Epidemiology of rotavirus A diarrhea in Chókwè, Southern Mozambique, from February to September, 2011

Acute diarrhea disease caused by Rotaviruses A (RVA) is still the leading cause of morbidity and mortality in children ≤5 years old in developing countries. An exploratory cross‐sectional study was conducted between February and September, 2011 to determine the proportion of acute diarrhea caused by...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medical virology Vol. 88; no. 10; pp. 1751 - 1758
Main Authors: Langa, Jerónimo S., Thompson, Ricardo, Arnaldo, Paulo, Resque, Hugo Reis, Rose, Tatiana, Enosse, Sonia M., Fialho, Alexandre, de Assis, Rosane Maria Santos, da Silva, Marcelle Figueira Marques, Leite, José Paulo Gagliardi
Format: Journal Article
Language:English
Published: United States Blackwell Publishing Ltd 01-10-2016
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Acute diarrhea disease caused by Rotaviruses A (RVA) is still the leading cause of morbidity and mortality in children ≤5 years old in developing countries. An exploratory cross‐sectional study was conducted between February and September, 2011 to determine the proportion of acute diarrhea caused by RVA. A total of 254 stool specimens were collected from children ≤5 years old with acute diarrhea, including outpatients (222 children) and inpatients (32 children), in three local health centers in Chókwè District, Gaza Province, South of Mozambique. RVA antigens were detected using enzyme immunoassay (EIA); the RVA G (VP7) and P (VP4) genotypes were determined by RT‐PCR or analysis sequencing. Sixty (24%) out of 254 fecal specimens were positive for RVA by EIA; being 58 (97%) from children ≤2 years of age. RVA prevalence peaks in June and July (coldest and drier months) and the G[P] binary combination observed were G12P[8] (57%); G1P[8] (9%); G12P[6] (6%); and 2% for each of the following genotypes: G1P[6], G2P[6] G4P[6], and G9P[8]. Non‐Typeable (NT) G and/or P genotypes were observed as follows: G12P [NT] (6%); G1P [NT], G3P[NT] and GNTP[NT] (4%). Considering the different GP combinations, G12 represented 67% of the genotypes. This is the first data showing the diversity of RVA genotypes in Mozambique highlighting the epidemiological importance of these viruses in acute diarrhea cases in children ≤2 years old. In addition, these findings will provide a baseline data before the introduction of the RVA monovalent (Rotarix®) vaccine in the National Immunization Program in September 2015. J. Med. Virol. 88:1751–1758, 2016. © 2016 Wiley Periodicals, Inc.
AbstractList Acute diarrhea disease caused by Rotaviruses A (RVA) is still the leading cause of morbidity and mortality in children ≤5 years old in developing countries. An exploratory cross-sectional study was conducted between February and September, 2011 to determine the proportion of acute diarrhea caused by RVA. A total of 254 stool specimens were collected from children ≤5 years old with acute diarrhea, including outpatients (222 children) and inpatients (32 children), in three local health centers in Chókwè District, Gaza Province, South of Mozambique. RVA antigens were detected using enzyme immunoassay (EIA); the RVA G (VP7) and P (VP4) genotypes were determined by RT-PCR or analysis sequencing. Sixty (24%) out of 254 fecal specimens were positive for RVA by EIA; being 58 (97%) from children ≤2 years of age. RVA prevalence peaks in June and July (coldest and drier months) and the G[P] binary combination observed were G12P[8] (57%); G1P[8] (9%); G12P[6] (6%); and 2% for each of the following genotypes: G1P[6], G2P[6] G4P[6], and G9P[8]. Non-Typeable (NT) G and/or P genotypes were observed as follows: G12P [NT] (6%); G1P [NT], G3P[NT] and GNTP[NT] (4%). Considering the different GP combinations, G12 represented 67% of the genotypes. This is the first data showing the diversity of RVA genotypes in Mozambique highlighting the epidemiological importance of these viruses in acute diarrhea cases in children ≤2 years old. In addition, these findings will provide a baseline data before the introduction of the RVA monovalent (Rotarix) vaccine in the National Immunization Program in September 2015. J. Med. Virol. 88:1751-1758, 2016. © 2016 Wiley Periodicals, Inc.
Acute diarrhea disease caused by Rotaviruses A (RVA) is still the leading cause of morbidity and mortality in children ≤5 years old in developing countries. An exploratory cross-sectional study was conducted between February and September, 2011 to determine the proportion of acute diarrhea caused by RVA. A total of 254 stool specimens were collected from children ≤5 years old with acute diarrhea, including outpatients (222 children) and inpatients (32 children), in three local health centers in Chókwè District, Gaza Province, South of Mozambique. RVA antigens were detected using enzyme immunoassay (EIA); the RVA G (VP7) and P (VP4) genotypes were determined by RT-PCR or analysis sequencing. Sixty (24%) out of 254 fecal specimens were positive for RVA by EIA; being 58 (97%) from children ≤2 years of age. RVA prevalence peaks in June and July (coldest and drier months) and the G[P] binary combination observed were G12P[8] (57%); G1P[8] (9%); G12P[6] (6%); and 2% for each of the following genotypes: G1P[6], G2P[6] G4P[6], and G9P[8]. Non-Typeable (NT) G and/or P genotypes were observed as follows: G12P [NT] (6%); G1P [NT], G3P[NT] and GNTP[NT] (4%). Considering the different GP combinations, G12 represented 67% of the genotypes. This is the first data showing the diversity of RVA genotypes in Mozambique highlighting the epidemiological importance of these viruses in acute diarrhea cases in children ≤2 years old. In addition, these findings will provide a baseline data before the introduction of the RVA monovalent (Rotarix(®) ) vaccine in the National Immunization Program in September 2015. J. Med. Virol. 88:1751-1758, 2016. © 2016 Wiley Periodicals, Inc.
Acute diarrhea disease caused by Rotaviruses A (RVA) is still the leading cause of morbidity and mortality in children less than or equal to 5 years old in developing countries. An exploratory cross-sectional study was conducted between February and September, 2011 to determine the proportion of acute diarrhea caused by RVA. A total of 254 stool specimens were collected from children less than or equal to 5 years old with acute diarrhea, including outpatients (222 children) and inpatients (32 children), in three local health centers in Chokwe District, Gaza Province, South of Mozambique. RVA antigens were detected using enzyme immunoassay (EIA); the RVA G (VP7) and P (VP4) genotypes were determined by RT-PCR or analysis sequencing. Sixty (24%) out of 254 fecal specimens were positive for RVA by EIA; being 58 (97%) from children less than or equal to 2 years of age. RVA prevalence peaks in June and July (coldest and drier months) and the G[P] binary combination observed were G12P[8] (57%); G1P[8] (9%); G12P[6] (6%); and 2% for each of the following genotypes: G1P[6], G2P[6] G4P[6], and G9P[8]. Non-Typeable (NT) G and/or P genotypes were observed as follows: G12P [NT] (6%); G1P [NT], G3P[NT] and GNTP[NT] (4%). Considering the different GP combinations, G12 represented 67% of the genotypes. This is the first data showing the diversity of RVA genotypes in Mozambique highlighting the epidemiological importance of these viruses in acute diarrhea cases in children less than or equal to 2 years old. In addition, these findings will provide a baseline data before the introduction of the RVA monovalent (Rotarix super( registered )) vaccine in the National Immunization Program in September 2015. J. Med. Virol. 88:1751-1758, 2016.
