Laminar flame speeds of primary reference fuels and reformer gas mixtures
The laminar flame speeds of neat primary reference fuels (PRFs), n-heptane and iso-octane, PRF blends, reformer gas, and reformer gas/iso-octane/air mixtures are measured over a range of equivalence ratios at atmospheric pressure, using counterflow configuration and digital particle image velocimetr...
Saved in:
Published in: | Combustion and flame Vol. 139; no. 3; pp. 239 - 251 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
Elsevier Inc
01-11-2004
Elsevier Science |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The laminar flame speeds of neat primary reference fuels (PRFs),
n-heptane and iso-octane, PRF blends, reformer gas, and reformer gas/iso-octane/air mixtures are measured over a range of equivalence ratios at atmospheric pressure, using counterflow configuration and digital particle image velocimetry (DPIV). PRF blends with various octane numbers are studied. The synthetic reformer gas mixture employed herein has a composition that would be produced from the partial oxidation of rich iso-octane/air mixture into CO and H
2, namely, 28% H
2, 25% CO, and 47% N
2. Computationally, the experimentally determined laminar flame speeds are simulated using the detailed kinetic models available in the literature. Both experimental and computational results demonstrate that the flame speeds of hydrocarbon/air mixtures increase with addition of a small amount of reformer gas, and the flame speeds of reformer gas/air mixtures are dramatically reduced with addition of a small amount of hydrocarbon fuel. Furthermore, the number density effect of seeding particles on flame speed measurement is assessed, and the experimental uncertainties associated with the present DPIV setup as well as the linear extrapolation method employed herein are discussed. |
---|---|
AbstractList | The laminar flame speeds of neat primary reference fuels (PRFs), n- heptane and iso-octane, PRF blends, reformer gas, and reformer gas/iso- octane/air mixtures are measured over a range of equivalence ratios at atmospheric pressure, using counterflow configuration and digital particle image velocimetry (DPIV). PRF blends with various octane numbers are studied. The synthetic reformer gas mixture employed herein has a composition that would be produced from the partial oxidation of rich iso-octane/air mixture into CO and H2, namely, 28% H2, 25% CO, and 47% N2. Computationally, the experimentally determined laminar flame speeds are simulated using the detailed kinetic models available in the literature. Both experimental and computational results demonstrate that the flame speeds of hydrocarbon/air mixtures increase with addition of a small amount of reformer gas, and the flame speeds of reformer gas/air mixtures are dramatically reduced with addition of a small amount of hydrocarbon fuel. Furthermore, the number density effect of seeding particles on flame speed measurement is assessed, and the experimental uncertainties associated with the present DPIV setup as well as the linear extrapolation method employed herein are discussed. The laminar flame speeds of neat primary reference fuels (PRFs), n-heptane