Microstructure and microtexture assessment of delamination phenomena in charpy impact tested specimens

In this article the delamination phenomena, which occurs in the X70 steel during fracture process from the Charpy impact tests, was investigated. Microstructure, microtexture and Taylor factor map analyses were performed by scanning electron microscopy, light microscopy and electron backscatter diff...

Full description

Saved in:
Bibliographic Details
Published in:Materials research (São Carlos, São Paulo, Brazil) Vol. 17; no. 5; pp. 1238 - 1250
Main Authors: Haskel, Hudison Loch, Pauletti, Ederson, Martins, Juliana de Paula, Carvalho, André Luis Moreira de
Format: Journal Article
Language:English
Published: ABM, ABC, ABPol 01-10-2014
Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article the delamination phenomena, which occurs in the X70 steel during fracture process from the Charpy impact tests, was investigated. Microstructure, microtexture and Taylor factor map analyses were performed by scanning electron microscopy, light microscopy and electron backscatter diffraction, respectively. In a cross-section of two fractured surface regions namely, in the perpendicular and parallel regions to the propagation fracture direction where delamination occurred, it was possible to notice that delamination showed a key role in the anisotropy of impact toughness between the L-T and T-L orientations. The results also revealed that the cause of the delamination can be attributed to the presence of microstructural banding and elongated ferrite grains aligned in a rolling direction. The presence of (100)[011] and (111)[110] crystallographic orientations, with Taylor factors close to 2.7 and 4.5, respectively, were identified in the delamination region. They contribute to the occurrence of cleavage delamination during the fracture process.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1516-1439
1980-5373
1516-1439
1980-5373
DOI:10.1590/1516-1439.268314