Acute diarrhea disease caused by Rotaviruses A (RVA) is still the leading cause of morbidity and mortality in children ≤5 years old in developing countries. An exploratory cross‐sectional study was conducted between February and September, 2011 to determine the proportion of acute diarrhea caused by RVA. A total of 254 stool specimens were collected from children ≤5 years old with acute diarrhea, including outpatients (222 children) and inpatients (32 children), in three local health centers in Chókwè District, Gaza Province, South of Mozambique. RVA antigens were detected using enzyme immunoassay (EIA); the RVA G (VP7) and P (VP4) genotypes were determined by RT‐PCR or analysis sequencing. Sixty (24%) out of 254 fecal specimens were positive for RVA by EIA; being 58 (97%) from children ≤2 years of age. RVA prevalence peaks in June and July (coldest and drier months) and the G[P] binary combination observed were G12P[8] (57%); G1P[8] (9%); G12P[6] (6%); and 2% for each of the following genotypes: G1P[6], G2P[6] G4P[6], and G9P[8]. Non‐Typeable (NT) G and/or P genotypes were observed as follows: G12P [NT] (6%); G1P [NT], G3P[NT] and GNTP[NT] (4%). Considering the different GP combinations, G12 represented 67% of the genotypes. This is the first data showing the diversity of RVA genotypes in Mozambique highlighting the epidemiological importance of these viruses in acute diarrhea cases in children ≤2 years old. In addition, these findings will provide a baseline data before the introduction of the RVA monovalent (Rotarix®) vaccine in the National Immunization Program in September 2015. J. Med. Virol. 88:1751–1758, 2016. © 2016 Wiley Periodicals, Inc.
Author Arnaldo, Paulo
Langa, Jerónimo S.
de Assis, Rosane Maria Santos
Enosse, Sonia M.
da Silva, Marcelle Figueira Marques
Leite, José Paulo Gagliardi
Resque, Hugo Reis
Rose, Tatiana
Thompson, Ricardo
Fialho, Alexandre
Author_xml – sequence: 1
  givenname: Jerónimo S.
  surname: Langa
  fullname: Langa, Jerónimo S.
  email: Correspondence to: Jerónimo S. Langa, Ministério da Saúde, Av. Eduardo Mondlane/Salvador Allende, Maputo, Maputo, Mozambique. ,, langajeronimo@gmail.comje_langa@yahoo.com.br
  organization: Chokwe Health Research and Training Centre (CITSC), National Institute of Health, Maputo, Mozambique
– sequence: 2
  givenname: Ricardo
  surname: Thompson
  fullname: Thompson, Ricardo
  organization: Chokwe Health Research and Training Centre (CITSC), National Institute of Health, Maputo, Mozambique
– sequence: 3
  givenname: Paulo
  surname: Arnaldo
  fullname: Arnaldo, Paulo
  organization: Chokwe Health Research and Training Centre (CITSC), National Institute of Health, Maputo, Mozambique
– sequence: 4
  givenname: Hugo Reis
  surname: Resque
  fullname: Resque, Hugo Reis
  organization: Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
– sequence: 5
  givenname: Tatiana
  surname: Rose
  fullname: Rose, Tatiana
  organization: Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro, Fiocruz, Brazil
– sequence: 6
  givenname: Sonia M.
  surname: Enosse
  fullname: Enosse, Sonia M.
  organization: Chokwe Health Research and Training Centre (CITSC), National Institute of Health, Maputo, Mozambique
– sequence: 7
  givenname: Alexandre
  surname: Fialho
  fullname: Fialho, Alexandre
  organization: Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro, Fiocruz, Brazil
– sequence: 8
  givenname: Rosane Maria Santos
  surname: de Assis
  fullname: de Assis, Rosane Maria Santos
  organization: Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro, Fiocruz, Brazil
– sequence: 9
  givenname: Marcelle Figueira Marques
  surname: da Silva
  fullname: da Silva, Marcelle Figueira Marques
  organization: Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
– sequence: 10
  givenname: José Paulo Gagliardi
  surname: Leite
  fullname: Leite, José Paulo Gagliardi
  organization: Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro, Fiocruz, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27003797$$D View this record in MEDLINE/PubMed
BookMark eNqN0ctO3DAUBmCroioD7aIvUFnqppUmYDuOL0s04lIEVCotXVpOcsJ4SOKpnUCHJ2LfR-DFajrAolKlrs7mO7_s82-hjd73gNBbSnYoIWx30V3vMF7k9AWaUKJFpomkG2hCKBeZELTYRFsxLgghSjP2Cm0ySUgutZygy_2lq6FzvvWXK-wbHPxgr10YI97DtbMhzMFi1-PZ_P7X1c393RSf-3GYQ-jxqb-1Xel-jDDFTfAdPoAyjDas8ODxOSwH6EoIU8wIpa_Ry8a2Ed48zm307WD_6-woO_l8-Gm2d5JVnHGaQSlrLqAshOKWUSANkzqv6oLzRuXaaqIUZ9oKpStb57amoiqUbBRvStHwMt9GH9a5y-DTw-JgOhcraFvbgx-joYpSpVIc_w9KlCBME53o-7_owo-hTx95UFJzqWmR1Me1qoKPMUBjlsF16R6GEvNQlElFmT9FJfvuMXEsO6if5VMzCeyuwY1rYfXvJHN8evEUma03XBzg5_OGDVdGyFwW5vvZoTni-vjLGbkwMv8Nlf2svw
CitedBy_id crossref_primary_10_1155_2023_4628858
crossref_primary_10_3390_pathogens9100810
crossref_primary_10_1007_s40475_018_0146_6
crossref_primary_10_1007_s00705_017_3575_y
crossref_primary_10_1097_MD_0000000000006574
crossref_primary_10_3923_pjbs_2017_59_69
crossref_primary_10_1016_j_meegid_2019_03_016
crossref_primary_10_1186_s12879_020_05718_9
crossref_primary_10_3389_fmicb_2023_1193094
crossref_primary_10_1093_tropej_fmx032
crossref_primary_10_3390_pathogens9090671
crossref_primary_10_1002_jmv_24605
crossref_primary_10_1371_journal_pone_0255720
crossref_primary_10_1128_JVI_01476_18
crossref_primary_10_1002_jmv_25213
crossref_primary_10_1088_1742_6596_1294_6_062074
crossref_primary_10_3390_v14010134
crossref_primary_10_3390_pathogens9121026
Cites_doi 10.1016/j.vaccine.2011.09.120
10.1128/JCM.28.3.495-503.1990
10.1093/molbev/msm092
10.1002/jmv.24180
10.1016/j.meegid.2013.06.005
10.1128/JCM.28.2.276-282.1990
10.1002/jmv.22207
10.1590/S0074-02762008000800001
10.1016/j.actatropica.2015.12.008
10.1016/j.cmi.2015.01.022
10.1016/j.meegid.2013.06.026
10.1016/j.meegid.2014.08.002
10.1016/j.vaccine.2011.09.111
10.1128/jcm.30.6.1365-1373.1992
10.1016/j.vaccine.2014.05.002
10.1016/j.coviro.2012.04.007
10.1016/j.femsim.2004.07.006
10.1093/infdis/jit655
10.1016/S1473-3099(14)70940-5
10.1002/jmv.21468
10.1080/02724936.1994.11747721