and iso-octane, PRF blends, reformer gas, and reformer gas/iso-octane/air mixtures are measured over a range of equivalence ratios at atmospheric pressure, using counterflow configuration and digital particle image velocimetry (DPIV). PRF blends with various octane numbers are studied. The synthetic reformer gas mixture employed herein has a composition that would be produced from the partial oxidation of rich iso-octane/air mixture into CO and H 2, namely, 28% H 2, 25% CO, and 47% N 2. Computationally, the experimentally determined laminar flame speeds are simulated using the detailed kinetic models available in the literature. Both experimental and computational results demonstrate that the flame speeds of hydrocarbon/air mixtures increase with addition of a small amount of reformer gas, and the flame speeds of reformer gas/air mixtures are dramatically reduced with addition of a small amount of hydrocarbon fuel. Furthermore, the number density effect of seeding particles on flame speed measurement is assessed, and the experimental uncertainties associated with the present DPIV setup as well as the linear extrapolation method employed herein are discussed. |
Author | Huang, Y. Eng, J.A. Sung, C.J. |
Author_xml | – sequence: 1 givenname: Y. surname: Huang fullname: Huang, Y. organization: Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA – sequence: 2 givenname: C.J. surname: Sung fullname: Sung, C.J. email: cjs15@po.cwru.edu organization: Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA – sequence: 3 givenname: J.A. surname: Eng fullname: Eng, J.A. organization: General Motors Research and Development, Powertrain Systems Research Laboratory, Warren, MI 48090, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16291034$$DView record in Pascal Francis |
BookMark | eNqNkFtLAzEQhYMo2Fb_QxD0bddJNk1T36TeCgVf9Dlks7OSspea2RX99-7agj4KAwPDmXNmvik7btoGGbsQkAoQ-nqb-rbOe-rKytWYSgCVgklBiCM2EfO5TuRSimM2ARCQSGHglE2JtgCwUFk2YeuNq0PjIv8x4LRDLIi3Jd_FULv4xSOWGLHxyMseK-KuKcZZG2uM_M0Rr8Nn10ekM3ZSuorw_NBn7PXh_mX1lGyeH9er203ilVRdslAejYZcKzAizxZQSDnHvBAKVJmVC50VoJVZ-kzlyjlURhmtUQ7lQecmm7Grve8utu89UmfrQB6ryjXY9mSlkWJpBAzCm73Qx5ZouNkefrIC7EjPbu1fenakZ8HYgd6wfHlIceRdVUbX-EC_Dlouhwg16O72uoENfgSMlnwYcRUhou9s0Yb_xH0DcTGN6Q |
CODEN | CBFMAO |
CitedBy_id | crossref_primary_10_1002_kin_20180 crossref_primary_10_1016_j_ijhydene_2013_03_125 crossref_primary_10_1007_s11434_016_1143_6 crossref_primary_10_1080_00102200801963169 crossref_primary_10_1080_01430750_2015_1023840 crossref_primary_10_1115_1_4041316 crossref_primary_10_1017_jfm_2013_495 crossref_primary_10_1016_j_pecs_2012_03_004 crossref_primary_10_1243_14680874JER01907 crossref_primary_10_3390_en9070511 crossref_primary_10_1016_j_ijhydene_2011_11_126 crossref_primary_10_1080_00102202_2023_2182200 crossref_primary_10_1115_1_4040063 crossref_primary_10_1016_j_ijhydene_2014_11_006 crossref_primary_10_1016_j_proci_2008_06_213 crossref_primary_10_1021_ef4024178 crossref_primary_10_1115_1_4032713 crossref_primary_10_1002_kin_20218 crossref_primary_10_1115_1_4056527 crossref_primary_10_1080_13647830_2022_2035824 crossref_primary_10_1016_j_combustflame_2020_08_049 crossref_primary_10_2514_1_B34703 crossref_primary_10_1021_acs_energyfuels_5b01299 