Laminar flame speeds of primary reference fuels and reformer gas mixtures

The laminar flame speeds of neat primary reference fuels (PRFs), n-heptane and iso-octane, PRF blends, reformer gas, and reformer gas/iso-octane/air mixtures are measured over a range of equivalence ratios at atmospheric pressure, using counterflow configuration and digital particle image velocimetr...

Full description

Saved in:
Bibliographic Details
Published in:Combustion and flame Vol. 139; no. 3; pp. 239 - 251
Main Authors: Huang, Y., Sung, C.J., Eng, J.A.
Format: Journal Article
Language:English
Published: New York, NY Elsevier Inc 01-11-2004
Elsevier Science
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The laminar flame speeds of neat primary reference fuels (PRFs), n-heptane and iso-octane, PRF blends, reformer gas, and reformer gas/iso-octane/air mixtures are measured over a range of equivalence ratios at atmospheric pressure, using counterflow configuration and digital particle image velocimetry (DPIV). PRF blends with various octane numbers are studied. The synthetic reformer gas mixture employed herein has a composition that would be produced from the partial oxidation of rich iso-octane/air mixture into CO and H 2, namely, 28% H 2, 25% CO, and 47% N 2. Computationally, the experimentally determined laminar flame speeds are simulated using the detailed kinetic models available in the literature. Both experimental and computational results demonstrate that the flame speeds of hydrocarbon/air mixtures increase with addition of a small amount of reformer gas, and the flame speeds of reformer gas/air mixtures are dramatically reduced with addition of a small amount of hydrocarbon fuel. Furthermore, the number density effect of seeding particles on flame speed measurement is assessed, and the experimental uncertainties associated with the present DPIV setup as well as the linear extrapolation method employed herein are discussed.
AbstractList The laminar flame speeds of neat primary reference fuels (PRFs), n- heptane and iso-octane, PRF blends, reformer gas, and reformer gas/iso- octane/air mixtures are measured over a range of equivalence ratios at atmospheric pressure, using counterflow configuration and digital particle image velocimetry (DPIV). PRF blends with various octane numbers are studied. The synthetic reformer gas mixture employed herein has a composition that would be produced from the partial oxidation of rich iso-octane/air mixture into CO and H2, namely, 28% H2, 25% CO, and 47% N2. Computationally, the experimentally determined laminar flame speeds are simulated using the detailed kinetic models available in the literature. Both experimental and computational results demonstrate that the flame speeds of hydrocarbon/air mixtures increase with addition of a small amount of reformer gas, and the flame speeds of reformer gas/air mixtures are dramatically reduced with addition of a small amount of hydrocarbon fuel. Furthermore, the number density effect of seeding particles on flame speed measurement is assessed, and the experimental uncertainties associated with the present DPIV setup as well as the linear extrapolation method employed herein are discussed.
The laminar flame speeds of neat primary reference fuels (PRFs), n-heptane and iso-octane, PRF blends, reformer gas, and reformer gas/iso-octane/air mixtures are measured over a range of equivalence ratios at atmospheric pressure, using counterflow configuration and digital particle image velocimetry (DPIV). PRF blends with various octane numbers are studied. The synthetic reformer gas mixture employed herein has a composition that would be produced from the partial oxidation of rich iso-octane/air mixture into CO and H 2, namely, 28% H 2, 25% CO, and 47% N 2. Computationally, the experimentally determined laminar flame speeds are simulated using the detailed kinetic models available in the literature. Both experimental and computational results demonstrate that the flame speeds of hydrocarbon/air mixtures increase with addition of a small amount of reformer gas, and the flame speeds of reformer gas/air mixtures are dramatically reduced with addition of a small amount of hydrocarbon fuel. Furthermore, the number density effect of seeding particles on flame speed measurement is assessed, and the experimental uncertainties associated with the present DPIV setup as well as the linear extrapolation method employed herein are discussed.
Author Huang, Y.
Eng, J.A.
Sung, C.J.
Author_xml – sequence: 1
  givenname: Y.
  surname: Huang
  fullname: Huang, Y.
  organization: Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
– sequence: 2
  givenname: C.J.
  surname: Sung
  fullname: Sung, C.J.
  email: cjs15@po.cwru.edu
  organization: Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
– sequence: 3
  givenname: J.A.
  surname: Eng
  fullname: Eng, J.A.
  organization: General Motors Research and Development, Powertrain Systems Research Laboratory, Warren, MI 48090, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16291034$$DView record in Pascal Francis
BookMark eNqNkFtLAzEQhYMo2Fb_QxD0bddJNk1T36TeCgVf9Dlks7OSspea2RX99-7agj4KAwPDmXNmvik7btoGGbsQkAoQ-nqb-rbOe-rKytWYSgCVgklBiCM2EfO5TuRSimM2ARCQSGHglE2JtgCwUFk2YeuNq0PjIv8x4LRDLIi3Jd_FULv4xSOWGLHxyMseK-KuKcZZG2uM_M0Rr8Nn10ekM3ZSuorw_NBn7PXh_mX1lGyeH9er203ilVRdslAejYZcKzAizxZQSDnHvBAKVJmVC50VoJVZ-kzlyjlURhmtUQ7lQecmm7Grve8utu89UmfrQB6ryjXY9mSlkWJpBAzCm73Qx5ZouNkefrIC7EjPbu1fenakZ8HYgd6wfHlIceRdVUbX-EC_Dlouhwg16O72uoENfgSMlnwYcRUhou9s0Yb_xH0DcTGN6Q
CODEN CBFMAO
CitedBy_id crossref_primary_10_1002_kin_20180
crossref_primary_10_1016_j_ijhydene_2013_03_125
crossref_primary_10_1007_s11434_016_1143_6
crossref_primary_10_1080_00102200801963169
crossref_primary_10_1080_01430750_2015_1023840
crossref_primary_10_1115_1_4041316
crossref_primary_10_1017_jfm_2013_495
crossref_primary_10_1016_j_pecs_2012_03_004
crossref_primary_10_1243_14680874JER01907
crossref_primary_10_3390_en9070511
crossref_primary_10_1016_j_ijhydene_2011_11_126
crossref_primary_10_1080_00102202_2023_2182200
crossref_primary_10_1115_1_4040063
crossref_primary_10_1016_j_ijhydene_2014_11_006
crossref_primary_10_1016_j_proci_2008_06_213
crossref_primary_10_1021_ef4024178
crossref_primary_10_1115_1_4032713
crossref_primary_10_1002_kin_20218
crossref_primary_10_1115_1_4056527
crossref_primary_10_1080_13647830_2022_2035824
crossref_primary_10_1016_j_combustflame_2020_08_049
crossref_primary_10_2514_1_B34703
crossref_primary_10_1021_acs_energyfuels_5b01299
crossref_primary_10_1021_acs_energyfuels_9b00215
crossref_primary_10_1016_j_fuel_2020_117012
crossref_primary_10_1134_S1990793120020189
crossref_primary_10_1016_j_fuel_2023_130594
crossref_primary_10_1007_s00894_022_05108_9
crossref_primary_10_1016_j_fuel_2018_09_055
crossref_primary_10_1016_j_combustflame_2013_06_005
crossref_primary_10_1021_ef100074v
crossref_primary_10_1115_1_4036093
crossref_primary_10_1016_j_ijhydene_2011_01_185
crossref_primary_10_1115_1_4047127
crossref_primary_10_1016_j_energy_2017_05_111
crossref_primary_10_1016_j_apenergy_2018_05_065
crossref_primary_10_1115_1_4028870
crossref_primary_10_1016_j_fuel_2020_120097
crossref_primary_10_1007_s10494_011_9373_9
crossref_primary_10_1016_j_combustflame_2017_10_002
crossref_primary_10_1002_kin_20867
crossref_primary_10_1016_j_ijhydene_2016_04_107
crossref_primary_10_1021_ef401992e
crossref_primary_10_1016_j_combustflame_2022_112145
crossref_primary_10_1080_00102200701484290
crossref_primary_10_1115_1_2795764
crossref_primary_10_4271_2018_01_0187
crossref_primary_10_1016_j_combustflame_2013_04_012
crossref_primary_10_1016_j_enconman_2006_08_017
crossref_primary_10_3390_en13133430
crossref_primary_10_1016_j_energy_2021_121049