10.3201/eid1306.061181
10.1371/journal.pone.0100953
10.1016/j.meegid.2014.07.020
10.1073/pnas.1110507108
10.1017/S0950268808001532
10.1186/2193-1801-3-179
10.1086/653559
10.1056/NEJMoa0904797
10.1128/JVI.01622-06
10.1016/j.meegid.2014.12.030
10.1016/j.meegid.2013.06.013
10.3201/eid1501.080427
10.1016/j.meegid.2014.08.017
10.1016/S0140-6736(13)60844-2
10.1016/S1473-3099(14)71060-6
10.1016/S0264-410X(02)00616-3
10.1086/653561
10.1002/jmv.23603
10.1086/653557
10.1086/653554
10.1007/s00705-008-0155-1
10.1099/vir.0.047381-0
10.3201/eid2004.131328
10.1097/INF.0b013e31827d3b68
10.1002/jmv.21362
10.1128/jcm.32.7.1820-1822.1994
10.1007/BF01718637
10.1016/j.meegid.2014.10.009
10.1093/gbe/evv157
10.1089/fpd.2015.1990
10.1016/j.meegid.2015.04.010
10.1097/INF.0000000000000059
10.7883/yoken.63.405
ContentType Journal Article
Copyright 2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2016 Wiley Periodicals, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7TK
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
DOI 10.1002/jmv.24531
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE - Academic
MEDLINE
AIDS and Cancer Research Abstracts

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1096-9071
EndPage 1758
ExternalDocumentID 4134174921
10_1002_jmv_24531
27003797
JMV24531
ark_67375_WNG_H49JRN0V_7
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Research Fund from the Ministry of Science and Technology from Mozambique (FNI)
– fundername: Excellence Program of Research (PROEP‐CNPq/IOC‐Fiocruz)
– fundername: PAPES VI (Fiocruz‐CNPq)
– fundername: Carlos Chagas Filho Foundation Research Support of Rio de Janeiro State (FAPERJ)
– fundername: National Council for Scientific and Technological Development (CNPq)
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AI.
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
ECGQY
EJD
ELTNK
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WHG
WIB
WIH
WIJ
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7QL
7TK
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c4241-eb7d46eb5684a21e0f2793cd544f839a9088429a689cad3ad16c587f84fb6f4b3
IEDL.DBID 33P
ISSN 0146-6615
IngestDate Thu Aug 15 22:44:04 EDT 2024
Fri Aug 16 23:46:06 EDT 2024
Thu Oct 10 22:20:21 EDT 2024
Thu Nov 21 21:19:36 EST 2024
Sat Sep 28 08:48:04 EDT 2024
Sat Aug 24 01:05:21 EDT 2024
Wed Oct 30 10:02:02 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords genotypes
prevalence
Mozambique
acute diarrhea disease
seasonality
rotaviruses A
Language English
License 2016 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4241-eb7d46eb5684a21e0f2793cd544f839a9088429a689cad3ad16c587f84fb6f4b3
Notes PAPES VI (Fiocruz-CNPq)
Carlos Chagas Filho Foundation Research Support of Rio de Janeiro State (FAPERJ)
istex:D24D53694772B36D7353D60F789019D72306B88B
ark:/67375/WNG-H49JRN0V-7
Excellence Program of Research (PROEP-CNPq/IOC-Fiocruz)
ArticleID:JMV24531
National Research Fund from the Ministry of Science and Technology from Mozambique (FNI)
National Council for Scientific and Technological Development (CNPq)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27003797
PQID 1807947915
PQPubID 105515
PageCount 8
ParticipantIDs proquest_miscellaneous_1811885444
proquest_miscellaneous_1808602909
proquest_journals_1807947915
crossref_primary_10_1002_jmv_24531
pubmed_primary_27003797
wiley_primary_10_1002_jmv_24531_JMV24531
istex_primary_ark_67375_WNG_H49JRN0V_7
PublicationCentury 2000
PublicationDate 2016-10
October 2016
2016-10-00
20161001
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: London
PublicationTitle Journal of medical virology
PublicationTitleAlternate J. Med. Virol
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Nyaga MM, Esona MD, Jere KC, Peenze I, Seheri ML, Mphahlele MJ. 2014. Genetic diversity of rotavirus genome segment 6 (encoding VP6) in Pretoria, South Africa. Springerplus 3:179.
Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596-1599.
Cunliffe NA, Witte D, Ngwira BM, Todd S, Bostock NJ, Turner AM, Chimpeni P, Victor JC, Steele AD, Bouckenooghe A, Neuzil KM. 2012. Efficacy of human rotavirus vaccine against severe gastroenteritis in Malawian children in the first two years of life: A randomized, double-blind, placebo controlled trial. Vaccine 30 Suppl 1:A36-A43.
Zhou X, Wang YH, Ghosh S, Tang WF, Pang BB, Liu MQ, Peng JS, Zhou DJ, Kobayashi N. 2015. Genomic characterization of G3P[6], G4P[6] and G4P[8] human rotaviruses from Wuhan, China: Evidence for interspecies transmission and reassortment events. Infect Genet Evol 33:55-71.
Gentsch JR, Glass RI, Woods P, Gouvea V, Gorziglia M, Flores J, Das BK, Bhan MK. 1992. Identification of group A rotavirus gene 4 types by polymerase chain reaction. J Clin Microbiol 30:1365-1373.
Seheri LM, Mwenda JM, Page N. 2014. Report of the 7th African Rotavirus Symposium, Cape Town, South Africa, 8th November 2012. Vaccine 32:6336-6341.
Ndze VN, Papp H, Achidi EA, Gonsu KH, Laszlo B, Farkas S, Kisfali P, Melegh B, Esona MD, Bowen MD, Banyai K, Gentsch JR, Odama AM. 2013. One year survey of human rotavirus strains suggests the emergence of genotype G12 in Cameroon. J Med Virol 85:1485-1490.
Rahman M, Matthijnssens J, Yang X, Delbeke T, Arijs I, Taniguchi K, Iturriza-Gomara M, Iftekharuddin N, Azim T, Van Ranst M. 2007. Evolutionary history and global spread of the emerging g12 human rotaviruses. J Virol 81:2382-2390.
Pitzer VE, Patel MM, Lopman BA, Viboud C, Parashar UD, Grenfell BT. 2011. Modeling rotavirus strain dynamics in developed countries to understand the potential impact of vaccination on genotype distributions. Proc Natl Acad Sci USA 108:19353-19358.
Luchs A, Cilli A, Morillo SG, de Souza Gregorio D, Farias de Souza KA, Vieira HR, de Mira Fernandes A, de Cassia Compagnoli Carmona R, Timenetsky MD. 2015. Detection of the emerging rotavirus G12P[8] genotype at high frequency in brazil in 2014: Successive replacement of predominant strains after vaccine introduction. Acta Trop 156:87-94.
