10 – volume: 46 start-page: 869 year: 2005 ident: 10.1016/j.fuel.2008.08.005_bib14 article-title: Process analysis for hydrogen production by reaction integrated novel gasification (HyPr-RING) publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2004.06.008 contributor: fullname: Lin – ident: 10.1016/j.fuel.2008.08.005_bib9 – ident: 10.1016/j.fuel.2008.08.005_bib18 – ident: 10.1016/j.fuel.2008.08.005_bib5 – volume: 23 start-page: 733 year: 1973 ident: 10.1016/j.fuel.2008.08.005_bib29 article-title: The reversibility of the reaction CaCO3=CaO+CO2 publication-title: J Appl Chem Biotechnol doi: 10.1002/jctb.5020231005 contributor: fullname: Barker – year: 1995 ident: 10.1016/j.fuel.2008.08.005_bib52 contributor: fullname: Mills – ident: 10.1016/j.fuel.2008.08.005_bib1 – volume: 62 start-page: 619 year: 2007 ident: 10.1016/j.fuel.2008.08.005_bib43 article-title: Narrow fluidised beds arranged to exchange heat between a combustion chamber and a CO2 sorbent regenerator publication-title: Chem Eng Sci doi: 10.1016/j.ces.2006.09.026 contributor: fullname: Grasa – ident: 10.1016/j.fuel.2008.08.005_bib59 doi: 10.2172/806697 – ident: 10.1016/j.fuel.2008.08.005_bib26 – volume: 69 start-page: 141 year: 1967 ident: 10.1016/j.fuel.2008.08.005_bib28 article-title: Carbon dioxide-acceptor gasification process: studies of acceptor properties publication-title: Adv Chem doi: 10.1021/ba-1967-0069.ch010 contributor: fullname: Curran – ident: 10.1016/j.fuel.2008.08.005_bib61 – volume: 31 start-page: 345 issue: 2–3 year: 2006 ident: 10.1016/j.fuel.2008.08.005_bib23 article-title: Energy analysis of a cogeneration plant using coal gasification and solid oxide fuel cell publication-title: Energy doi: 10.1016/j.energy.2005.01.011 contributor: fullname: Ghosh – volume: 31 start-page: 1091 year: 2006 ident: 10.1016/j.fuel.2008.08.005_bib41 article-title: Some technical issues of zero emission coal technology publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2005.08.012 contributor: fullname: Slowinski – ident: 10.1016/j.fuel.2008.08.005_bib49 – volume: 83 start-page: 869 year: 2004 ident: 10.1016/j.fuel.2008.08.005_bib13 article-title: Continuous experiment regarding hydrogen production by coal/CaO reaction with steam (I) gas products publication-title: Fuel doi: 10.1016/j.fuel.2003.10.030 contributor: fullname: Lin – volume: 81 start-page: 2079 year: 2002 ident: 10.1016/j.fuel.2008.08.005_bib12 article-title: Hydrogen production from coal by separating carbon dioxide during gasification publication-title: Fuel doi: 10.1016/S0016-2361(02)00187-4 contributor: fullname: Lin – volume: 39,8 start-page: 2861 year: 2005 ident: 10.1016/j.fuel.2008.08.005_bib35 article-title: Fluidised bed combustion systems integrating CO2 capture with CaO publication-title: Environ Sci Technol doi: 10.1021/es0496221 contributor: fullname: Abanades – ident: 10.1016/j.fuel.2008.08.005_bib17 – volume: 54 start-page: 3543 year: 1999 ident: 10.1016/j.fuel.2008.08.005_bib11 article-title: Hydrogen from methane in a single-step process publication-title: Chem Eng Sci doi: 10.1016/S0009-2509(98)00425-4 contributor: fullname: Balasubramanian – ident: 10.1016/j.fuel.2008.08.005_bib21 doi: 10.1016/B978-008044276-1/50026-X – volume: 90 start-page: 303 year: 2002 ident: 10.1016/j.fuel.2008.08.005_bib36 article-title: The maximum capture efficiency of CO2 using a carbonation/calcinations cycle of CaO/CaCO3 publication-title: Chem Eng J doi: 10.1016/S1385-8947(02)00126-2 contributor: fullname: Abanades – ident: 10.1016/j.fuel.2008.08.005_bib57b – ident: 10.1016/j.fuel.2008.08.005_bib2 – ident: 10.1016/j.fuel.2008.08.005_bib54 – ident: 10.1016/j.fuel.2008.08.005_bib27 – volume: 158 start-page: 417 issue: 1 year: 2006 ident: 10.1016/j.fuel.2008.08.005_bib22 article-title: Sensitivity analysis of a Vision 21 coal based zero emission power plant publication-title: J Power Sources doi: 10.1016/j.jpowsour.2005.09.015 contributor: fullname: Verma – ident: 10.1016/j.fuel.2008.08.005_bib60 – volume: 69 start-page: 225 year: 2001 ident: 10.1016/j.fuel.2008.08.005_bib37 article-title: Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction