Epidemiology of rotavirus A diarrhea in Chókwè, Southern Mozambique, from February to September, 2011
Acute diarrhea disease caused by Rotaviruses A (RVA) is still the leading cause of morbidity and mortality in children ≤5 years old in developing countries. An exploratory cross‐sectional study was conducted between February and September, 2011 to determine the proportion of acute diarrhea caused by...
Saved in:
Published in: | Journal of medical virology Vol. 88; no. 10; pp. 1751 - 1758 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Blackwell Publishing Ltd
01-10-2016
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Acute diarrhea disease caused by Rotaviruses A (RVA) is still the leading cause of morbidity and mortality in children ≤5 years old in developing countries. An exploratory cross‐sectional study was conducted between February and September, 2011 to determine the proportion of acute diarrhea caused by RVA. A total of 254 stool specimens were collected from children ≤5 years old with acute diarrhea, including outpatients (222 children) and inpatients (32 children), in three local health centers in Chókwè District, Gaza Province, South of Mozambique. RVA antigens were detected using enzyme immunoassay (EIA); the RVA G (VP7) and P (VP4) genotypes were determined by RT‐PCR or analysis sequencing. Sixty (24%) out of 254 fecal specimens were positive for RVA by EIA; being 58 (97%) from children ≤2 years of age. RVA prevalence peaks in June and July (coldest and drier months) and the G[P] binary combination observed were G12P[8] (57%); G1P[8] (9%); G12P[6] (6%); and 2% for each of the following genotypes: G1P[6], G2P[6] G4P[6], and G9P[8]. Non‐Typeable (NT) G and/or P genotypes were observed as follows: G12P [NT] (6%); G1P [NT], G3P[NT] and GNTP[NT] (4%). Considering the different GP combinations, G12 represented 67% of the genotypes. This is the first data showing the diversity of RVA genotypes in Mozambique highlighting the epidemiological importance of these viruses in acute diarrhea cases in children ≤2 years old. In addition, these findings will provide a baseline data before the introduction of the RVA monovalent (Rotarix®) vaccine in the National Immunization Program in September 2015. J. Med. Virol. 88:1751–1758, 2016. © 2016 Wiley Periodicals, Inc. |
---|---|
AbstractList | Acute diarrhea disease caused by Rotaviruses A (RVA) is still the leading cause of morbidity and mortality in children ≤5 years old in developing countries. An exploratory cross-sectional study was conducted between February and September, 2011 to determine the proportion of acute diarrhea caused by RVA. A total of 254 stool specimens were collected from children ≤5 years old with acute diarrhea, including outpatients (222 children) and inpatients (32 children), in three local health centers in Chókwè District, Gaza Province, South of Mozambique. RVA antigens were detected using enzyme immunoassay (EIA); the RVA G (VP7) and P (VP4) genotypes were determined by RT-PCR or analysis sequencing. Sixty (24%) out of 254 fecal specimens were positive for RVA by EIA; being 58 (97%) from children ≤2 years of age. RVA prevalence peaks in June and July (coldest and drier months) and the G[P] binary combination observed were G12P[8] (57%); G1P[8] (9%); G12P[6] (6%); and 2% for each of the following genotypes: G1P[6], G2P[6] G4P[6], and G9P[8]. Non-Typeable (NT) G and/or P genotypes were observed as follows: G12P [NT] (6%); G1P [NT], G3P[NT] and GNTP[NT] (4%). Considering the different GP combinations, G12 represented 67% of the genotypes. This is the first data showing the diversity of RVA genotypes in Mozambique highlighting the epidemiological importance of these viruses in acute diarrhea cases in children ≤2 years old. In addition, these findings will provide a baseline data before the introduction of the RVA monovalent (Rotarix) vaccine in the National Immunization Program in September 2015. J. Med. Virol. 88:1751-1758, 2016. © 2016 Wiley Periodicals, Inc. Acute diarrhea disease caused by Rotaviruses A (RVA) is still the leading cause of morbidity and mortality in children ≤5 years old in developing countries. An exploratory cross-sectional study was conducted between February and September, 2011 to determine the proportion of acute diarrhea caused by RVA. A total of 254 stool specimens were collected from children ≤5 years old with acute diarrhea, including outpatients (222 children) and inpatients (32 children), in three local health centers in Chókwè District, Gaza Province, South of Mozambique. RVA antigens were detected using enzyme immunoassay (EIA); the RVA G (VP7) and P (VP4) genotypes were determined by RT-PCR or analysis sequencing. Sixty (24%) out of 254 fecal specimens were positive for RVA by EIA; being 58 (97%) from children ≤2 years of age. RVA prevalence peaks in June and July (coldest and drier months) and the G[P] binary combination observed were G12P[8] (57%); G1P[8] (9%); G12P[6] (6%); and 2% for each of the following genotypes: G1P[6], G2P[6] G4P[6], and G9P[8]. Non-Typeable (NT) G and/or P genotypes were observed as follows: G12P [NT] (6%); G1P [NT], G3P[NT] and GNTP[NT] (4%). Considering the different GP combinations, G12 represented 67% of the genotypes. This is the first data showing the diversity of RVA genotypes in Mozambique highlighting the epidemiological importance of these viruses in acute diarrhea cases in children ≤2 years old. In addition, these findings will provide a baseline data before the introduction of the RVA monovalent (Rotarix(®) ) vaccine in the National Immunization Program in September 2015. J. Med. Virol. 