Delogu R, Ianiro G, Camilloni B, Fiore L, Ruggeri FM. 2015. Unexpected spreading of G12P[8] rotavirus strains among young children in a small area of central Italy. J Med Virol 87:1292-1302.
Seheri LM, Page N, Dewar JB, Geyer A, Nemarude AL, Bos P, Esona M, Steele AD. 2010. Characterization and molecular epidemiology of rotavirus strains recovered in Northern Pretoria, South Africa during 2003-2006. J Infect Dis 202:S139-S147.
Boom R, Sol CJ, Salimans MM, Jansen CL, PWertheim-van Dillen PM, van der Noordaa J. 1990. Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495-503.
Abdel-Moneim AS, Al-Malky MI, Alsulaimani AA, Abuelsaad AS, Mohamed I, Ismail AK. 2015. Sequence diversity of VP4 and VP7 genes of human rotavirus strains in Saudi Arabia. Foodborne Pathog Dis 12:937-944.
Leite JP, Alfieri AA, Woods PA, Glass RI, Gentsch JR. 1996. Rotavirus G and P types circulating in Brazil: Characterization by RT-PCR, probe hybridization, and sequence analysis. Arch Virol 141:2365-2374.
Page NA, de Beer MC, Seheri LM, Dewar JB, Steele AD. 2009. The detection and molecular characterization of human G12 genotypes in South Africa. J Med Virol 81:106-113.
Silva MF, Rose TL, Gomez MM, Carvalho-Costa FA, Fialho AM, Assis RM, Andrade Jda S, Volotao Ede M, Leite JP. 2015. G1P[8] species A rotavirus over 27 years-pre- and post-vaccination eras-in Brazil: Full genomic constellation analysis and no evidence for selection pressure by Rotarix(R) vaccine. Infect Genet Evol 30:206-218.
Hemming M, Vesikari T. 2013. Genetic diversity of G1P[8] rotavirus VP7 and VP8* antigens in Finland over a 20-year period: No evidence for selection pressure by universal mass vaccination with RotaTeq(R) vaccine. Infect Genet Evol 19:51-58.
Page AL, Jusot V, Mamaty AA, Adamou L, Kaplon J, Pothier P, Djibo A, Manzo ML, Toure B, Langendorf C, Collard JM, Grais RF. 2014. Rotavirus surveillance in urban and rural areas of Niger, April 2010-March 2012. Emerg Infect Dis 20:573-580.
Patel MM, Pitzer VE, Alonso WJ, Vera D, Lopman B, Tate J, Viboud C, Parashar UD. 2012. Global seasonality of rotavirus disease. Pediatr Infect Dis J 32:e134-e147.
Imbert-Marcille BM, Barbe L, Dupe M, Le Moullac-Vaidye B, Besse B, Peltier C, Ruvoen-Clouet N, Le Pendu J. 2013. A FUT2 gene common polymorphism determines resistance to rotavirus A of the P[8] genotype. J Infect Dis 209:1227-1230.
Cunliffe NA, Ngwira BM, Dove W, Nakagomi O, Nakagomi T, Perez A, Hart CA, Kazembe PN, Mwansambo CC. 2009. Serotype g12 rotaviruses, Lilongwe, Malawi. Emerg Infect Dis 15:87-90.
Potgieter N, de Beer MC, Taylor MB, Steele AD. 2010. Prevalence and diversity of rotavirus strains in children with acute diarrhea from rural communities in the Limpopo Province, South Africa, from 1998 to 2000. J Infect Dis 202:S148-S155.
Armah GE, Mingle JA, Dodoo AK, Anyanful A, Antwi R, Commey J, Nkrumah FK. 1994. Seasonality of rotavirus infection in Ghana. Ann Trop Paediatr 14:223-229.
Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, Wu Y, Sow SO, Sur D, Breiman RF, Faruque AS, Zaidi AK, Saha D, Alonso PL, Tamboura B, Sanogo D, Onwuchekwa U, Manna B, Ramamurthy T, Kanungo S, Ochieng JB, Omore R, Oundo JO, Hossain A, Das SK, Ahmed S, Qureshi S, Quadri F, Adegbola RA, Antonio M, Hossain MJ, Akinsola A, Mandomando I, Nhampossa T, Acacio S, Biswas K, O'Reilly CE, Mintz ED, Berkeley LY, Muhsen K, Sommerfelt H, Robins-Browne RM, Levine MM. 2013. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet 382:209-222.
Trojnar E, Sachsenroder J, Twardziok S, Reetz J, Otto PH, Johne R. 2013. Identification of an avian group A rotavirus containing a novel VP4 gene with a close relationship to those of mammalian rotaviruses. J Gen Virol 94:136-142.
Banyai K, Laszlo B, Duque J, Steele AD, Nelson EA, Gentsch JR, Parashar UD. 2012. Systematic review of regional and temporal trends in global rotavirus strain diversity in the pre rotavirus vaccine era: Insights for understanding the impact of rotavirus vaccination programs. Vaccine 30 Suppl 1:A122-A130.
Steele AD, Ivanoff B. 2003. Rotavirus strains circulating in Africa during 1996-1999: Emergence of G9 strains and P[6] strains. Vaccine 21:361-367.
Bucardo F, Mercado J, Reyes Y, Gonzalez F, Balmaseda A, Nordgren J. 2015. Large increase of rotavirus diarrhoea in the hospital setting associated with emergence of G12 genotype in a highly vaccinated population in Nicaragua. Clin Microbiol Infect 21:603.e1-603.e7.
Ndze VN, Esona MD, Achidi EA, Gonsu KH, Doro R, Marton S, Farkas S, Ngeng MB, Ngu AF, Obama-Abena MT, Banyai K. 2014. Full genome characterization of human Rotavirus A strains isolated in Cameroon, 2010-2011: Diverse combinations of the G and P genes and lack of reassortment of the backbone genes. Infect Genet Evol 28:537-560.
Zade JK, Chhabra P, Chitambar SD. 2009. Characterization of VP7 and VP4 genes of rotavirus strains: 1990-1994 and 2000-2002. Epidemiol Infect 137:936-942.
Zhirakovskaia EV, Aksanova R, Gorbunova MG, Tikunov A, Kuril'shchikov AM, Sokolov SN, Netesov SV, Tikunova NV. 2012. Genetic diversity of group A rotavirus isolates found in Western Siberia in 2007-2011. Mol Gen Mikrobiol Virusol 4:33-41.
Banyai K, Bogdan A, Kisfali P, Molnar P, Mihaly I, Melegh B, Martella V, Gentsch JR, Szucs G. 2007. Emergence of serotype G12 rotaviruses, Hungary. Emerg Infect Dis 13:916-919.
Das BK, Gentsch JR, Cicirello HG, Woods PA, Gupta A, Ramachandran M, Kumar R, Bhan MK, Glass RI. 1994. Characterization of rotavirus strains from newborns in New Delhi, India. J Clin Microbiol 32:1820-1822.
Matthijnssens J, Ciarlet M, Rahman M, Attoui H, Banyai K, Estes MK, Gentsch JR, Iturriza-Gomara M, Kirkwood CD, Martella V, Mertens PP, Nakagomi O, Patton JT, Ruggeri FM, Saif LJ, Santos N, Steyer A, Taniguchi K, Desselberger U, Van Ranst M. 2008. Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch Virol 153:1621-1629.