crossref_primary_10_1021_acs_energyfuels_9b00215 crossref_primary_10_1016_j_fuel_2020_117012 crossref_primary_10_1134_S1990793120020189 crossref_primary_10_1016_j_fuel_2023_130594 crossref_primary_10_1007_s00894_022_05108_9 crossref_primary_10_1016_j_fuel_2018_09_055 crossref_primary_10_1016_j_combustflame_2013_06_005 crossref_primary_10_1021_ef100074v crossref_primary_10_1115_1_4036093 crossref_primary_10_1016_j_ijhydene_2011_01_185 crossref_primary_10_1115_1_4047127 crossref_primary_10_1016_j_energy_2017_05_111 crossref_primary_10_1016_j_apenergy_2018_05_065 crossref_primary_10_1115_1_4028870 crossref_primary_10_1016_j_fuel_2020_120097 crossref_primary_10_1007_s10494_011_9373_9 crossref_primary_10_1016_j_combustflame_2017_10_002 crossref_primary_10_1002_kin_20867 crossref_primary_10_1016_j_ijhydene_2016_04_107 crossref_primary_10_1021_ef401992e crossref_primary_10_1016_j_combustflame_2022_112145 crossref_primary_10_1080_00102200701484290 crossref_primary_10_1115_1_2795764 crossref_primary_10_4271_2018_01_0187 crossref_primary_10_1016_j_combustflame_2013_04_012 crossref_primary_10_1016_j_enconman_2006_08_017 crossref_primary_10_3390_en13133430 crossref_primary_10_1016_j_energy_2021_121049 crossref_primary_10_1016_j_fuel_2024_131850 crossref_primary_10_1016_j_pecs_2022_100995 crossref_primary_10_1021_acs_energyfuels_5b00355 crossref_primary_10_1021_acs_energyfuels_9b03854 crossref_primary_10_1016_j_applthermaleng_2017_07_145 crossref_primary_10_1021_ef301242b crossref_primary_10_1016_j_combustflame_2020_09_027 crossref_primary_10_1016_j_fuel_2017_09_063 crossref_primary_10_1016_j_combustflame_2009_11_002 crossref_primary_10_1016_j_combustflame_2024_113341 crossref_primary_10_1016_j_energy_2018_12_188 crossref_primary_10_1021_acs_energyfuels_7b02838 crossref_primary_10_1021_acsomega_2c06515 crossref_primary_10_1080_00102202_2012_714019 crossref_primary_10_1016_j_combustflame_2016_09_006 crossref_primary_10_1080_13647830802245177 crossref_primary_10_1016_j_joei_2018_11_010 crossref_primary_10_1016_j_ijhydene_2018_11_060 crossref_primary_10_1016_j_fuel_2012_12_084 crossref_primary_10_1021_acs_energyfuels_0c02318 crossref_primary_10_1016_j_combustflame_2015_10_013 crossref_primary_10_1021_ef058002y crossref_primary_10_1016_j_fuel_2010_11_022 crossref_primary_10_4271_2015_32_0711 crossref_primary_10_1016_j_combustflame_2016_12_029 crossref_primary_10_1016_j_fuel_2016_11_042 crossref_primary_10_1021_acs_energyfuels_5b01433 crossref_primary_10_1016_j_fuel_2020_119652 crossref_primary_10_1016_j_pecs_2017_09_004 crossref_primary_10_1080_13647830_2018_1470333 crossref_primary_10_1016_j_combustflame_2015_01_002 crossref_primary_10_1299_kikaib_77_2210 crossref_primary_10_1016_j_combustflame_2016_03_018 crossref_primary_10_1016_j_combustflame_2015_01_004 crossref_primary_10_1002_kin_20253 crossref_primary_10_1080_13647830802632192 crossref_primary_10_1134_S0010508216020039 crossref_primary_10_1016_j_combustflame_2013_02_008 crossref_primary_10_1021_acs_energyfuels_0c03883 crossref_primary_10_1016_j_fuel_2012_07_046 crossref_primary_10_1016_j_fuel_2019_03_052 crossref_primary_10_1016_j_fuel_2023_129495 crossref_primary_10_1016_j_fuel_2021_121581 