88:1751-1758, 2016. © 2016 Wiley Periodicals, Inc. Acute diarrhea disease caused by Rotaviruses A (RVA) is still the leading cause of morbidity and mortality in children less than or equal to 5 years old in developing countries. An exploratory cross-sectional study was conducted between February and September, 2011 to determine the proportion of acute diarrhea caused by RVA. A total of 254 stool specimens were collected from children less than or equal to 5 years old with acute diarrhea, including outpatients (222 children) and inpatients (32 children), in three local health centers in Chokwe District, Gaza Province, South of Mozambique. RVA antigens were detected using enzyme immunoassay (EIA); the RVA G (VP7) and P (VP4) genotypes were determined by RT-PCR or analysis sequencing. Sixty (24%) out of 254 fecal specimens were positive for RVA by EIA; being 58 (97%) from children less than or equal to 2 years of age. RVA prevalence peaks in June and July (coldest and drier months) and the G[P] binary combination observed were G12P[8] (57%); G1P[8] (9%); G12P[6] (6%); and 2% for each of the following genotypes: G1P[6], G2P[6] G4P[6], and G9P[8]. Non-Typeable (NT) G and/or P genotypes were observed as follows: G12P [NT] (6%); G1P [NT], G3P[NT] and GNTP[NT] (4%). Considering the different GP combinations, G12 represented 67% of the genotypes. This is the first data showing the diversity of RVA genotypes in Mozambique highlighting the epidemiological importance of these viruses in acute diarrhea cases in children less than or equal to 2 years old. In addition, these findings will provide a baseline data before the introduction of the RVA monovalent (Rotarix super( registered )) vaccine in the National Immunization Program in September 2015. J. Med. Virol. 88:1751-1758, 2016. Acute diarrhea disease caused by Rotaviruses A (RVA) is still the leading cause of morbidity and mortality in children ≤5 years old in developing countries. An exploratory cross‐sectional study was conducted between February and September, 2011 to determine the proportion of acute diarrhea caused by RVA. A total of 254 stool specimens were collected from children ≤5 years old with acute diarrhea, including outpatients (222 children) and inpatients (32 children), in three local health centers in Chókwè District, Gaza Province, South of Mozambique. RVA antigens were detected using enzyme immunoassay (EIA); the RVA G (VP7) and P (VP4) genotypes were determined by RT‐PCR or analysis sequencing. Sixty (24%) out of 254 fecal specimens were positive for RVA by EIA; being 58 (97%) from children ≤2 years of age. RVA prevalence peaks in June and July (coldest and drier months) and the G[P] binary combination observed were G12P[8] (57%); G1P[8] (9%); G12P[6] (6%); and 2% for each of the following genotypes: G1P[6], G2P[6] G4P[6], and G9P[8]. Non‐Typeable (NT) G and/or P genotypes were observed as follows: G12P [NT] (6%); G1P [NT], G3P[NT] and GNTP[NT] (4%). Considering the different GP combinations, G12 represented 67% of the genotypes. This is the first data showing the diversity of RVA genotypes in Mozambique highlighting the epidemiological importance of these viruses in acute diarrhea cases in children ≤2 years old. In addition, these findings will provide a baseline data before the introduction of the RVA monovalent (Rotarix®) vaccine in the National Immunization Program in September 2015. J. Med. Virol. 88:1751–1758, 2016. © 2016 Wiley Periodicals, Inc. |
Author | Arnaldo, Paulo Langa, Jerónimo S. de Assis, Rosane Maria Santos Enosse, Sonia M. da Silva, Marcelle Figueira Marques Leite, José Paulo Gagliardi Resque, Hugo Reis Rose, Tatiana Thompson, Ricardo Fialho, Alexandre |
Author_xml | – sequence: 1 givenname: Jerónimo S. surname: Langa fullname: Langa, Jerónimo S. email: Correspondence to: Jerónimo S. Langa, Ministério da Saúde, Av. Eduardo Mondlane/Salvador Allende, Maputo, Maputo, Mozambique. ,, langajeronimo@gmail.comje_langa@yahoo.com.br organization: Chokwe Health Research and Training Centre (CITSC), National Institute of Health, Maputo, Mozambique – sequence: 2 givenname: Ricardo surname: Thompson fullname: Thompson, Ricardo organization: Chokwe Health Research and Training Centre (CITSC), National Institute of Health, Maputo, Mozambique – sequence: 3 givenname: Paulo surname: Arnaldo fullname: Arnaldo, Paulo organization: Chokwe Health Research and Training Centre (CITSC), National Institute of Health, Maputo, Mozambique – sequence: 4 givenname: Hugo Reis surname: Resque fullname: Resque, Hugo Reis organization: Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil – sequence: 5 givenname: Tatiana surname: Rose fullname: Rose, Tatiana organization: Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro, Fiocruz, Brazil – sequence: 6 givenname: Sonia M. surname: Enosse fullname: Enosse, Sonia M. organization: Chokwe Health Research and Training Centre (CITSC), National Institute of Health, Maputo, Mozambique – sequence: 7 givenname: Alexandre surname: Fialho fullname: Fialho, Alexandre organization: Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro, Fiocruz, Brazil – sequence: 8 givenname: Rosane Maria Santos surname: de Assis fullname: de Assis, Rosane Maria Santos organization: Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro, Fiocruz, Brazil – sequence: 9 givenname: Marcelle Figueira Marques surname: da Silva fullname: da Silva, Marcelle Figueira Marques organization: Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil – sequence: 10 givenname: José Paulo Gagliardi surname: Leite fullname: Leite, José Paulo Gagliardi organization: Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro, Fiocruz, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27003797$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0ctO3DAUBmCroioD7aIvUFnqppUmYDuOL0s04lIEVCotXVpOcsJ4SOKpnUCHJ2LfR-DFajrAolKlrs7mO7_s82-hjd73gNBbSnYoIWx30V3vMF7k9AWaUKJFpomkG2hCKBeZELTYRFsxLgghSjP2Cm0ySUgutZygy_2lq6FzvvWXK-wbHPxgr10YI97DtbMhzMFi1-PZ_P7X1c393RSf-3GYQ-jxqb-1Xel-jDDFTfAdPoAyjDas8ODxOSwH6EoIU8wIpa_Ry8a2Ed48zm307WD_6-woO_l8-Gm2d5JVnHGaQSlrLqAshOKWUSANkzqv6oLzRuXaaqIUZ9oKpStb57amoiqUbBRvStHwMt9GH9a5y-DTw-JgOhcraFvbgx-joYpSpVIc_w9KlCBME53o-7_owo-hTx95UFJzqWmR1Me1qoKPMUBjlsF16R6GEvNQlElFmT9FJfvuMXEsO6if5VMzCeyuwY1rYfXvJHN8evEUma03XBzg5_OGDVdGyFwW5vvZoTni-vjLGbkwMv8Nlf2svw |