Esona MD, Mijatovic-Rustempasic S, Foytich K, Roy S, Banyai K, Armah GE, Steele AD, Volotao EM, Gomez MM, Silva MF, Gautam R, Quaye O, Tam KI, Forbi JC, Seheri M, Page N, Nyangao J, Ndze VN, Aminu M, Bowen MD, Gentsch JR. 2013. Human G9P[8] rotavirus strains circulating in Cameroon, 1999-2000: Genetic relationships with other G9 strains and detection of a new G9 subtype. Infect Genet Evol 18:315-324.
Komoto S, Wandera Apondi E, Shah M, Odoyo E, Nyangao J, Tomita M, Wakuda M, Maeno Y, Shirato H, Tsuji T, Ichinose Y, Taniguchi K. 2014. Whole genomic analysis of human G12P[6] and G12P[8] rotavirus strains that have emerged in Kenya: Identification of porcine-like NSP4 genes. Infect Genet Evol 27:277-293.
Waggie Z, Hawkridge A, Hussey GD. 2010. Review of rotavirus studies in Africa: 1976-2006. J Infect Dis 202 Suppl:S23-S33.
Mwenda JM, Ntoto KM, Abebe A, Enweronu-Laryea C, Amina I, McHomvu J, Kisakye A, Mpabalwani EM, Pazvakavambwa I, Armah GE, Seheri LM, Kiulia NM, Page N, Widdowson MA, Steele AD. 2010. Burden and epidemiology of rotavirus diarrhea in selected African countries: Preliminary results from the African rotavirus surveillance network. J Infect Dis 202:S5-11.
Zeller M, Donato C, Trovao NS, Cowley D, Heylen E, Donker NC, McAllen JK, Akopov A, Kirkness EF, Lemey P, Van Ranst M, Matthijnssens J, Kirkwood CD. 2015. Genome-wide evolutionary analyses of G1P[8] strains isolated before and after rotavirus vaccine introduction. Genome Biol Evol 7:2473-2483.
Martinez M, Galeano ME, Akopov A, Palacios R, Russomando G, Kirkness EF, Parra GI. 2014. Whole-genome analyses reveals the an
2009; 81
2013; 209
2015; 30
2015; 33
2014; 27
2008; 103
2014; 28
1996; 141
2010; 63
2014; 20
2013; 19
2013; 18
2012; 30 Suppl 1
2014; 3
2014; 33 Suppl 1
2013; 94
2015; 87
2014; 14
2010; 202 Suppl
2014; 9
2008; 153
2007; 24
2009; 15
1994; 32
2015; 12
2015; 15
2010; 202
2011; 83
2013; 85
2008
2010; 362
2005; 43
2005
2013; 382
2015; 7
2007; 13
2012; 32
2009; 137
1992; 30
2012; 2
2011; 108
1990; 28
2015; 156
2015; 21
1994; 14
2007; 81
2013
2012; 4
2003; 21
2014; 32
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
Estes MK (e_1_2_6_16_1) 2013
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
Zhirakovskaia EV (e_1_2_6_59_1) 2012; 4
e_1_2_6_40_1
Tamura T (e_1_2_6_51_1) 2010; 63
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 141
  start-page: 2365
  year: 1996
  end-page: 2374
  article-title: Rotavirus G and P types circulating in Brazil: Characterization by RT‐PCR, probe hybridization, and sequence analysis
  publication-title: Arch Virol
– volume: 15
  start-page: 422
  year: 2015
  end-page: 428
  article-title: Effectiveness of a monovalent rotavirus vaccine in infants in Malawi after programmatic roll‐out: An observational and case‐control study
  publication-title: Lancet Infect Dis
– volume: 362
  start-page: 289
  year: 2010
  end-page: 298
  article-title: Effect of human rotavirus vaccine on severe diarrhea in African infants
  publication-title: N Engl J Med
– year: 2005
– volume: 202
  start-page: S5
  year: 2010
  end-page: 11
  article-title: Burden and epidemiology of rotavirus diarrhea in selected African countries: Preliminary results from the African rotavirus surveillance network
  publication-title: J Infect Dis
– volume: 14
  start-page: 223
  year: 1994
  end-page: 229
  article-title: Seasonality of rotavirus infection in Ghana
  publication-title: Ann Trop Paediatr
– volume: 15
  start-page: 87
  year: 2009
  end-page: 90
  article-title: Serotype g12 rotaviruses, Lilongwe, Malawi
  publication-title: Emerg Infect Dis
– volume: 81
  start-page: 2382
  year: 2007
  end-page: 2390
  article-title: Evolutionary history and global spread of the emerging g12 human rotaviruses
  publication-title: J Virol
– start-page: 1347
  year: 2013
  end-page: 1401
– volume: 13
  start-page: 916
  year: 2007
  end-page: 919
  article-title: Emergence of serotype G12 rotaviruses, Hungary
  publication-title: Emerg Infect Dis
– volume: 202 Suppl
  start-page: S23
  year: 2010
  end-page: S33
  article-title: Review of rotavirus studies in Africa: 1976–2006
  publication-title: J Infect Dis
– volume: 30
  start-page: 1365
  year: 1992
  end-page: 1373
  article-title: Identification of group A rotavirus gene 4 types by polymerase chain reaction
  publication-title: J Clin Microbiol
– volume: 103
  start-page: 745
  year: 2008
  end-page: 753
  article-title: Group A rotavirus genotypes and the ongoing Brazilian experience: A review
  publication-title: Mem Inst Oswaldo Cruz
– volume: 28
  start-page: 276
  year: 1990
  end-page: 282
  article-title: Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens
  publication-title: J Clin Microbiol
– volume: 85
  start-page: 1485
  year: 2013
  end-page: 1490
  article-title: One year survey of human rotavirus strains suggests the emergence of genotype G12 in Cameroon
  publication-title: J Med Virol
– volume: 81
  start-page: 106
  year: 2009
  end-page: 113
  article-title: The detection and molecular characterization of human G12 genotypes in South Africa
  publication-title: J Med Virol
– volume: 21
  start-page: 361
  year: 2003
  end-page: 367
  article-title: Rotavirus strains circulating in Africa during 1996–1999: Emergence of G9 strains and P[6] strains
  publication-title: Vaccine
– year: 2008
– volume: 12
  start-page: 937
  year: 2015
  end-page: 944
  article-title: Sequence diversity of VP4 and VP7 genes of human rotavirus strains in Saudi Arabia
  publication-title: Foodborne Pathog Dis
– volume: 9
  start-page: e100953
  year: 2014
  article-title: Rotavirus surveillance in Kisangani, the Democratic Republic of the Congo, reveals a high number of unusual genotypes and gene segments of animal origin in non‐vaccinated symptomatic children
  publication-title: PLoS ONE
– volume: 20
  start-page: 573
  year: 2014
  end-page: 580
  article-title: Rotavirus surveillance in urban and rural areas of Niger, April 2010‐March 2012
  publication-title: Emerg Infect Dis
– volume: 27
  start-page: 277
  year: 2014
  end-page: 293
  article-title: Whole genomic analysis of human G12P[6] and G12P[8] rotavirus strains that have emerged in Kenya: Identification of porcine‐like NSP4 genes