crossref_primary_10_1016_j_fuel_2024_131850
crossref_primary_10_1016_j_pecs_2022_100995
crossref_primary_10_1021_acs_energyfuels_5b00355
crossref_primary_10_1021_acs_energyfuels_9b03854
crossref_primary_10_1016_j_applthermaleng_2017_07_145
crossref_primary_10_1021_ef301242b
crossref_primary_10_1016_j_combustflame_2020_09_027
crossref_primary_10_1016_j_fuel_2017_09_063
crossref_primary_10_1016_j_combustflame_2009_11_002
crossref_primary_10_1016_j_combustflame_2024_113341
crossref_primary_10_1016_j_energy_2018_12_188
crossref_primary_10_1021_acs_energyfuels_7b02838
crossref_primary_10_1021_acsomega_2c06515
crossref_primary_10_1080_00102202_2012_714019
crossref_primary_10_1016_j_combustflame_2016_09_006
crossref_primary_10_1080_13647830802245177
crossref_primary_10_1016_j_joei_2018_11_010
crossref_primary_10_1016_j_ijhydene_2018_11_060
crossref_primary_10_1016_j_fuel_2012_12_084
crossref_primary_10_1021_acs_energyfuels_0c02318
crossref_primary_10_1016_j_combustflame_2015_10_013
crossref_primary_10_1021_ef058002y
crossref_primary_10_1016_j_fuel_2010_11_022
crossref_primary_10_4271_2015_32_0711
crossref_primary_10_1016_j_combustflame_2016_12_029
crossref_primary_10_1016_j_fuel_2016_11_042
crossref_primary_10_1021_acs_energyfuels_5b01433
crossref_primary_10_1016_j_fuel_2020_119652
crossref_primary_10_1016_j_pecs_2017_09_004
crossref_primary_10_1080_13647830_2018_1470333
crossref_primary_10_1016_j_combustflame_2015_01_002
crossref_primary_10_1299_kikaib_77_2210
crossref_primary_10_1016_j_combustflame_2016_03_018
crossref_primary_10_1016_j_combustflame_2015_01_004
crossref_primary_10_1002_kin_20253
crossref_primary_10_1080_13647830802632192
crossref_primary_10_1134_S0010508216020039
crossref_primary_10_1016_j_combustflame_2013_02_008
crossref_primary_10_1021_acs_energyfuels_0c03883
crossref_primary_10_1016_j_fuel_2012_07_046
crossref_primary_10_1016_j_fuel_2019_03_052
crossref_primary_10_1016_j_fuel_2023_129495
crossref_primary_10_1016_j_fuel_2021_121581
crossref_primary_10_1021_acs_energyfuels_9b04291
crossref_primary_10_1016_j_energy_2023_128859
crossref_primary_10_1016_j_ijhydene_2017_12_126
crossref_primary_10_1021_ef501483f
crossref_primary_10_1016_j_combustflame_2017_02_008
crossref_primary_10_1016_j_combustflame_2021_02_023
crossref_primary_10_1016_j_jlp_2012_08_002
crossref_primary_10_1016_j_combustflame_2016_03_019
crossref_primary_10_1016_j_combustflame_2019_01_008
crossref_primary_10_1016_j_jlp_2016_08_005
crossref_primary_10_1016_j_joei_2023_101388
crossref_primary_10_1021_ie302504h
crossref_primary_10_1016_j_apenergy_2017_06_021
crossref_primary_10_1016_j_combustflame_2018_02_022
crossref_primary_10_1016_j_proci_2010_05_058
crossref_primary_10_1016_j_ijthermalsci_2020_106354
crossref_primary_10_1080_13647830_2012_708056
crossref_primary_10_1016_j_proci_2006_07_147
crossref_primary_10_1021_acs_energyfuels_7b03469
crossref_primary_10_1063_1_4990096
crossref_primary_10_4271_2014_01_2607
crossref_primary_10_1016_j_fuel_2016_07_110
crossref_primary_10_1016_j_proci_2012_05_063
crossref_primary_10_1016_j_enconman_2015_08_060
crossref_primary_10_1016_j_combustflame_2019_10_040
crossref_primary_10_4271_2019_01_0572
crossref_primary_10_1016_j_combustflame_2010_07_010