CitedBy_id | crossref_primary_10_1155_2023_4628858 crossref_primary_10_3390_pathogens9100810 crossref_primary_10_1007_s40475_018_0146_6 crossref_primary_10_1007_s00705_017_3575_y crossref_primary_10_1097_MD_0000000000006574 crossref_primary_10_3923_pjbs_2017_59_69 crossref_primary_10_1016_j_meegid_2019_03_016 crossref_primary_10_1186_s12879_020_05718_9 crossref_primary_10_3389_fmicb_2023_1193094 crossref_primary_10_1093_tropej_fmx032 crossref_primary_10_3390_pathogens9090671 crossref_primary_10_1002_jmv_24605 crossref_primary_10_1371_journal_pone_0255720 crossref_primary_10_1128_JVI_01476_18 crossref_primary_10_1002_jmv_25213 crossref_primary_10_1088_1742_6596_1294_6_062074 crossref_primary_10_3390_v14010134 crossref_primary_10_3390_pathogens9121026 |
Cites_doi | 10.1016/j.vaccine.2011.09.120 10.1128/JCM.28.3.495-503.1990 10.1093/molbev/msm092 10.1002/jmv.24180 10.1016/j.meegid.2013.06.005 10.1128/JCM.28.2.276-282.1990 10.1002/jmv.22207 10.1590/S0074-02762008000800001 10.1016/j.actatropica.2015.12.008 10.1016/j.cmi.2015.01.022 10.1016/j.meegid.2013.06.026 10.1016/j.meegid.2014.08.002 10.1016/j.vaccine.2011.09.111 10.1128/jcm.30.6.1365-1373.1992 10.1016/j.vaccine.2014.05.002 10.1016/j.coviro.2012.04.007 10.1016/j.femsim.2004.07.006 10.1093/infdis/jit655 10.1016/S1473-3099(14)70940-5 10.1002/jmv.21468 10.1080/02724936.1994.11747721 10.3201/eid1306.061181 10.1371/journal.pone.0100953 10.1016/j.meegid.2014.07.020 10.1073/pnas.1110507108 10.1017/S0950268808001532 10.1186/2193-1801-3-179 10.1086/653559 10.1056/NEJMoa0904797 10.1128/JVI.01622-06 10.1016/j.meegid.2014.12.030 10.1016/j.meegid.2013.06.013 10.3201/eid1501.080427 10.1016/j.meegid.2014.08.017 10.1016/S0140-6736(13)60844-2 10.1016/S1473-3099(14)71060-6 10.1016/S0264-410X(02)00616-3 10.1086/653561 10.1002/jmv.23603 10.1086/653557 10.1086/653554 10.1007/s00705-008-0155-1 10.1099/vir.0.047381-0 10.3201/eid2004.131328 10.1097/INF.0b013e31827d3b68 10.1002/jmv.21362 10.1128/jcm.32.7.1820-1822.1994 10.1007/BF01718637 10.1016/j.meegid.2014.10.009 10.1093/gbe/evv157 10.1089/fpd.2015.1990 10.1016/j.meegid.2015.04.010 10.1097/INF.0000000000000059 10.7883/yoken.63.405 |
ContentType | Journal Article |
Copyright | 2016 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2016 Wiley Periodicals, Inc. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7TK 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 |
DOI | 10.1002/jmv.24531 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic MEDLINE AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1096-9071 |
EndPage | 1758 |
ExternalDocumentID | 4134174921 10_1002_jmv_24531 27003797 JMV24531 ark_67375_WNG_H49JRN0V_7 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Research Fund from the Ministry of Science and Technology from Mozambique (FNI) – fundername: Excellence Program of Research (PROEP‐CNPq/IOC‐Fiocruz) – fundername: PAPES VI (Fiocruz‐CNPq) – fundername: Carlos Chagas Filho Foundation Research Support of Rio de Janeiro State (FAPERJ) – fundername: National Council for Scientific and Technological Development (CNPq) |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AI. AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS ECGQY EJD ELTNK EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS UB1 V2E VH1 W8V W99 WBKPD WHG WIB WIH WIJ WIK WJL WNSPC WOHZO WQJ WRC WUP WXI WXSBR WYISQ X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7QL 7TK 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c4241-eb7d46eb5684a21e0f2793cd544f839a9088429a689cad3ad16c587f84fb6f4b3 |
IEDL.DBID | 33P |
ISSN | 0146-6615 |
IngestDate | Thu Aug 15 22:44:04 EDT 2024 Fri Aug 16 23:46:06 EDT 2024 Thu Oct 10 22:20:21 EDT 2024 Thu Nov 21 21:19:36 EST 2024 Sat Sep 28 08:48:04 EDT 2024 Sat Aug 24 01:05:21 EDT 2024 Wed Oct 30 10:02:02 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | genotypes prevalence Mozambique acute diarrhea disease seasonality rotaviruses A |
Language | English |
License | 2016 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4241-eb7d46eb5684a21e0f2793cd544f839a9088429a689cad3ad16c587f84fb6f4b3 |
Notes | PAPES VI (Fiocruz-CNPq) Carlos Chagas Filho Foundation Research Support of Rio de Janeiro State (FAPERJ) istex:D24D53694772B36D7353D60F789019D72306B88B ark:/67375/WNG-H49JRN0V-7 Excellence Program of Research (PROEP-CNPq/IOC-Fiocruz) ArticleID:JMV24531 National Research Fund from the Ministry of Science and Technology from Mozambique (FNI) National Council for Scientific and Technological Development (CNPq) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27003797 |
PQID | 1807947915 |
PQPubID | 105515 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1811885444 proquest_miscellaneous_1808602909 proquest_journals_1807947915 crossref_primary_10_1002_jmv_24531 pubmed_primary_27003797 wiley_primary_10_1002_jmv_24531_JMV24531 istex_primary_ark_67375_WNG_H49JRN0V_7 |
PublicationCentury | 2000 |
PublicationDate | 2016-10 October 2016 2016-10-00 20161001 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: London |
PublicationTitle | Journal of medical virology |