  publication-title: Infect Genet Evol
– volume: 43
  start-page: 67
  year: 2005
  end-page: 72
  article-title: Pathogenic enteric Escherichia coli in children with and without diarrhea in Maputo, Mozambique
  publication-title: FEMS Immunol Med Microbiol
– volume: 32
  start-page: e134
  year: 2012
  end-page: e147
  article-title: Global seasonality of rotavirus disease
  publication-title: Pediatr Infect Dis J
– volume: 21
  start-page: 603.e1
  year: 2015
  end-page: 603.e7
  article-title: Large increase of rotavirus diarrhoea in the hospital setting associated with emergence of G12 genotype in a highly vaccinated population in Nicaragua
  publication-title: Clin Microbiol Infect
– volume: 2
  start-page: 426
  year: 2012
  end-page: 433
  article-title: Genotype constellation and evolution of group A rotaviruses infecting humans
  publication-title: Curr Opin Virol
– volume: 33
  start-page: 55
  year: 2015
  end-page: 71
  article-title: Genomic characterization of G3P[6], G4P[6] and G4P[8] human rotaviruses from Wuhan, China: Evidence for interspecies transmission and reassortment events
  publication-title: Infect Genet Evol
– volume: 19
  start-page: 51
  year: 2013
  end-page: 58
  article-title: Genetic diversity of G1P[8] rotavirus VP7 and VP8* antigens in Finland over a 20‐year period: No evidence for selection pressure by universal mass vaccination with RotaTeq(R) vaccine
  publication-title: Infect Genet Evol
– volume: 83
  start-page: 2018
  year: 2011
  end-page: 2042
  article-title: Whole genome analyses of African G2, G8, G9, and G12 rotavirus strains using sequence‐independent amplification and 454(R) pyrosequencing
  publication-title: J Med Virol
– volume: 28
  start-page: 537
  year: 2014
  end-page: 560
  article-title: Full genome characterization of human Rotavirus A strains isolated in Cameroon, 2010–2011: Diverse combinations of the G and P genes and lack of reassortment of the backbone genes
  publication-title: Infect Genet Evol
– volume: 87
  start-page: 1292
  year: 2015
  end-page: 1302
  article-title: Unexpected spreading of G12P[8] rotavirus strains among young children in a small area of central Italy
  publication-title: J Med Virol
– volume: 153
  start-page: 1621
  year: 2008
  end-page: 1629
  article-title: Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments
  publication-title: Arch Virol
– volume: 18
  start-page: 315
  year: 2013
  end-page: 324
  article-title: Human G9P[8] rotavirus strains circulating in Cameroon, 1999‐2000: Genetic relationships with other G9 strains and detection of a new G9 subtype
  publication-title: Infect Genet Evol
– volume: 32
  start-page: 1820
  year: 1994
  end-page: 1822
  article-title: Characterization of rotavirus strains from newborns in New Delhi, India
  publication-title: J Clin Microbiol
– volume: 7
  start-page: 2473
  year: 2015
  end-page: 2483
  article-title: Genome‐wide evolutionary analyses of G1P[8] strains isolated before and after rotavirus vaccine introduction
  publication-title: Genome Biol Evol
– volume: 28
  start-page: 446
  year: 2014
  end-page: 461
  article-title: Review of global rotavirus strain prevalence data from six years post vaccine licensure surveillance: Is there evidence of strain selection from vaccine pressure
  publication-title: Infect Genet Evol
– volume: 33 Suppl 1
  start-page: S85
  year: 2014
  end-page: S88
  article-title: Rotavirus G and P types circulating in the eastern region of Kenya: Predominance of G9 and emergence of G12 genotypes
  publication-title: Pediatr Infect Dis J
– volume: 202
  start-page: S148
  year: 2010
  end-page: S155
  article-title: Prevalence and diversity of rotavirus strains in children with acute diarrhea from rural communities in the Limpopo Province, South Africa, from 1998 to 2000
  publication-title: J Infect Dis
– volume: 3
  start-page: 179
  year: 2014
  article-title: Genetic diversity of rotavirus genome segment 6 (encoding VP6) in Pretoria, South Africa
  publication-title: Springerplus
– volume: 27
  start-page: 156
  year: 2014
  end-page: 162
  article-title: Whole‐genome analyses reveals the animal origin of a rotavirus G4P[6] detected in a child with severe diarrhea
  publication-title: Infect Genet Evol
– volume: 30 Suppl 1
  start-page: A36
  year: 2012
  end-page: A43
  article-title: Efficacy of human rotavirus vaccine against severe gastroenteritis in Malawian children in the first two years of life: A randomized, double‐blind, placebo controlled trial
  publication-title: Vaccine
– volume: 63
  start-page: 405
  year: 2010
  end-page: 411
  article-title: Molecular epidemiological study of rotavirus and norovirus infections among children with acute gastroenteritis in Nha Trang, Vietnam, December 2005‐June 2006
  publication-title: Jpn J Infect Dis
– volume: 81
  start-page: 937
  year: 2009
  end-page: 951
  article-title: Genomic characterization of human rotavirus G8 strains from the African rotavirus network: Relationship to animal rotaviruses
  publication-title: J Med Virol
– volume: 24
  start-page: 1596
  year: 2007
  end-page: 1599
  article-title: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0
  publication-title: Mol Biol Evol
– volume: 14
  start-page: 1096
  year: 2014
  end-page: 1104
  article-title: Effectiveness of monovalent human rotavirus vaccine against admission to hospital for acute rotavirus diarrhoea in South African children: A case‐control study
  publication-title: Lancet Infect Dis
– volume: 94
  start-page: 136
  year: 2013
  end-page: 142
  article-title: Identification of an avian group A rotavirus containing a novel VP4 gene with a close relationship to those of mammalian rotaviruses
  publication-title: J Gen Virol
– volume: 4
  start-page: 33
  year: 2012
  end-page: 41
  article-title: Genetic diversity of group A rotavirus isolates found in Western Siberia in 2007–2011
  publication-title: Mol Gen Mikrobiol Virusol
– volume: 19
  start-page: 71
  year: 2013
  end-page: 80
  article-title: Zoonotic transmission of reassortant porcine G4P[6] rotaviruses in Hungarian pediatric patients identified sporadically over a 15 year period
  publication-title: Infect Genet Evol