publication-title: Appl Energy doi: 10.1016/S0306-2619(00)00072-6 contributor: fullname: Aihara – ident: 10.1016/j.fuel.2008.08.005_bib48 – volume: 159 start-page: 570 issue: 1 year: 2006 ident: 10.1016/j.fuel.2008.08.005_bib45 article-title: High temperature solid oxide fuel cell integrated with novel allothermal biomass gasification. Part I: modelling and feasibility study publication-title: J Power Sources doi: 10.1016/j.jpowsour.2005.12.024 contributor: fullname: Panopoulos – volume: 70 start-page: 464 year: 1962 ident: 10.1016/j.fuel.2008.08.005_bib8 article-title: The calcium oxide–carbon dioxide system in the pressure range 1–300 atmospheres publication-title: J Chem Soc doi: 10.1039/JR9620000464 contributor: fullname: Baker – volume: 50 start-page: 7 year: 2004 ident: 10.1016/j.fuel.2008.08.005_bib34 article-title: Capture of CO2 from combustion gases in a fluidized bed of CaO publication-title: Environ Energy Eng, AICHE J contributor: fullname: Abanades – ident: 10.1016/j.fuel.2008.08.005_bib16 – ident: 10.1016/j.fuel.2008.08.005_bib44 – volume: 96 start-page: 187 year: 2003 ident: 10.1016/j.fuel.2008.08.005_bib33 article-title: Enhancement of CaO for CO2 capture in an FBC environment publication-title: Chem Eng J doi: 10.1016/j.cej.2003.08.011 contributor: fullname: Salvador – volume: 77-A start-page: 62 year: 1999 ident: 10.1016/j.fuel.2008.08.005_bib42 article-title: A twin fluid-bed reactor for removal of CO2 from combustion processes publication-title: Trans Inst Chem Eng doi: 10.1205/026387699525882 contributor: fullname: Shimizu – ident: 10.1016/j.fuel.2008.08.005_bib57a – year: 1994 ident: 10.1016/j.fuel.2008.08.005_bib55 contributor: fullname: Dunn |
SSID | ssj0007854 |
Score | 2.195097 |
Snippet | The zero emissions coal alliance (ZECA) have proposed a highly efficient integrated coal hydrogasification power producing scheme, where carbon is removed from... |
SourceID | proquest crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1365 |
SubjectTerms | Applied sciences CO 2 capture Coal Energy Energy. Thermal use of fuels Exact sciences and technology Hydrogasification Installations for energy generation and conversion: thermal and electrical energy Other installations: mhd power plants, fuel cell plants, incineration plants, etc Solid oxide fuel cell ZECA |
Title | Design and optimization of carbon-free power generation based on coal hydrogasification integrated with SOFC |
URI | https://dx.doi.org/10.1016/j.fuel.2008.08.005 https://search.proquest.com/docview/20634966 https://search.proquest.com/docview/34410345 https://search.proquest.com/docview/903617767 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9MwFLbKzAWEEKsoy-ADt5GrbLaT42iaamAQHNrD3CIndpCGTlK1k8P8e96LnWWoigAJqYpSN1v9vrzF_vweIR8VaDjhlR6TwkgW5UHOEslzpnQB_kVR8LjAMd2Lpfx6Fc_TKJ1MurphQ9t_lTS0gaxx5exfSLu_KDTAPsgctiB12P6R3OctJaOdE6hBHdy4dZYtfVxt87pi5daY0w1WR8P6ycZBAM2ZxqmDosblkXd6W39XOyQSKceHdHklHF19-W1xPvZsF41Zt2MOWGfbMuaTQe8CDH9guUO7uGuYt6rqTd2sLdXvcjbvf1ls73Tr1n7pmy4VXMEuP0tn9wYrkp4q50bQulU0A2Wp1cq-YJgExtokq4hjGTLp20TCnaaO4xEi45HaRa7eyIT7oa3Gsmce7EjF9ayELnE8WqTS8sEY9hTFJT4VPhS61GGACQuOA1BmoEuPzz6lV597ey9jbnN9u3_hlmZZFuGvdzrk_jzeqB28lKWtprLnGLTezuopeeLCFHpm8fWMTEz1nDwaJa98QdYWaRSQRsdIo3VJR0ijLdLogDTaIo3CDiKN7iGNDkijiDSKSHtJVot0dX7BXO0OVkRBdMu0TLyQKx1GSaiUz2OIixQ420L6GmIKHciy5KUIImVAHeiEF5IrCO41eE_Y76_IUVVX5jWhMXw1eZxzsDWRElyFvp8noow051KqYEpOux7NNjZDS9ZRF68z7H9XahU-Hp8S3nV65nxM6ztmgJHfnndyT0L9rdBllhBHTcmHTmQZaGicdlOVqZsdXEVgVQZx-IgQYhIvjOAm9MAR0JkQakgh3_zj878lD4f38R05ut025j15sNPNicPzT8Eryx8 |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+optimization+of+carbon-free+power+generation+based+on+coal+hydrogasification+integrated+with+SOFC&rft.jtitle=Fuel+%28Guildford%29&rft.au=Perdikaris%2C+N.&rft.au=Panopoulos%2C+K.D.&rft.au=Fryda%2C+L.&rft.au=Kakaras%2C+E.&rft.date=2009-08-01&rft.pub=Elsevier+Ltd&rft.issn=0016-2361&rft.eissn=1873-7153&rft.volume=88&rft.issue=8&rft.spage=1365&rft.epage=1375&rft_id=info:doi/10.1016%2Fj.fuel.2008.08.005&rft.externalDocID=S0016236108003207 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon |