Photonic bands and gap maps in a photonic crystal slab

The photonic bands of a two-dimensional (2-D) lattice patterned in a planar waveguide are calculated by expanding the magnetic field on the basis of waveguide modes. The method yields both the truly guided modes of the structure as well as the quasi-guided modes (or guided resonances) which lie abov...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of quantum electronics Vol. 38; no. 7; pp. 891 - 898
Main Authors: Andreani, L.C., Agio, M.
Format: Journal Article
Language:English
Published: New York IEEE 01-07-2002
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The photonic bands of a two-dimensional (2-D) lattice patterned in a planar waveguide are calculated by expanding the magnetic field on the basis of waveguide modes. The method yields both the truly guided modes of the structure as well as the quasi-guided modes (or guided resonances) which lie above the light line in the first Brillouin zone. Representative results for the photonic bands are shown in the cases of strong- and weak-confinement waveguides patterned with a triangular lattice of holes. The gap maps as a function of hole radius are calculated and show significant differences with respect to the ideal 2-D case. A comparison of the photonic bands with those extracted from the calculated surface reflectance shows very good agreement, thereby indicating the reliability of the approach.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9197
1558-1713
DOI:10.1109/JQE.2002.1017603