Acoustic emission during the solvent mediated cooling crystallization of citric acid
The potential of Acoustic Emission (AE) for controlling crystallization processes is investigated. The sensing technology is successfully applied to monitor the batch cooling crystallization of citric acid (CA) in water. The solvent-mediated phase transition between the anhydrous and the monohydrate...
Saved in:
Published in: | Powder technology Vol. 301; pp. 70 - 77 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-11-2016
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The potential of Acoustic Emission (AE) for controlling crystallization processes is investigated. The sensing technology is successfully applied to monitor the batch cooling crystallization of citric acid (CA) in water. The solvent-mediated phase transition between the anhydrous and the monohydrated forms of CA is clearly detected from the recorded acoustic measurements. A tremendous amount of acoustic data is recorded by the equipment, and the analysis of the data is focused on the evaluation of AE as a new sensor for monitoring the basic steps of the crystallization processes (i.e., nucleation, growth, phase transition, etc.) A time- and frequency-domain analysis is presented which shows the wealth of the technique. It is finally concluded that AE allows very early detection of nucleation events, provides a means of monitoring the development of the crystallization process and allows monitoring phase transition phenomena obtained through cooling. It is thus suggested that acoustic emission could be valuable in the development of new crystallization monitoring and control strategies: this is all the more interesting that the acoustic piezo-sensor is non-intrusive and does not require any sampling of the slurry, two features which are of tremendous importance in the field of cooling crystallization processes.
[Display omitted]
•AE allows very early detection of nucleation events.•The solvent-mediated phase transition is clearly detected.•AE could be valuable in the development of new crystallization monitoring strategies. |
---|---|
ISSN: | 0032-5910 1873-328X |
DOI: | 10.1016/j.powtec.2016.05.057 |