crossref_primary_10_1016_j_apenergy_2017_03_031
crossref_primary_10_1080_00102202_2017_1358169
crossref_primary_10_1016_j_proci_2010_05_106
crossref_primary_10_2514_1_24391
crossref_primary_10_1016_j_fuel_2020_117451
crossref_primary_10_1177_0954407017734695
crossref_primary_10_1016_j_fuel_2015_04_013
crossref_primary_10_1080_13647830_2021_1970231
crossref_primary_10_1134_S199079311605016X
crossref_primary_10_1016_j_ijhydene_2011_07_073
crossref_primary_10_1021_acs_energyfuels_6b02319
crossref_primary_10_1016_j_ces_2018_10_002
crossref_primary_10_1016_j_ijhydene_2011_07_077
crossref_primary_10_1016_j_ijhydene_2017_05_166
crossref_primary_10_1016_j_combustflame_2010_09_016
crossref_primary_10_1016_j_combustflame_2014_11_018
crossref_primary_10_1021_acs_energyfuels_0c03424
crossref_primary_10_1021_acs_energyfuels_7b01612
crossref_primary_10_1016_j_combustflame_2011_11_002
crossref_primary_10_1016_j_combustflame_2011_05_002
crossref_primary_10_1016_j_fuel_2011_04_029
crossref_primary_10_1021_ef101438u
crossref_primary_10_1021_acs_energyfuels_6b01071
crossref_primary_10_1021_acs_energyfuels_6b01193
crossref_primary_10_1080_00102200902864662
crossref_primary_10_1021_acsomega_4c00895
crossref_primary_10_1177_1468087411426824
crossref_primary_10_1016_j_enconman_2015_11_061
crossref_primary_10_1016_j_fuel_2013_07_015
crossref_primary_10_1021_acs_energyfuels_8b04029
crossref_primary_10_1016_j_fuel_2013_05_049
crossref_primary_10_1016_j_apenergy_2017_01_044
crossref_primary_10_1016_j_combustflame_2011_09_002
crossref_primary_10_1016_j_combustflame_2010_09_004
crossref_primary_10_1016_j_combustflame_2022_112019
crossref_primary_10_1016_j_fuel_2014_09_059
crossref_primary_10_1016_j_pecs_2018_05_003
crossref_primary_10_1016_j_combustflame_2009_06_011
crossref_primary_10_1016_j_fuel_2023_127606
crossref_primary_10_1515_ijcre_2022_0073
crossref_primary_10_1021_je5007532
crossref_primary_10_1016_j_combustflame_2020_08_023
crossref_primary_10_1016_j_combustflame_2023_113222
crossref_primary_10_1016_j_combustflame_2022_112093
crossref_primary_10_1039_C6CP08164A
crossref_primary_10_1021_acs_energyfuels_1c01916
crossref_primary_10_1080_00102202_2016_1138812
crossref_primary_10_1016_j_fuel_2009_11_008
crossref_primary_10_1115_1_4041725
crossref_primary_10_1016_j_proci_2014_05_137
crossref_primary_10_1134_S1990793110060175
crossref_primary_10_1016_j_combustflame_2007_05_002
crossref_primary_10_1016_j_combustflame_2011_05_021
crossref_primary_10_1016_j_fuel_2023_128003
crossref_primary_10_1016_j_fuel_2023_128768
crossref_primary_10_1016_j_apenergy_2019_03_115
crossref_primary_10_1016_j_combustflame_2012_06_008
crossref_primary_10_1021_acs_energyfuels_9b04249
crossref_primary_10_1088_1742_6596_2012_1_012006
crossref_primary_10_1007_s10694_015_0467_0
ContentType Journal Article
Copyright 2004 The Combustion Institute
2005 INIST-CNRS
Copyright_xml – notice: 2004 The Combustion Institute
– notice: 2005 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7TB
8FD
FR3
H8D
L7M
DOI 10.1016/j.combustflame.2004.08.011
DatabaseName Pascal-Francis
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Applied Sciences
EISSN 1556-2921
EndPage 251
ExternalDocumentID 10_1016_j_combustflame_2004_08_011
16291034