PublicationTitleAlternate | J. Med. Virol |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Nyaga MM, Esona MD, Jere KC, Peenze I, Seheri ML, Mphahlele MJ. 2014. Genetic diversity of rotavirus genome segment 6 (encoding VP6) in Pretoria, South Africa. Springerplus 3:179. Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596-1599. Cunliffe NA, Witte D, Ngwira BM, Todd S, Bostock NJ, Turner AM, Chimpeni P, Victor JC, Steele AD, Bouckenooghe A, Neuzil KM. 2012. Efficacy of human rotavirus vaccine against severe gastroenteritis in Malawian children in the first two years of life: A randomized, double-blind, placebo controlled trial. Vaccine 30 Suppl 1:A36-A43. Zhou X, Wang YH, Ghosh S, Tang WF, Pang BB, Liu MQ, Peng JS, Zhou DJ, Kobayashi N. 2015. Genomic characterization of G3P[6], G4P[6] and G4P[8] human rotaviruses from Wuhan, China: Evidence for interspecies transmission and reassortment events. Infect Genet Evol 33:55-71. Gentsch JR, Glass RI, Woods P, Gouvea V, Gorziglia M, Flores J, Das BK, Bhan MK. 1992. Identification of group A rotavirus gene 4 types by polymerase chain reaction. J Clin Microbiol 30:1365-1373. Seheri LM, Mwenda JM, Page N. 2014. Report of the 7th African Rotavirus Symposium, Cape Town, South Africa, 8th November 2012. Vaccine 32:6336-6341. Ndze VN, Papp H, Achidi EA, Gonsu KH, Laszlo B, Farkas S, Kisfali P, Melegh B, Esona MD, Bowen MD, Banyai K, Gentsch JR, Odama AM. 2013. One year survey of human rotavirus strains suggests the emergence of genotype G12 in Cameroon. J Med Virol 85:1485-1490. Rahman M, Matthijnssens J, Yang X, Delbeke T, Arijs I, Taniguchi K, Iturriza-Gomara M, Iftekharuddin N, Azim T, Van Ranst M. 2007. Evolutionary history and global spread of the emerging g12 human rotaviruses. J Virol 81:2382-2390. Pitzer VE, Patel MM, Lopman BA, Viboud C, Parashar UD, Grenfell BT. 2011. Modeling rotavirus strain dynamics in developed countries to understand the potential impact of vaccination on genotype distributions. Proc Natl Acad Sci USA 108:19353-19358. Luchs A, Cilli A, Morillo SG, de Souza Gregorio D, Farias de Souza KA, Vieira HR, de Mira Fernandes A, de Cassia Compagnoli Carmona R, Timenetsky MD. 2015. Detection of the emerging rotavirus G12P[8] genotype at high frequency in brazil in 2014: Successive replacement of predominant strains after vaccine introduction. Acta Trop 156:87-94. Delogu R, Ianiro G, Camilloni B, Fiore L, Ruggeri FM. 2015. Unexpected spreading of G12P[8] rotavirus strains among young children in a small area of central Italy. J Med Virol 87:1292-1302. Seheri LM, Page N, Dewar JB, Geyer A, Nemarude AL, Bos P, Esona M, Steele AD. 2010. Characterization and molecular epidemiology of rotavirus strains recovered in Northern Pretoria, South Africa during 2003-2006. J Infect Dis 202:S139-S147. Boom R, Sol CJ, Salimans MM, Jansen CL, PWertheim-van Dillen PM, van der Noordaa J. 1990. Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495-503. Abdel-Moneim AS, Al-Malky MI, Alsulaimani AA, Abuelsaad AS, Mohamed I, Ismail AK. 2015. Sequence diversity of VP4 and VP7 genes of human rotavirus strains in Saudi Arabia. Foodborne Pathog Dis 12:937-944. Leite JP, Alfieri AA, Woods PA, Glass RI, Gentsch JR. 1996. Rotavirus G and P types circulating in Brazil: Characterization by RT-PCR, probe hybridization, and sequence analysis. Arch Virol 141:2365-2374. Page NA, de Beer MC, Seheri LM, Dewar JB, Steele AD. 2009. The detection and molecular characterization of human G12 genotypes in South Africa. J Med Virol 81:106-113. Silva MF, Rose TL, Gomez MM, Carvalho-Costa FA, Fialho AM, Assis RM, Andrade Jda S, Volotao Ede M, Leite JP. 2015. G1P[8] species A rotavirus over 27 years-pre- and post-vaccination eras-in Brazil: Full genomic constellation analysis and no evidence for selection pressure by Rotarix(R) vaccine. Infect Genet Evol 30:206-218. Hemming M, Vesikari T. 2013. Genetic diversity of G1P[8] rotavirus VP7 and VP8* antigens in Finland over a 20-year period: No evidence for selection pressure by universal mass vaccination with RotaTeq(R) vaccine. Infect Genet Evol 19:51-58. Page AL, Jusot V, Mamaty AA, Adamou L, Kaplon J, Pothier P, Djibo A, Manzo ML, Toure B, Langendorf C, Collard JM, Grais RF. 2014. Rotavirus surveillance in urban and rural areas of Niger, April 2010-March 2012. Emerg Infect Dis 20:573-580. Patel MM, Pitzer VE, Alonso WJ, Vera D, Lopman B, Tate J, Viboud C, Parashar UD. 2012. Global seasonality of rotavirus disease. Pediatr Infect Dis J 32:e134-e147. Imbert-Marcille BM, Barbe L, Dupe M, Le Moullac-Vaidye B, Besse B, Peltier C, Ruvoen-Clouet N, Le Pendu J. 2013. A FUT2 gene common polymorphism determines resistance to rotavirus A of the P[8] genotype. J Infect Dis 209:1227-1230. Cunliffe NA, Ngwira BM, Dove W, Nakagomi O, Nakagomi T, Perez A, Hart CA, Kazembe PN, Mwansambo CC. 2009. Serotype g12 rotaviruses, Lilongwe, Malawi. Emerg Infect Dis 15:87-90. Potgieter N, de Beer MC, Taylor MB, Steele AD. 2010. Prevalence and diversity of rotavirus strains in children with acute diarrhea from rural communities in the Limpopo Province, South Africa, from 1998 to 2000. J Infect Dis 202:S148-S155. Armah GE, Mingle JA, Dodoo AK, Anyanful A, Antwi R, Commey J, Nkrumah FK. 1994. Seasonality of rotavirus infection in Ghana. Ann Trop Paediatr 14:223-229. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, Wu Y, Sow SO, Sur D, Breiman RF, Faruque AS, Zaidi AK, Saha D, Alonso PL, Tamboura B, Sanogo D, Onwuchekwa U, Manna B, Ramamurthy T, Kanungo S, Ochieng JB, Omore R, Oundo JO, Hossain A, Das SK, Ahmed S, Qureshi S, Quadri F, Adegbola RA, Antonio M, Hossain MJ, Akinsola A, Mandomando I, Nhampossa T, Acacio S, Biswas K, O'Reilly CE, Mintz ED, Berkeley LY, Muhsen K, Sommerfelt H, Robins-Browne RM, Levine MM. 2013. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet 382:209-222. Trojnar E, Sachsenroder J, Twardziok S, Reetz J, Otto PH, Johne R. 2013. Identification of an avian group A rotavirus containing a novel VP4 gene with a close relationship to those of mammalian rotaviruses. J Gen Virol 94:136-142. Banyai K, Laszlo B, Duque J, Steele AD, Nelson EA, Gentsch JR, Parashar UD. 2012. Systematic review of regional and temporal trends in global rotavirus strain diversity in the pre rotavirus vaccine era: Insights for understanding the impact of rotavirus vaccination programs. Vaccine 30 Suppl 1:A122-A130. Steele AD, Ivanoff B. 2003. Rotavirus strains circulating in Africa during 1996-1999: Emergence of G9 strains and P[6] strains. Vaccine 21:361-367. Bucardo F, Mercado J, Reyes Y, Gonzalez F, Balmaseda A, Nordgren J. 2015. Large increase of rotavirus diarrhoea in the hospital setting associated with emergence of G12 genotype in a highly vaccinated