crossref_primary_10_1021_acs_energyfuels_9b04291 crossref_primary_10_1016_j_energy_2023_128859 crossref_primary_10_1016_j_ijhydene_2017_12_126 crossref_primary_10_1021_ef501483f crossref_primary_10_1016_j_combustflame_2017_02_008 crossref_primary_10_1016_j_combustflame_2021_02_023 crossref_primary_10_1016_j_jlp_2012_08_002 crossref_primary_10_1016_j_combustflame_2016_03_019 crossref_primary_10_1016_j_combustflame_2019_01_008 crossref_primary_10_1016_j_jlp_2016_08_005 crossref_primary_10_1016_j_joei_2023_101388 crossref_primary_10_1021_ie302504h crossref_primary_10_1016_j_apenergy_2017_06_021 crossref_primary_10_1016_j_combustflame_2018_02_022 crossref_primary_10_1016_j_proci_2010_05_058 crossref_primary_10_1016_j_ijthermalsci_2020_106354 crossref_primary_10_1080_13647830_2012_708056 crossref_primary_10_1016_j_proci_2006_07_147 crossref_primary_10_1021_acs_energyfuels_7b03469 crossref_primary_10_1063_1_4990096 crossref_primary_10_4271_2014_01_2607 crossref_primary_10_1016_j_fuel_2016_07_110 crossref_primary_10_1016_j_proci_2012_05_063 crossref_primary_10_1016_j_enconman_2015_08_060 crossref_primary_10_1016_j_combustflame_2019_10_040 crossref_primary_10_4271_2019_01_0572 crossref_primary_10_1016_j_combustflame_2010_07_010 crossref_primary_10_1016_j_apenergy_2017_03_031 crossref_primary_10_1080_00102202_2017_1358169 crossref_primary_10_1016_j_proci_2010_05_106 crossref_primary_10_2514_1_24391 crossref_primary_10_1016_j_fuel_2020_117451 crossref_primary_10_1177_0954407017734695 crossref_primary_10_1016_j_fuel_2015_04_013 crossref_primary_10_1080_13647830_2021_1970231 crossref_primary_10_1134_S199079311605016X crossref_primary_10_1016_j_ijhydene_2011_07_073 crossref_primary_10_1021_acs_energyfuels_6b02319 crossref_primary_10_1016_j_ces_2018_10_002 crossref_primary_10_1016_j_ijhydene_2011_07_077 crossref_primary_10_1016_j_ijhydene_2017_05_166 crossref_primary_10_1016_j_combustflame_2010_09_016 crossref_primary_10_1016_j_combustflame_2014_11_018 crossref_primary_10_1021_acs_energyfuels_0c03424 crossref_primary_10_1021_acs_energyfuels_7b01612 crossref_primary_10_1016_j_combustflame_2011_11_002 crossref_primary_10_1016_j_combustflame_2011_05_002 crossref_primary_10_1016_j_fuel_2011_04_029 crossref_primary_10_1021_ef101438u crossref_primary_10_1021_acs_energyfuels_6b01071 crossref_primary_10_1021_acs_energyfuels_6b01193 crossref_primary_10_1080_00102200902864662 crossref_primary_10_1021_acsomega_4c00895 crossref_primary_10_1177_1468087411426824 crossref_primary_10_1016_j_enconman_2015_11_061 crossref_primary_10_1016_j_fuel_2013_07_015 crossref_primary_10_1021_acs_energyfuels_8b04029 crossref_primary_10_1016_j_fuel_2013_05_049 crossref_primary_10_1016_j_apenergy_2017_01_044 crossref_primary_10_1016_j_combustflame_2011_09_002 crossref_primary_10_1016_j_combustflame_2010_09_004 crossref_primary_10_1016_j_combustflame_2022_112019 crossref_primary_10_1016_j_fuel_2014_09_059 crossref_primary_10_1016_j_pecs_2018_05_003 crossref_primary_10_1016_j_combustflame_2009_06_011 crossref_primary_10_1016_j_fuel_2023_127606 crossref_primary_10_1515_ijcre_2022_0073 crossref_primary_10_1021_je5007532 crossref_primary_10_1016_j_combustflame_2020_08_023 