S0010218004001750
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29F
4.4
41~
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDEX
ABDMP
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
08R
ABPIF
ABPTK
IQODW
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7TB
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c424t-74ce860b64081b370d225ebd1404f3f763d06489c34b4aae484866e26e2c06b83
ISSN 0010-2180
IngestDate Fri Oct 25 01:58:45 EDT 2024
Thu Sep 26 18:04:18 EDT 2024
Sun Oct 22 16:05:46 EDT 2023
Fri Feb 23 02:19:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Laminar flame speed
Premixed combustion
Octane
Laminar flame
Gaseous fuel
Gas mixture
Fuel gas
Isooctane
Heptane
Partial oxidation
Kinetic model
Particle image velocimetry
Fuel mixture
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c424t-74ce860b64081b370d225ebd1404f3f763d06489c34b4aae484866e26e2c06b83
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 28219810
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_28219810
crossref_primary_10_1016_j_combustflame_2004_08_011
pascalfrancis_primary_16291034
elsevier_sciencedirect_doi_10_1016_j_combustflame_2004_08_011
PublicationCentury 2000
PublicationDate 2004-11-01
PublicationDateYYYYMMDD 2004-11-01
PublicationDate_xml – month: 11
  year: 2004
  text: 2004-11-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Combustion and flame
PublicationYear 2004
Publisher Elsevier Inc
Elsevier Science
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science
References R.J. Kee, J.F. Grcar, M.D. Smooke, J.A. Miller, Sandia Report SAND 85-8240, Sandia National Laboratories, 1985
Mueller, Yetter, Dryer (bib024) 1999; 31
Glassman (bib028) 1996
Davis, Law (bib006) 1998; 140
J.E. Kirwan, A.A. Quader, M.J. Grieve, SAE Paper 1999-01-2927, 1999
Davis, Wang, Brezinsky, Law (bib007) 1996; 26
Smith, Golden, Frenklach, Moriarty, Eiteneer, Goldenberg, Bowman, Hanson, Song, Gardiner, Lissianski, Qin (bib025)
Huang, Sung, Eng (bib004) 2002; 29
Bowman, Hanson, Davidson, Gardiner, Lissianski, Smith, Golden, Frenklach, Goldenberg (bib026)
Hasse, Bollig, Peters, Dwyer (bib023) 2000; 122
Kwon, Hassan, Faeth (bib027) 2000; 16
Keane, Adrian (bib016) 1992; 49
Held, Marchese, Dryer (bib022) 1997; 123
Hirasawa, Sung, Joshi, Yang, Wang, Law (bib008) 2002; 29
Yu, Law, Wu (bib017) 1986; 63
Davis, Law (bib005) 1998; 27
Melling (bib009) 1997; 8
Vagelopoulos, Egolfopoulos, Law (bib014) 1994; 25
Sung, Huang, Eng (bib001) 2001; 126
Bowerman, O'Connel (bib015) 1990
Chao, Egolfopoulos, Law (bib013) 1997; 109
J.E. Kirwan, A.A. Quader, M.J. Grieve, SAE Paper 2002-01-1011, 2002
Curran, Gaffuri, Pitz, Westbrook (bib021) 2002; 129
R.J. Kee, F.M. Rupley, J.A. Miller, Sandia Report SAND 89-8009B, Sandia National Laboratories, 1989
Wernet (bib011) 2000; 11
R.J. Kee, J. Warnatz, J.A. Miller, Sandia Report SAND 83-8209, Sandia National Laboratories, 1983
Westerweel (bib010) 1997; 8
Tien, Matalon (bib012) 1991; 84
References_xml – volume: 84
  start-page: 238
  year: 1991
  end-page: 248
  ident: bib012
  publication-title: Combust. Flame
  contributor:
    fullname: Matalon
– volume: 140
  start-page: 427
  year: 1998
  end-page: 449
  ident: bib006
  publication-title: Combust. Sci. Technol.