population in Nicaragua. Clin Microbiol Infect 21:603.e1-603.e7. Ndze VN, Esona MD, Achidi EA, Gonsu KH, Doro R, Marton S, Farkas S, Ngeng MB, Ngu AF, Obama-Abena MT, Banyai K. 2014. Full genome characterization of human Rotavirus A strains isolated in Cameroon, 2010-2011: Diverse combinations of the G and P genes and lack of reassortment of the backbone genes. Infect Genet Evol 28:537-560. Zade JK, Chhabra P, Chitambar SD. 2009. Characterization of VP7 and VP4 genes of rotavirus strains: 1990-1994 and 2000-2002. Epidemiol Infect 137:936-942. Zhirakovskaia EV, Aksanova R, Gorbunova MG, Tikunov A, Kuril'shchikov AM, Sokolov SN, Netesov SV, Tikunova NV. 2012. Genetic diversity of group A rotavirus isolates found in Western Siberia in 2007-2011. Mol Gen Mikrobiol Virusol 4:33-41. Banyai K, Bogdan A, Kisfali P, Molnar P, Mihaly I, Melegh B, Martella V, Gentsch JR, Szucs G. 2007. Emergence of serotype G12 rotaviruses, Hungary. Emerg Infect Dis 13:916-919. Das BK, Gentsch JR, Cicirello HG, Woods PA, Gupta A, Ramachandran M, Kumar R, Bhan MK, Glass RI. 1994. Characterization of rotavirus strains from newborns in New Delhi, India. J Clin Microbiol 32:1820-1822. Matthijnssens J, Ciarlet M, Rahman M, Attoui H, Banyai K, Estes MK, Gentsch JR, Iturriza-Gomara M, Kirkwood CD, Martella V, Mertens PP, Nakagomi O, Patton JT, Ruggeri FM, Saif LJ, Santos N, Steyer A, Taniguchi K, Desselberger U, Van Ranst M. 2008. Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch Virol 153:1621-1629. Esona MD, Mijatovic-Rustempasic S, Foytich K, Roy S, Banyai K, Armah GE, Steele AD, Volotao EM, Gomez MM, Silva MF, Gautam R, Quaye O, Tam KI, Forbi JC, Seheri M, Page N, Nyangao J, Ndze VN, Aminu M, Bowen MD, Gentsch JR. 2013. Human G9P[8] rotavirus strains circulating in Cameroon, 1999-2000: Genetic relationships with other G9 strains and detection of a new G9 subtype. Infect Genet Evol 18:315-324. Komoto S, Wandera Apondi E, Shah M, Odoyo E, Nyangao J, Tomita M, Wakuda M, Maeno Y, Shirato H, Tsuji T, Ichinose Y, Taniguchi K. 2014. Whole genomic analysis of human G12P[6] and G12P[8] rotavirus strains that have emerged in Kenya: Identification of porcine-like NSP4 genes. Infect Genet Evol 27:277-293. Waggie Z, Hawkridge A, Hussey GD. 2010. Review of rotavirus studies in Africa: 1976-2006. J Infect Dis 202 Suppl:S23-S33. Mwenda JM, Ntoto KM, Abebe A, Enweronu-Laryea C, Amina I, McHomvu J, Kisakye A, Mpabalwani EM, Pazvakavambwa I, Armah GE, Seheri LM, Kiulia NM, Page N, Widdowson MA, Steele AD. 2010. Burden and epidemiology of rotavirus diarrhea in selected African countries: Preliminary results from the African rotavirus surveillance network. J Infect Dis 202:S5-11. Zeller M, Donato C, Trovao NS, Cowley D, Heylen E, Donker NC, McAllen JK, Akopov A, Kirkness EF, Lemey P, Van Ranst M, Matthijnssens J, Kirkwood CD. 2015. Genome-wide evolutionary analyses of G1P[8] strains isolated before and after rotavirus vaccine introduction. Genome Biol Evol 7:2473-2483. Martinez M, Galeano ME, Akopov A, Palacios R, Russomando G, Kirkness EF, Parra GI. 2014. Whole-genome analyses reveals the an 2009; 81 2013; 209 2015; 30 2015; 33 2014; 27 2008; 103 2014; 28 1996; 141 2010; 63 2014; 20 2013; 19 2013; 18 2012; 30 Suppl 1 2014; 3 2014; 33 Suppl 1 2013; 94 2015; 87 2014; 14 2010; 202 Suppl 2014; 9 2008; 153 2007; 24 2009; 15 1994; 32 2015; 12 2015; 15 2010; 202 2011; 83 2013; 85 2008 2010; 362 2005; 43 2005 2013; 382 2015; 7 2007; 13 2012; 32 2009; 137 1992; 30 2012; 2 2011; 108 1990; 28 2015; 156 2015; 21 1994; 14 2007; 81 2013 2012; 4 2003; 21 2014; 32 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 Estes MK (e_1_2_6_16_1) 2013 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 Zhirakovskaia EV (e_1_2_6_59_1) 2012; 4 e_1_2_6_40_1 Tamura T (e_1_2_6_51_1) 2010; 63 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 141 start-page: 2365 year: 1996 end-page: 2374 article-title: Rotavirus G and P types circulating in Brazil: Characterization by RT‐PCR, probe hybridization, and sequence analysis publication-title: Arch Virol – volume: 15 start-page: 422 year: 2015 end-page: 428 article-title: Effectiveness of a monovalent rotavirus vaccine in infants in Malawi after programmatic roll‐out: An observational and case‐control study publication-title: Lancet Infect Dis – volume: 362 start-page: 289 year: 2010 end-page: 298 article-title: Effect of human rotavirus vaccine on severe diarrhea in African infants publication-title: N Engl J Med – year: 2005 – volume: 202 start-page: S5 year: 2010 end-page: 11 article-title: Burden and epidemiology of rotavirus diarrhea in selected African countries: Preliminary results from the African rotavirus surveillance network publication-title: J Infect Dis – volume: 14 start-page: 223 year: 1994 end-page: 229 article-title: Seasonality of rotavirus infection in Ghana publication-title: Ann Trop Paediatr – volume: 15 start-page: 87 year: 2009 end-page: 90 article-title: Serotype g12 rotaviruses, Lilongwe, Malawi publication-title: Emerg Infect Dis – volume: 81 start-page: 2382 year: 2007 end-page: 2390 article-title: Evolutionary history and global spread of the emerging g12 human rotaviruses publication-title: J Virol – start-page: 1347 year: 2013 end-page: 1401 – volume: 13 start-page: 916 year: 2007 end-page: 919 article-title: Emergence of serotype G12 rotaviruses, Hungary publication-title: Emerg Infect Dis – volume: 202 Suppl start-page: S23 year: 2010 end-page: S33 article-title: Review of rotavirus studies in Africa: 1976–2006 publication-title: J Infect Dis – volume: 30 start-page: 1365 year: 1992 end-page: 1373 article-title: Identification of group A rotavirus gene 4 types by polymerase chain reaction publication-title: J Clin Microbiol – volume: 103 start-page: 745 year: 2008 end-page: 753 article-title: Group A rotavirus genotypes and the ongoing Brazilian experience: A review publication-title: Mem Inst Oswaldo Cruz – volume: 28 