crossref_primary_10_1016_j_combustflame_2023_113222 crossref_primary_10_1016_j_combustflame_2022_112093 crossref_primary_10_1039_C6CP08164A crossref_primary_10_1021_acs_energyfuels_1c01916 crossref_primary_10_1080_00102202_2016_1138812 crossref_primary_10_1016_j_fuel_2009_11_008 crossref_primary_10_1115_1_4041725 crossref_primary_10_1016_j_proci_2014_05_137 crossref_primary_10_1134_S1990793110060175 crossref_primary_10_1016_j_combustflame_2007_05_002 crossref_primary_10_1016_j_combustflame_2011_05_021 crossref_primary_10_1016_j_fuel_2023_128003 crossref_primary_10_1016_j_fuel_2023_128768 crossref_primary_10_1016_j_apenergy_2019_03_115 crossref_primary_10_1016_j_combustflame_2012_06_008 crossref_primary_10_1021_acs_energyfuels_9b04249 crossref_primary_10_1088_1742_6596_2012_1_012006 crossref_primary_10_1007_s10694_015_0467_0 |
ContentType | Journal Article |
Copyright | 2004 The Combustion Institute 2005 INIST-CNRS |
Copyright_xml | – notice: 2004 The Combustion Institute – notice: 2005 INIST-CNRS |
DBID | IQODW AAYXX CITATION 7TB 8FD FR3 H8D L7M |
DOI | 10.1016/j.combustflame.2004.08.011 |
DatabaseName | Pascal-Francis CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Applied Sciences |
EISSN | 1556-2921 |
EndPage | 251 |
ExternalDocumentID | 10_1016_j_combustflame_2004_08_011 16291034 S0010218004001750 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 29F 4.4 41~ 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDEX ABDMP ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNCT ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SES SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ZY4 ~02 ~G- 08R ABPIF ABPTK IQODW AAXKI AAYXX AFJKZ AKRWK CITATION 7TB 8FD FR3 H8D L7M |
ID | FETCH-LOGICAL-c424t-74ce860b64081b370d225ebd1404f3f763d06489c34b4aae484866e26e2c06b83 |
ISSN | 0010-2180 |
IngestDate | Fri Oct 25 01:58:45 EDT 2024 Thu Sep 26 18:04:18 EDT 2024 Sun Oct 22 16:05:46 EDT 2023 Fri Feb 23 02:19:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Laminar flame speed Premixed combustion Octane Laminar flame Gaseous fuel Gas mixture Fuel gas Isooctane Heptane Partial oxidation Kinetic model Particle image velocimetry Fuel mixture |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c424t-74ce860b64081b370d225ebd1404f3f763d06489c34b4aae484866e26e2c06b83 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 28219810 |
PQPubID | 23500 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_28219810 crossref_primary_10_1016_j_combustflame_2004_08_011 pascalfrancis_primary_16291034 elsevier_sciencedirect_doi_10_1016_j_combustflame_2004_08_011 |
PublicationCentury | 2000 |
PublicationDate | 2004-11-01 |
PublicationDateYYYYMMDD | 2004-11-01 |
PublicationDate_xml | – month: 11 year: 2004 text: 2004-11-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY |
PublicationTitle | Combustion and flame |
PublicationYear | 2004 |
Publisher | Elsevier Inc Elsevier Science |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Science |