  contributor:
    fullname: Law
– volume: 16
  start-page: 513
  year: 2000
  end-page: 522
  ident: bib027
  publication-title: J. Propulsion Power
  contributor:
    fullname: Faeth
– volume: 8
  start-page: 1406
  year: 1997
  end-page: 1416
  ident: bib009
  publication-title: Meas. Sci. Technol.
  contributor:
    fullname: Melling
– volume: 11
  start-page: 1007
  year: 2000
  end-page: 1022
  ident: bib011
  publication-title: Meas. Sci. Technol.
  contributor:
    fullname: Wernet
– volume: 123
  start-page: 107
  year: 1997
  end-page: 146
  ident: bib022
  publication-title: Combust. Sci. Technol.
  contributor:
    fullname: Dryer
– volume: 129
  start-page: 253
  year: 2002
  end-page: 280
  ident: bib021
  publication-title: Combust. Flame
  contributor:
    fullname: Westbrook
– volume: 26
  start-page: 1025
  year: 1996
  end-page: 1033
  ident: bib007
  publication-title: Proc. Combust. Inst.
  contributor:
    fullname: Law
– volume: 29
  start-page: 759
  year: 2002
  end-page: 766
  ident: bib004
  publication-title: Proc. Combust. Inst.
  contributor:
    fullname: Eng
– volume: 126
  start-page: 1699
  year: 2001
  end-page: 1713
  ident: bib001
  publication-title: Combust. Flame
  contributor:
    fullname: Eng
– year: 1996
  ident: bib028
  article-title: Combustion
  contributor:
    fullname: Glassman
– volume: 63
  start-page: 339
  year: 1986
  end-page: 347
  ident: bib017
  publication-title: Combust. Flame
  contributor:
    fullname: Wu
– volume: 49
  start-page: 191
  year: 1992
  end-page: 215
  ident: bib016
  publication-title: Appl. Sci. Res.
  contributor:
    fullname: Adrian
– volume: 8
  start-page: 1379
  year: 1997
  end-page: 1392
  ident: bib010
  publication-title: Meas. Sci. Technol.
  contributor:
    fullname: Westerweel
– volume: 25
  start-page: 1341
  year: 1994
  end-page: 1347
  ident: bib014
  publication-title: Proc. Combust. Inst.
  contributor:
    fullname: Law
– volume: 109
  start-page: 620
  year: 1997
  end-page: 638
  ident: bib013
  publication-title: Combust. Flame
  contributor:
    fullname: Law
– volume: 122
  start-page: 117
  year: 2000
  end-page: 129
  ident: bib023
  publication-title: Combust. Flame
  contributor:
    fullname: Dwyer
– year: 1990
  ident: bib015
  article-title: Linear Statistical Models: An Applied Approach
  contributor:
    fullname: O'Connel
– ident: bib026
  contributor:
    fullname: Goldenberg
– volume: 29
  start-page: 1427
  year: 2002
  end-page: 1434
  ident: bib008
  publication-title: Proc. Combust. Inst.