start-page: 276 year: 1990 end-page: 282 article-title: Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens publication-title: J Clin Microbiol – volume: 85 start-page: 1485 year: 2013 end-page: 1490 article-title: One year survey of human rotavirus strains suggests the emergence of genotype G12 in Cameroon publication-title: J Med Virol – volume: 81 start-page: 106 year: 2009 end-page: 113 article-title: The detection and molecular characterization of human G12 genotypes in South Africa publication-title: J Med Virol – volume: 21 start-page: 361 year: 2003 end-page: 367 article-title: Rotavirus strains circulating in Africa during 1996–1999: Emergence of G9 strains and P[6] strains publication-title: Vaccine – year: 2008 – volume: 12 start-page: 937 year: 2015 end-page: 944 article-title: Sequence diversity of VP4 and VP7 genes of human rotavirus strains in Saudi Arabia publication-title: Foodborne Pathog Dis – volume: 9 start-page: e100953 year: 2014 article-title: Rotavirus surveillance in Kisangani, the Democratic Republic of the Congo, reveals a high number of unusual genotypes and gene segments of animal origin in non‐vaccinated symptomatic children publication-title: PLoS ONE – volume: 20 start-page: 573 year: 2014 end-page: 580 article-title: Rotavirus surveillance in urban and rural areas of Niger, April 2010‐March 2012 publication-title: Emerg Infect Dis – volume: 27 start-page: 277 year: 2014 end-page: 293 article-title: Whole genomic analysis of human G12P[6] and G12P[8] rotavirus strains that have emerged in Kenya: Identification of porcine‐like NSP4 genes publication-title: Infect Genet Evol – volume: 43 start-page: 67 year: 2005 end-page: 72 article-title: Pathogenic enteric Escherichia coli in children with and without diarrhea in Maputo, Mozambique publication-title: FEMS Immunol Med Microbiol – volume: 32 start-page: e134 year: 2012 end-page: e147 article-title: Global seasonality of rotavirus disease publication-title: Pediatr Infect Dis J – volume: 21 start-page: 603.e1 year: 2015 end-page: 603.e7 article-title: Large increase of rotavirus diarrhoea in the hospital setting associated with emergence of G12 genotype in a highly vaccinated population in Nicaragua publication-title: Clin Microbiol Infect – volume: 2 start-page: 426 year: 2012 end-page: 433 article-title: Genotype constellation and evolution of group A rotaviruses infecting humans publication-title: Curr Opin Virol – volume: 33 start-page: 55 year: 2015 end-page: 71 article-title: Genomic characterization of G3P[6], G4P[6] and G4P[8] human rotaviruses from Wuhan, China: Evidence for interspecies transmission and reassortment events publication-title: Infect Genet Evol – volume: 19 start-page: 51 year: 2013 end-page: 58 article-title: Genetic diversity of G1P[8] rotavirus VP7 and VP8* antigens in Finland over a 20‐year period: No evidence for selection pressure by universal mass vaccination with RotaTeq(R) vaccine publication-title: Infect Genet Evol – volume: 83 start-page: 2018 year: 2011 end-page: 2042 article-title: Whole genome analyses of African G2, G8, G9, and G12 rotavirus strains using sequence‐independent amplification and 454(R) pyrosequencing publication-title: J Med Virol – volume: 28 start-page: 537 year: 2014 end-page: 560 article-title: Full genome characterization of human Rotavirus A strains isolated in Cameroon, 2010–2011: Diverse combinations of the G and P genes and lack of reassortment of the backbone genes publication-title: Infect Genet Evol – volume: 87 start-page: 1292 year: 2015 end-page: 1302 article-title: Unexpected spreading of G12P[8] rotavirus strains among young children in a small area of central Italy publication-title: J Med Virol – volume: 153 start-page: 1621 year: 2008 end-page: 1629 article-title: Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments publication-title: Arch Virol – volume: 18 start-page: 315 year: 2013 end-page: 324 article-title: Human G9P[8] rotavirus strains circulating in Cameroon, 1999‐2000: Genetic relationships with other G9 strains and detection of a new G9 subtype publication-title: Infect Genet Evol – volume: 32 start-page: 1820 year: 1994 end-page: 1822 article-title: Characterization of rotavirus strains from newborns in New Delhi, India publication-title: J Clin Microbiol – volume: 7 start-page: 2473 year: 2015 end-page: 2483 article-title: Genome‐wide evolutionary analyses of G1P[8] strains isolated before and after rotavirus vaccine introduction publication-title: Genome Biol Evol – volume: 28 start-page: 446 year: 2014 end-page: 461 article-title: Review of global rotavirus strain prevalence data from six years post vaccine licensure surveillance: Is there evidence of strain selection from vaccine pressure publication-title: Infect Genet Evol – volume: 33 Suppl 1 start-page: S85 year: 2014 end-page: S88 article-title: Rotavirus G and P types circulating in the eastern region of Kenya: Predominance of G9 and emergence of G12 genotypes publication-title: Pediatr Infect Dis J – volume: 202 start-page: S148 year: 2010 end-page: S155 article-title: Prevalence and diversity of rotavirus strains in children with acute diarrhea from rural communities in the Limpopo Province, South Africa, from 1998 to 2000 publication-title: J Infect Dis – volume: 3 start-page: 179 year: 2014 article-title: Genetic diversity of rotavirus genome segment 6 (encoding VP6) in Pretoria, South Africa publication-title: Springerplus – volume: 27 start-page: 156 year: 2014 end-page: 162 article-title: Whole‐genome analyses reveals the animal origin of a rotavirus G4P[6] detected in a child with severe diarrhea publication-title: Infect Genet Evol – volume: 30 Suppl 1 start-page: A36 year: 2012 end-page: A43 article-title: Efficacy of human rotavirus vaccine against severe gastroenteritis in Malawian children in the first two years of life: A randomized, double‐blind, placebo controlled trial publication-title: Vaccine – volume: 63 start-page: 405 year: 2010 end-page: 411 article-title: Molecular epidemiological study of rotavirus and norovirus infections among children with acute gastroenteritis in Nha Trang, Vietnam, December 2005‐June 2006 publication-title: Jpn J Infect Dis – volume: 81 start-page: 937 year: 2009 end-page: 951 article-title: Genomic characterization of human rotavirus G8 strains from the African rotavirus network: Relationship to animal rotaviruses publication-title: J Med Virol – volume: 24 start-page: 1596 year: 2007 end-page: 1599 article-title: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 publication-title: Mol Biol Evol – volume: 14 start-page: 1096 year: 2014 end-page: 1104 article-title: Effectiveness of monovalent human rotavirus vaccine against admission to hospital for acute rotavirus diarrhoea in South African children: A case‐control study publication-title: Lancet Infect Dis – volume: 94 start-page: 136 year: 2013 end-page: 142 article-title: Identification of an avian group A rotavirus containing a novel VP4 gene with a close relationship to those of mammalian rotaviruses publication-title: J Gen Virol – volume: 4 start-page: 33 year: 2012 end-page: 41 article-title: Genetic diversity of group A rotavirus isolates found in Western Siberia in 2007–2011 publication-title: Mol Gen Mikrobiol Virusol – volume: 19 start-page: 71 year: 2013 end-page: 80 article-title: Zoonotic transmission of reassortant porcine G4P[6] rotaviruses in Hungarian pediatric patients identified sporadically over a 15 year period publication-title: Infect Genet Evol – volume: 30 Suppl 1 start-page: A122 year: 2012 end-page: A130 article-title: Systematic review of regional and temporal trends in global rotavirus strain diversity in the pre rotavirus vaccine era: Insights for understanding the impact of rotavirus vaccination programs publication-title: Vaccine – volume: 202 start-page: S139 year: 2010 end-page: S147 article-title: Characterization and molecular epidemiology of rotavirus strains recovered in Northern Pretoria, South Africa during 2003–2006 publication-title: J Infect Dis – volume: 137 start-page: 936 year: 2009 end-page: 942 article-title: Characterization of VP7 and VP4 genes of rotavirus strains: 1990–1994 and 2000– publication-title: Epidemiol Infect – volume: 28 start-page: 495 year: 1990 end-page: 503 article-title: Rapid and simple method for purification of nucleic acids publication-title: J Clin Microbiol – volume: 108 start-page: 19353 year: 2011 end-page: 19358 article-title: Modeling rotavirus strain dynamics in developed countries to understand the potential impact of vaccination on genotype distributions publication-title: Proc Natl Acad Sci USA – volume: 32 start-page: 6336 year: 2014 end-page: 6341 article-title: Report of the 7th African Rotavirus Symposium, Cape Town, South Africa, 8th November 2012 publication-title: Vaccine – volume: 30 start-page: 206 year: 2015 end-page: 218 article-title: G1P[8] species A rotavirus over 27 years—pre‐ and post‐vaccination eras—in Brazil: Full genomic constellation analysis and no evidence for selection pressure by Rotarix(R) vaccine publication-title: Infect Genet Evol – volume: 156 start-page: 87 year: 2015 end-page: 94 article-title: Detection of the emerging rotavirus G12P[8] genotype at high frequency in brazil in 2014: Successive replacement of predominant strains after vaccine introduction publication-title: Acta Trop – volume: 209 start-page: 1227 year: 2013 end-page: 1230 article-title: A FUT2 gene common polymorphism determines resistance to rotavirus A of the P[8] genotype publication-title: J Infect Dis – volume: 382 start-page: 209 year: 2013 end-page: 222 article-title: Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case‐control study publication-title: Lancet – year: 2013 – ident: e_1_2_6_10_1 doi: 10.1016/j.vaccine.2011.09.120 – ident: e_1_2_6_7_1 doi: 10.1128/JCM.28.3.495-503.1990 – ident: e_1_2_6_50_1 doi: 10.1093/molbev/msm092 – ident: e_1_2_6_12_1 doi: 10.1002/jmv.24180 – ident: e_1_2_6_15_1 doi: 10.1016/j.meegid.2013.06.005 – ident: e_1_2_6_18_1 doi: 10.1128/JCM.28.2.276-282.1990 – ident: e_1_2_6_23_1 doi: 10.1002/jmv.22207 – ident: e_1_2_6_53_1 – ident: e_1_2_6_28_1 doi: 10.1590/S0074-02762008000800001 – ident: e_1_2_6_29_1 doi: 10.1016/j.actatropica.2015.12.008 – ident: e_1_2_6_8_1 doi: 10.1016/j.cmi.2015.01.022 – ident: e_1_2_6_20_1 doi: 10.1016/j.meegid.2013.06.026 – ident: e_1_2_6_25_1 doi: 10.1016/j.meegid.2014.08.002 – ident: e_1_2_6_5_1 doi: 10.1016/j.vaccine.2011.09.111 – ident: e_1_2_6_17_1 doi: 10.1128/jcm.30.6.1365-1373.1992 – ident: e_1_2_6_46_1 doi: 10.1016/j.vaccine.2014.05.002 – ident: e_1_2_6_33_1 doi: 10.1016/j.coviro.2012.04.007 – ident: e_1_2_6_45_1 doi: 10.1016/j.femsim.2004.07.006 – ident: e_1_2_6_55_1 – ident: e_1_2_6_22_1 doi: 10.1093/infdis/jit655 – ident: e_1_2_6_19_1 doi: 10.1016/S1473-3099(14)70940-5 – ident: e_1_2_6_14_1 doi: 10.1002/jmv.21468 – ident: e_1_2_6_3_1 doi: 10.1080/02724936.1994.11747721 – ident: e_1_2_6_4_1 doi: 10.3201/eid1306.061181 – ident: e_1_2_6_21_1 doi: 10.1371/journal.pone.0100953 – ident: e_1_2_6_31_1 doi: 10.1016/j.meegid.2014.07.020 – ident: e_1_2_6_42_1 doi: 10.1073/pnas.1110507108 – ident: e_1_2_6_57_1 doi: 10.1017/S0950268808001532 – ident: e_1_2_6_37_1 doi: 10.1186/2193-1801-3-179 – ident: e_1_2_6_47_1 doi: 10.1086/653559 – ident: e_1_2_6_30_1 doi: 10.1056/NEJMoa0904797 – ident: e_1_2_6_44_1 doi: 10.1128/JVI.01622-06 – ident: e_1_2_6_48_1 doi: 10.1016/j.meegid.2014.12.030 – ident: e_1_2_6_40_1 doi: 10.1016/j.meegid.2013.06.013 – ident: e_1_2_6_9_1 doi: 10.3201/eid1501.080427 – ident: e_1_2_6_13_1 doi: 10.1016/j.meegid.2014.08.017 – ident: e_1_2_6_26_1 doi: 10.1016/S0140-6736(13)60844-2 – ident: e_1_2_6_6_1 doi: 10.1016/S1473-3099(14)71060-6 – ident: e_1_2_6_49_1 doi: 10.1016/S0264-410X(02)00616-3 – ident: e_1_2_6_43_1 doi: 10.1086/653561 – ident: e_1_2_6_56_1 – ident: e_1_2_6_36_1 