– volume: 30 Suppl 1
  start-page: A122
  year: 2012
  end-page: A130
  article-title: Systematic review of regional and temporal trends in global rotavirus strain diversity in the pre rotavirus vaccine era: Insights for understanding the impact of rotavirus vaccination programs
  publication-title: Vaccine
– volume: 202
  start-page: S139
  year: 2010
  end-page: S147
  article-title: Characterization and molecular epidemiology of rotavirus strains recovered in Northern Pretoria, South Africa during 2003–2006
  publication-title: J Infect Dis
– volume: 137
  start-page: 936
  year: 2009
  end-page: 942
  article-title: Characterization of VP7 and VP4 genes of rotavirus strains: 1990–1994 and 2000–
  publication-title: Epidemiol Infect
– volume: 28
  start-page: 495
  year: 1990
  end-page: 503
  article-title: Rapid and simple method for purification of nucleic acids
  publication-title: J Clin Microbiol
– volume: 108
  start-page: 19353
  year: 2011
  end-page: 19358
  article-title: Modeling rotavirus strain dynamics in developed countries to understand the potential impact of vaccination on genotype distributions
  publication-title: Proc Natl Acad Sci USA
– volume: 32
  start-page: 6336
  year: 2014
  end-page: 6341
  article-title: Report of the 7th African Rotavirus Symposium, Cape Town, South Africa, 8th November 2012
  publication-title: Vaccine
– volume: 30
  start-page: 206
  year: 2015
  end-page: 218
  article-title: G1P[8] species A rotavirus over 27 years—pre‐ and post‐vaccination eras—in Brazil: Full genomic constellation analysis and no evidence for selection pressure by Rotarix(R) vaccine
  publication-title: Infect Genet Evol
– volume: 156
  start-page: 87
  year: 2015
  end-page: 94
  article-title: Detection of the emerging rotavirus G12P[8] genotype at high frequency in brazil in 2014: Successive replacement of predominant strains after vaccine introduction
  publication-title: Acta Trop
– volume: 209
  start-page: 1227
  year: 2013
  end-page: 1230
  article-title: A FUT2 gene common polymorphism determines resistance to rotavirus A of the P[8] genotype
  publication-title: J Infect Dis
– volume: 382
  start-page: 209
  year: 2013
  end-page: 222
  article-title: Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case‐control study
  publication-title: Lancet
– year: 2013
– ident: e_1_2_6_10_1
  doi: 10.1016/j.vaccine.2011.09.120
– ident: e_1_2_6_7_1
  doi: 10.1128/JCM.28.3.495-503.1990
– ident: e_1_2_6_50_1
  doi: 10.1093/molbev/msm092
– ident: e_1_2_6_12_1
  doi: 10.1002/jmv.24180
– ident: e_1_2_6_15_1
  doi: 10.1016/j.meegid.2013.06.005
– ident: e_1_2_6_18_1
  doi: 10.1128/JCM.28.2.276-282.1990
– ident: e_1_2_6_23_1
  doi: 10.1002/jmv.22207
– ident: e_1_2_6_53_1
– ident: e_1_2_6_28_1
  doi: 10.1590/S0074-02762008000800001
– ident: e_1_2_6_29_1
  doi: 10.1016/j.actatropica.2015.12.008
– ident: e_1_2_6_8_1
  doi: 10.1016/j.cmi.2015.01.022
– ident: e_1_2_6_20_1
  doi: 10.1016/j.meegid.2013.06.026
– ident: e_1_2_6_25_1
  doi: 10.1016/j.meegid.2014.08.002
– ident: e_1_2_6_5_1
  doi: 10.1016/j.vaccine.2011.09.111
– ident: e_1_2_6_17_1
  doi: 10.1128/jcm.30.6.1365-1373.1992
– ident: e_1_2_6_46_1
  doi: 10.1016/j.vaccine.2014.05.002
– ident: e_1_2_6_33_1
  doi: 10.1016/j.coviro.2012.04.007
– ident: e_1_2_6_45_1
  doi: 10.1016/j.femsim.2004.07.006
– ident: e_1_2_6_55_1
– ident: e_1_2_6_22_1
  doi: 10.1093/infdis/jit655
– ident: e_1_2_6_19_1
  doi: 10.1016/S1473-3099(14)70940-5
– ident: e_1_2_6_14_1
  doi: 10.1002/jmv.21468
– ident: e_1_2_6_3_1
  doi: 10.1080/02724936.1994.11747721
– ident: e_1_2_6_4_1
  doi: 10.3201/eid1306.061181
– ident: e_1_2_6_21_1
  doi: 10.1371/journal.pone.0100953
– ident: e_1_2_6_31_1
  doi: 10.1016/j.meegid.2014.07.020
– ident: e_1_2_6_42_1
  doi: 10.1073/pnas.1110507108
– ident: e_1_2_6_57_1
  doi: 10.1017/S0950268808001532
– ident: e_1_2_6_37_1
  doi: 10.1186/2193-1801-3-179
– ident: e_1_2_6_47_1
  doi: 10.1086/653559
– ident: e_1_2_6_30_1
  doi: 10.1056/NEJMoa0904797
– ident: e_1_2_6_44_1
  doi: 10.1128/JVI.01622-06
– ident: e_1_2_6_48_1
  doi: 10.1016/j.meegid.2014.12.030
– ident: e_1_2_6_40_1
  doi: 10.1016/j.meegid.2013.06.013
– ident: e_1_2_6_9_1
  doi: 10.3201/eid1501.080427
– ident: e_1_2_6_13_1
  doi: 10.1016/j.meegid.2014.08.017
– ident: e_1_2_6_26_1
  doi: 10.1016/S0140-6736(13)60844-2
– ident: e_1_2_6_6_1
  doi: 10.1016/S1473-3099(14)71060-6
– ident: e_1_2_6_49_1
  doi: 10.1016/S0264-410X(02)00616-3
– ident: e_1_2_6_43_1
  doi: 10.1086/653561
– ident: e_1_2_6_56_1
– ident: e_1_2_6_36_1
  doi: 10.1002/jmv.23603
– start-page: 1347
  volume-title: Fields virology
  year: 2013
  ident: e_1_2_6_16_1
  contributor:
    fullname: Estes MK
– ident: e_1_2_6_34_1
  doi: 10.1086/653557
– ident: e_1_2_6_54_1
  doi: 10.1086/653554
– ident: e_1_2_6_32_1
  doi: 10.1007/s00705-008-0155-1
– ident: e_1_2_6_52_1
  doi: 10.1099/vir.0.047381-0
– volume: 4
  start-page: 33
  year: 2012
  ident: e_1_2_6_59_1
  article-title: Genetic diversity of group A rotavirus isolates found in Western Siberia in 2007–2011
  publication-title: Mol Gen Mikrobiol Virusol
  contributor:
    fullname: Zhirakovskaia EV
– ident: e_1_2_6_38_1
  doi: 10.3201/eid2004.131328
– ident: e_1_2_6_41_1
  doi: 10.1097/INF.0b013e31827d3b68
– ident: e_1_2_6_39_1
  doi: 10.1002/jmv.21362
– ident: e_1_2_6_11_1
  doi: 10.1128/jcm.32.7.1820-1822.1994
– ident: e_1_2_6_27_1
  doi: 10.1007/BF01718637
– ident: e_1_2_6_35_1
  doi: 10.1016/j.meegid.2014.10.009
– ident: e_1_2_6_58_1
  doi: 10.1093/gbe/evv157
– ident: e_1_2_6_2_1
  doi: 10.1089/fpd.2015.1990
– ident: e_1_2_6_60_1
  doi: 10.1016/j.meegid.2015.04.010
– ident: e_1_2_6_24_1
  doi: 10.1097/INF.0000000000000059
– volume: 63
  start-page: 405
  year: 2010
  ident: e_1_2_6_51_1
  article-title: Molecular epidemiological study of rotavirus and norovirus infections among children with acute gastroenteritis in Nha Trang, Vietnam, December 2005‐June 2006
  publication-title: Jpn J Infect Dis
  doi: 10.7883/yoken.63.405
  contributor:
    fullname: Tamura T
SSID ssj0008922
Score 2.3176298
Snippet Acute diarrhea disease caused by Rotaviruses A (RVA) is still the leading cause of morbidity and mortality in children ≤5 years old in developing countries. An...