References | R.J. Kee, J.F. Grcar, M.D. Smooke, J.A. Miller, Sandia Report SAND 85-8240, Sandia National Laboratories, 1985 Mueller, Yetter, Dryer (bib024) 1999; 31 Glassman (bib028) 1996 Davis, Law (bib006) 1998; 140 J.E. Kirwan, A.A. Quader, M.J. Grieve, SAE Paper 1999-01-2927, 1999 Davis, Wang, Brezinsky, Law (bib007) 1996; 26 Smith, Golden, Frenklach, Moriarty, Eiteneer, Goldenberg, Bowman, Hanson, Song, Gardiner, Lissianski, Qin (bib025) Huang, Sung, Eng (bib004) 2002; 29 Bowman, Hanson, Davidson, Gardiner, Lissianski, Smith, Golden, Frenklach, Goldenberg (bib026) Hasse, Bollig, Peters, Dwyer (bib023) 2000; 122 Kwon, Hassan, Faeth (bib027) 2000; 16 Keane, Adrian (bib016) 1992; 49 Held, Marchese, Dryer (bib022) 1997; 123 Hirasawa, Sung, Joshi, Yang, Wang, Law (bib008) 2002; 29 Yu, Law, Wu (bib017) 1986; 63 Davis, Law (bib005) 1998; 27 Melling (bib009) 1997; 8 Vagelopoulos, Egolfopoulos, Law (bib014) 1994; 25 Sung, Huang, Eng (bib001) 2001; 126 Bowerman, O'Connel (bib015) 1990 Chao, Egolfopoulos, Law (bib013) 1997; 109 J.E. Kirwan, A.A. Quader, M.J. Grieve, SAE Paper 2002-01-1011, 2002 Curran, Gaffuri, Pitz, Westbrook (bib021) 2002; 129 R.J. Kee, F.M. Rupley, J.A. Miller, Sandia Report SAND 89-8009B, Sandia National Laboratories, 1989 Wernet (bib011) 2000; 11 R.J. Kee, J. Warnatz, J.A. Miller, Sandia Report SAND 83-8209, Sandia National Laboratories, 1983 Westerweel (bib010) 1997; 8 Tien, Matalon (bib012) 1991; 84 |
References_xml | – volume: 84 start-page: 238 year: 1991 end-page: 248 ident: bib012 publication-title: Combust. Flame contributor: fullname: Matalon – volume: 140 start-page: 427 year: 1998 end-page: 449 ident: bib006 publication-title: Combust. Sci. Technol. contributor: fullname: Law – volume: 16 start-page: 513 year: 2000 end-page: 522 ident: bib027 publication-title: J. Propulsion Power contributor: fullname: Faeth – volume: 8 start-page: 1406 year: 1997 end-page: 1416 ident: bib009 publication-title: Meas. Sci. Technol. contributor: fullname: Melling – volume: 11 start-page: 1007 year: 2000 end-page: 1022 ident: bib011 publication-title: Meas. Sci. Technol. contributor: fullname: Wernet – volume: 123 start-page: 107 year: 1997 end-page: 146 ident: bib022 publication-title: Combust. Sci. Technol. contributor: fullname: Dryer – volume: 129 start-page: 253 year: 2002 end-page: 280 ident: bib021 publication-title: Combust. Flame contributor: fullname: Westbrook – volume: 26 start-page: 1025 year: 1996 end-page: 1033 ident: bib007 publication-title: Proc. Combust. Inst. contributor: fullname: Law – volume: 29 start-page: 759 year: 2002 end-page: 766 ident: bib004 publication-title: Proc. Combust. Inst. contributor: fullname: Eng – volume: 126 start-page: 1699 year: 2001 end-page: 1713 ident: bib001 publication-title: Combust. Flame contributor: fullname: Eng – year: 1996 ident: bib028 article-title: Combustion contributor: fullname: Glassman – volume: 63 start-page: 339 year: 1986 end-page: 347 ident: bib017 publication-title: Combust. Flame contributor: fullname: Wu – volume: 49 start-page: 191 year: 1992 end-page: 215 ident: bib016 publication-title: Appl. Sci. Res. contributor: fullname: Adrian – volume: 8 start-page: 1379 year: 1997 end-page: 1392 ident: bib010 publication-title: Meas. Sci. Technol. contributor: fullname: Westerweel – volume: 25 start-page: 1341 year: 1994 end-page: 1347 ident: bib014 publication-title: Proc. Combust. Inst. contributor: fullname: Law – volume: 109 start-page: 620 year: 1997 end-page: 638 ident: bib013 publication-title: Combust. Flame contributor: fullname: Law – volume: 122 start-page: 117 year: 2000 end-page: 129 ident: bib023 publication-title: Combust. Flame contributor: fullname: Dwyer – year: 1990 ident: bib015 article-title: Linear Statistical Models: An Applied Approach contributor: fullname: O'Connel – ident: bib026 contributor: fullname: Goldenberg – volume: 29 start-page: 1427 year: 2002 end-page: 1434 ident: bib008 publication-title: Proc. Combust. Inst. contributor: fullname: Law – volume: 31 start-page: 705 year: 1999 end-page: 724 ident: bib024 publication-title: Int. J. Chem. Kinet. contributor: fullname: Dryer – volume: 27 start-page: 521 year: 1998 end-page: 527 ident: bib005 publication-title: Proc. Combust. Inst. contributor: fullname: Law – ident: bib025 contributor: fullname: Qin |
SSID | ssj0007433 |
Score | 2.331961 |
Snippet | The laminar flame speeds of neat primary reference fuels (PRFs),
n-heptane and iso-octane, PRF blends, reformer gas, and reformer gas/iso-octane/air mixtures... The laminar flame speeds of neat primary reference fuels (PRFs), n- heptane and iso-octane, PRF blends, reformer gas, and reformer gas/iso- octane/air mixtures... |
SourceID | proquest crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 239 |
SubjectTerms | Applied sciences Combustion. Flame Energy Energy. Thermal use of fuels Exact sciences and technology Laminar flame speed Premixed combustion Theoretical studies. Data and constants. Metering |
Title | Laminar flame speeds of primary reference fuels and reformer gas mixtures |
URI | https://dx.doi.org/10.1016/j.combustflame.2004.08.011 https://search.proquest.com/docview/28219810 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdp-7CVMbZuY9lHp4e9GQdbUmz1YQ8h82jL2Es76J6MZZ3GCktC3ED__J2-7IRS6BgDY4xCbEn3091P0umOkI9oFFpRap5OeZalQosShxSDVAvOueFTpAB2we30ovx2JT9XohqNorfFUPZfJY1lKGt7cvYvpN2_FAvwGWWOd5Q63h8k96-NdW5ZJwZFDUm3QuvkvDVWIaxEn1ckMRu0i96_HCx1hXXys-mS379u7a5Ct01bUWsom_YruC67dw-ACEvOPybDDpMvmU_O-7IquP5OZpOdlQYRjtz1y1_xCMyOh6adVKbIE_zmCgQtOi1SduKPPvdq1gctCnji20oz_OLtL_MBaO-odr_KcG1FY1vsWurm9y4Ea9DYu6GzL1zEPKyb1VTIk7I9csBQIaE-PJidVVfnvc1GHuV9EUJjYnha5wl43xfvozJPVk2HA8z4zCh3jLxjLpfPyNMw5aAzj5XnZASLI_JoHjP9HZHDraCUL8hZQBB1NaEeQXRpaEAQ7RFEHYIoIoJGBFFEEI0Iekm-f6ku56dpSLiRtoKJm7QULcgiU4VAoqh4mWnU9qC0DcFkuEFTpJHBypOWCyWaBoQUsiiA4dVmhZL8FdlfLBfwmlBh8oZBDhqMERKUUoVu2zwzjYZpC2ZMeOy7OlS_jg6H1_V2j9tEqaK2uVLzfEw-xW6uA0P0zK9GlDzo_8c7shk-XTDkzVyMyYcorBqFYDfPmgUsN13NJNp2mWdv_rEKb8njYWy9I_s36w28J3ud3hwHUP4Bocuklg |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laminar+flame+speeds+of+primary+reference+fuels+and+reformer+gas+mixtures&rft.jtitle=Combustion+and+flame&rft.au=Huang%2C+Y.&rft.au=Sung%2C+C.J.&rft.au=Eng%2C+J.A.&rft.date=2004-11-01&rft.pub=Elsevier+Inc&rft.issn=0010-2180&rft.eissn=1556-2921&rft.volume=139&rft.issue=3&rft.spage=239&rft.epage=251&rft_id=info:doi/10.1016%2Fj.combustflame.2004.08.011&rft.externalDocID=S0010218004001750 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-2180&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-2180&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-2180&client=summon |