doi: 10.1002/jmv.23603 – start-page: 1347 volume-title: Fields virology year: 2013 ident: e_1_2_6_16_1 contributor: fullname: Estes MK – ident: e_1_2_6_34_1 doi: 10.1086/653557 – ident: e_1_2_6_54_1 doi: 10.1086/653554 – ident: e_1_2_6_32_1 doi: 10.1007/s00705-008-0155-1 – ident: e_1_2_6_52_1 doi: 10.1099/vir.0.047381-0 – volume: 4 start-page: 33 year: 2012 ident: e_1_2_6_59_1 article-title: Genetic diversity of group A rotavirus isolates found in Western Siberia in 2007–2011 publication-title: Mol Gen Mikrobiol Virusol contributor: fullname: Zhirakovskaia EV – ident: e_1_2_6_38_1 doi: 10.3201/eid2004.131328 – ident: e_1_2_6_41_1 doi: 10.1097/INF.0b013e31827d3b68 – ident: e_1_2_6_39_1 doi: 10.1002/jmv.21362 – ident: e_1_2_6_11_1 doi: 10.1128/jcm.32.7.1820-1822.1994 – ident: e_1_2_6_27_1 doi: 10.1007/BF01718637 – ident: e_1_2_6_35_1 doi: 10.1016/j.meegid.2014.10.009 – ident: e_1_2_6_58_1 doi: 10.1093/gbe/evv157 – ident: e_1_2_6_2_1 doi: 10.1089/fpd.2015.1990 – ident: e_1_2_6_60_1 doi: 10.1016/j.meegid.2015.04.010 – ident: e_1_2_6_24_1 doi: 10.1097/INF.0000000000000059 – volume: 63 start-page: 405 year: 2010 ident: e_1_2_6_51_1 article-title: Molecular epidemiological study of rotavirus and norovirus infections among children with acute gastroenteritis in Nha Trang, Vietnam, December 2005‐June 2006 publication-title: Jpn J Infect Dis doi: 10.7883/yoken.63.405 contributor: fullname: Tamura T |
SSID | ssj0008922 |
Score | 2.3176298 |
Snippet | Acute diarrhea disease caused by Rotaviruses A (RVA) is still the leading cause of morbidity and mortality in children ≤5 years old in developing countries. An... Acute diarrhea disease caused by Rotaviruses A (RVA) is still the leading cause of morbidity and mortality in children less than or equal to 5 years old in... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1751 |
SubjectTerms | acute diarrhea disease Acute Disease Antigens, Viral - genetics Antigens, Viral - immunology Capsid Proteins - immunology Child, Preschool Cross-Sectional Studies Diarrhea Diarrhea - epidemiology Diarrhea - virology Epidemiology Feces - virology Female Gastroenteritis - epidemiology Gastroenteritis - virology Genetic Variation Genotype genotypes Humans Infant Male Mozambique Mozambique - epidemiology Phylogeny Prevalence RNA, Viral - genetics Rotavirus Rotavirus - genetics Rotavirus Infections - epidemiology Rotavirus Infections - virology Rotavirus Vaccines - administration & dosage rotaviruses A seasonality Seasons Sequence Analysis, DNA Vaccines, Attenuated - administration & dosage Virology |
Title | Epidemiology of rotavirus A diarrhea in Chókwè, Southern Mozambique, from February to September, 2011 |
URI | https://api.istex.fr/ark:/67375/WNG-H49JRN0V-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmv.24531 https://www.ncbi.nlm.nih.gov/pubmed/27003797 https://www.proquest.com/docview/1807947915 https://search.proquest.com/docview/1808602909 https://search.proquest.com/docview/1811885444 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSIgL70egIIMQ4rChediJLU5V2aWqtCtEoXCz7HjclqpJld0tlF_Ue39C_xhjZzdVJUBI3CJlLDnzdsbzDSEvjcmt4IWMpQGI0fux2BgHcQqcg4asSqswxHa7nHwV74YeJuftshemw4fof7h5ywj-2hu4NtO1C9DQb4fHbzLGQw81nhJC-0b-offCQnYVBPQEMcYgvkQVSrK1fuWlWHTNs_XH7xLNy3lrCDyjW_-15dvk5iLfpOudgtwhV6C-S66PFxX1e2R3eDEi9oQ2jrbNTB_vt_MpXaeoO22L3pru13Rj7_zs4Pv56YCGqXvQ1nTc_NSHxgPADqhvU6EjPGCjyp3QWUO34WgGftrIgProf598Hg0_bWzGi-ELccUwqsdgSssKMLwQTGcpJC5DU64sZ8xhUqX9_SiMZboQstI21zYtKi5KJ5gzhWMmf0BW6qaGR4SyUlbcZUxYzHYqm0orXeHAOatRE7SLyIulGNRRh7GhOjTlTCHLVGBZRF4FAfUUuj3wl9JKrr5M3qtNJrc-TpIdVUZkdSlBtbDHqUpFgo6nlCmPyPP-NVqSL4_oGpp5oPEDuWQi_0aDBzKBPGARedhpR78hX8LPS4kbeB2U4M_forbGO-Hh8b-TPiE3UFpFd49wlazM2jk8JVendv4sKP4v-DUFQg |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglYAL70egBYMQ4rChediOLXGpyi5L6a4QLYWbZcc2lKpJld0tlF_EvT-hf4yxs5uqEiAkbpEykZyZbx72eGYQeqp1bjhlIhba2hisH4m1djZOLaVW2axMyzDEdrsYf-Kv-r5NzstFLUzbH6I7cPOaEey1V3B_IL121jX068HRi4xQX0S9TBgA0Rdw5O86O8xFm0MAWxCDF6KLvkJJttZ9es4bLXvGfv9dqHk-cg2uZ3Dt_xZ9HV2dh5x4vcXIDXTBVjfRpdE8qX4Lfe6fTYk9xrXDTT1VR3vNbILXMcCnacBg470Kb3w5Pdn_dvqzh8PgPdtUeFT_UAfa94DtYV-pggewxwbUHeNpjbft4dT6gSM97AOA2-jDoL-zMYzn8xfikoBjj60uDGFWU8aJylKbuAy0uTSUEAdxlfJXpMCdKcZFqUyuTMpKygvHidPMEZ3fQUtVXdl7CJNClNRlhBsIeEqTCiMcc9Y5owAMykXoyUIO8rBtsyHbhsqZBJbJwLIIPQsS6ihUs-_vpRVUfhy_lkMiNt-Pk11ZRGhlIUI5V8mJTHkCtqcQKY3Q4-41KJPPkKjK1rNA42dyiUT8jQb2ZBx4QCJ0t4VHtyCfxc8LAQt4HlDw53-Rm6Pd8HD_30kfocvDndGW3HozfvsAXQHJsfZa4QpamjYzu4ouTszsYdCCX29GCWo |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bTxQxFG4QEuILijdGQYsxxocdmUs704YnArsCuhsiir417bQFJMxsZndR_EW--xP4Y552doeQqDHxbZI5TTrn3jmn30HohVKpZjTjIVfGhOD9SKiUNWFsKDXSJEVc-CG2h_ngM9vpOpiczdldmAYfov3h5izD-2tn4ENtN65BQ7-cX7xOCHV3qBcIpOEOOD9ND1o3zHhTQgBXEEIQojNYoSjZaJfeCEYLjq_ffpdp3kxcfeTp3fmvPd9FS9OEE281GrKM5kx5Dy32pyX1--i4ez0j9hJXFtfVWF6c1pMR3sKgPHUN7hqflnj75Orn2derHx3sx-6ZusT96rs8Vw4BtoPdPRXcgxM26NwlHlf40AzHxo0b6WAX_h-gj73uh-3dcDp9ISwIhPXQqFyTzCiaMSKT2EQ2AVsuNCXEQlYlXYMUBDOZMV5InUodZwVluWXEqswSlT5E82VVmhWESc4LahPCNKQ7hY655jazxlotQRWkDdDzmRjEsAHZEA2cciKAZcKzLEAvvYBaClmfua60nIpPgzdil_D994PoSOQBWp1JUEwNciRiFoHnyXlMA7TevgZTcvURWZpq4mncRC4e8b_RwImMAQ9IgB412tFuyNXw05zDBl55Jfjzt4j9_pF_ePzvpM_Q4sFOT7zbG7x9gm6D4LKmp3AVzY_riVlDt0Z68tTbwC8vVwgQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epidemiology+of+rotavirus+A+diarrhea+in+Ch%C3%B3kw%C3%A8%2C+Southern+Mozambique%2C+from+February+to+September%2C+2011&rft.jtitle=Journal+of+medical+virology&rft.au=Langa%2C+Jer%C3%B3nimo+S.&rft.au=Thompson%2C+Ricardo&rft.au=Arnaldo%2C+Paulo&rft.au=Resque%2C+Hugo+Reis&rft.date=2016-10-01&rft.issn=0146-6615&rft.eissn=1096-9071&rft.volume=88&rft.issue=10&rft.spage=1751&rft.epage=1758&rft_id=info:doi/10.1002%2Fjmv.24531&rft.externalDBID=10.1002%252Fjmv.24531&rft.externalDocID=JMV24531 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0146-6615&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0146-6615&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0146-6615&client=summon |