Acute diarrhea disease caused by Rotaviruses A (RVA) is still the leading cause of morbidity and mortality in children less than or equal to 5 years old in...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1751
SubjectTerms acute diarrhea disease
Acute Disease
Antigens, Viral - genetics
Antigens, Viral - immunology
Capsid Proteins - immunology
Child, Preschool
Cross-Sectional Studies
Diarrhea
Diarrhea - epidemiology
Diarrhea - virology
Epidemiology
Feces - virology
Female
Gastroenteritis - epidemiology
Gastroenteritis - virology
Genetic Variation
Genotype
genotypes
Humans
Infant
Male
Mozambique
Mozambique - epidemiology
Phylogeny
Prevalence
RNA, Viral - genetics
Rotavirus
Rotavirus - genetics
Rotavirus Infections - epidemiology
Rotavirus Infections - virology
Rotavirus Vaccines - administration & dosage
rotaviruses A
seasonality
Seasons
Sequence Analysis, DNA
Vaccines, Attenuated - administration & dosage
Virology
Title Epidemiology of rotavirus A diarrhea in Chókwè, Southern Mozambique, from February to September, 2011
URI https://api.istex.fr/ark:/67375/WNG-H49JRN0V-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmv.24531
https://www.ncbi.nlm.nih.gov/pubmed/27003797
https://www.proquest.com/docview/1807947915
https://search.proquest.com/docview/1808602909
https://search.proquest.com/docview/1811885444
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSIgL70egIIMQ4rChediJLU5V2aWqtCtEoXCz7HjclqpJld0tlF_Ue39C_xhjZzdVJUBI3CJlLDnzdsbzDSEvjcmt4IWMpQGI0fux2BgHcQqcg4asSqswxHa7nHwV74YeJuftshemw4fof7h5ywj-2hu4NtO1C9DQb4fHbzLGQw81nhJC-0b-offCQnYVBPQEMcYgvkQVSrK1fuWlWHTNs_XH7xLNy3lrCDyjW_-15dvk5iLfpOudgtwhV6C-S66PFxX1e2R3eDEi9oQ2jrbNTB_vt_MpXaeoO22L3pru13Rj7_zs4Pv56YCGqXvQ1nTc_NSHxgPADqhvU6EjPGCjyp3QWUO34WgGftrIgProf598Hg0_bWzGi-ELccUwqsdgSssKMLwQTGcpJC5DU64sZ8xhUqX9_SiMZboQstI21zYtKi5KJ5gzhWMmf0BW6qaGR4SyUlbcZUxYzHYqm0orXeHAOatRE7SLyIulGNRRh7GhOjTlTCHLVGBZRF4FAfUUuj3wl9JKrr5M3qtNJrc-TpIdVUZkdSlBtbDHqUpFgo6nlCmPyPP-NVqSL4_oGpp5oPEDuWQi_0aDBzKBPGARedhpR78hX8LPS4kbeB2U4M_forbGO-Hh8b-TPiE3UFpFd49wlazM2jk8JVendv4sKP4v-DUFQg
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglYAL70egBYMQ4rChediOLXGpyi5L6a4QLYWbZcc2lKpJld0tlF_EvT-hf4yxs5uqEiAkbpEykZyZbx72eGYQeqp1bjhlIhba2hisH4m1djZOLaVW2axMyzDEdrsYf-Kv-r5NzstFLUzbH6I7cPOaEey1V3B_IL121jX068HRi4xQX0S9TBgA0Rdw5O86O8xFm0MAWxCDF6KLvkJJttZ9es4bLXvGfv9dqHk-cg2uZ3Dt_xZ9HV2dh5x4vcXIDXTBVjfRpdE8qX4Lfe6fTYk9xrXDTT1VR3vNbILXMcCnacBg470Kb3w5Pdn_dvqzh8PgPdtUeFT_UAfa94DtYV-pggewxwbUHeNpjbft4dT6gSM97AOA2-jDoL-zMYzn8xfikoBjj60uDGFWU8aJylKbuAy0uTSUEAdxlfJXpMCdKcZFqUyuTMpKygvHidPMEZ3fQUtVXdl7CJNClNRlhBsIeEqTCiMcc9Y5owAMykXoyUIO8rBtsyHbhsqZBJbJwLIIPQsS6ihUs-_vpRVUfhy_lkMiNt-Pk11ZRGhlIUI5V8mJTHkCtqcQKY3Q4-41KJPPkKjK1rNA42dyiUT8jQb2ZBx4QCJ0t4VHtyCfxc8LAQt4HlDw53-Rm6Pd8HD_30kfocvDndGW3HozfvsAXQHJsfZa4QpamjYzu4ouTszsYdCCX29GCWo
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bTxQxFG4QEuILijdGQYsxxocdmUs704YnArsCuhsiir417bQFJMxsZndR_EW--xP4Y552doeQqDHxbZI5TTrn3jmn30HohVKpZjTjIVfGhOD9SKiUNWFsKDXSJEVc-CG2h_ngM9vpOpiczdldmAYfov3h5izD-2tn4ENtN65BQ7-cX7xOCHV3qBcIpOEOOD9ND1o3zHhTQgBXEEIQojNYoSjZaJfeCEYLjq_ffpdp3kxcfeTp3fmvPd9FS9OEE281GrKM5kx5Dy32pyX1--i4ez0j9hJXFtfVWF6c1pMR3sKgPHUN7hqflnj75Orn2derHx3sx-6ZusT96rs8Vw4BtoPdPRXcgxM26NwlHlf40AzHxo0b6WAX_h-gj73uh-3dcDp9ISwIhPXQqFyTzCiaMSKT2EQ2AVsuNCXEQlYlXYMUBDOZMV5InUodZwVluWXEqswSlT5E82VVmhWESc4LahPCNKQ7hY655jazxlotQRWkDdDzmRjEsAHZEA2cciKAZcKzLEAvvYBaClmfua60nIpPgzdil_D994PoSOQBWp1JUEwNciRiFoHnyXlMA7TevgZTcvURWZpq4mncRC4e8b_RwImMAQ9IgB412tFuyNXw05zDBl55Jfjzt4j9_pF_ePzvpM_Q4sFOT7zbG7x9gm6D4LKmp3AVzY_riVlDt0Z68tTbwC8vVwgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epidemiology+of+rotavirus+A+diarrhea+in+Ch%C3%B3kw%C3%A8%2C+Southern+Mozambique%2C+from+February+to+September%2C+2011&rft.jtitle=Journal+of+medical+virology&rft.au=Langa%2C+Jer%C3%B3nimo+S.&rft.au=Thompson%2C+Ricardo&rft.au=Arnaldo%2C+Paulo&rft.au=Resque%2C+Hugo+Reis&rft.date=2016-10-01&rft.issn=0146-6615&rft.eissn=1096-9071&rft.volume=88&rft.issue=10&rft.spage=1751&rft.epage=1758&rft_id=info:doi/10.1002%2Fjmv.24531&rft.externalDBID=10.1002%252Fjmv.24531&rft.externalDocID=JMV24531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0146-6615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0146-6615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0146-6615&client=summon