  contributor:
    fullname: Law
– volume: 31
  start-page: 705
  year: 1999
  end-page: 724
  ident: bib024
  publication-title: Int. J. Chem. Kinet.
  contributor:
    fullname: Dryer
– volume: 27
  start-page: 521
  year: 1998
  end-page: 527
  ident: bib005
  publication-title: Proc. Combust. Inst.
  contributor:
    fullname: Law
– ident: bib025
  contributor:
    fullname: Qin
SSID ssj0007433
Score 2.331961
Snippet The laminar flame speeds of neat primary reference fuels (PRFs), n-heptane and iso-octane, PRF blends, reformer gas, and reformer gas/iso-octane/air mixtures...
The laminar flame speeds of neat primary reference fuels (PRFs), n- heptane and iso-octane, PRF blends, reformer gas, and reformer gas/iso- octane/air mixtures...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 239
SubjectTerms Applied sciences
Combustion. Flame
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Laminar flame speed
Premixed combustion
Theoretical studies. Data and constants. Metering
Title Laminar flame speeds of primary reference fuels and reformer gas mixtures
URI https://dx.doi.org/10.1016/j.combustflame.2004.08.011
https://search.proquest.com/docview/28219810
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdp-7CVMbZuY9lHp4e9GQdbUmz1YQ8h82jL2Es76J6MZZ3GCktC3ED__J2-7IRS6BgDY4xCbEn3091P0umOkI9oFFpRap5OeZalQosShxSDVAvOueFTpAB2we30ovx2JT9XohqNorfFUPZfJY1lKGt7cvYvpN2_FAvwGWWOd5Q63h8k96-NdW5ZJwZFDUm3QuvkvDVWIaxEn1ckMRu0i96_HCx1hXXys-mS379u7a5Ct01bUWsom_YruC67dw-ACEvOPybDDpMvmU_O-7IquP5OZpOdlQYRjtz1y1_xCMyOh6adVKbIE_zmCgQtOi1SduKPPvdq1gctCnji20oz_OLtL_MBaO-odr_KcG1FY1vsWurm9y4Ea9DYu6GzL1zEPKyb1VTIk7I9csBQIaE-PJidVVfnvc1GHuV9EUJjYnha5wl43xfvozJPVk2HA8z4zCh3jLxjLpfPyNMw5aAzj5XnZASLI_JoHjP9HZHDraCUL8hZQBB1NaEeQXRpaEAQ7RFEHYIoIoJGBFFEEI0Iekm-f6ku56dpSLiRtoKJm7QULcgiU4VAoqh4mWnU9qC0DcFkuEFTpJHBypOWCyWaBoQUsiiA4dVmhZL8FdlfLBfwmlBh8oZBDhqMERKUUoVu2zwzjYZpC2ZMeOy7OlS_jg6H1_V2j9tEqaK2uVLzfEw-xW6uA0P0zK9GlDzo_8c7shk-XTDkzVyMyYcorBqFYDfPmgUsN13NJNp2mWdv_rEKb8njYWy9I_s36w28J3ud3hwHUP4Bocuklg
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laminar+flame+speeds+of+primary+reference+fuels+and+reformer+gas+mixtures&rft.jtitle=Combustion+and+flame&rft.au=Huang%2C+Y.&rft.au=Sung%2C+C.J.&rft.au=Eng%2C+J.A.&rft.date=2004-11-01&rft.pub=Elsevier+Inc&rft.issn=0010-2180&rft.eissn=1556-2921&rft.volume=139&rft.issue=3&rft.spage=239&rft.epage=251&rft_id=info:doi/10.1016%2Fj.combustflame.2004.08.011&rft.externalDocID=S0010218004001750
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-2180&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-2180&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-2180&client=summon